Chris Oswald
commited on
Commit
•
01d5f4f
1
Parent(s):
dec2fcc
added resize parameter
Browse files
SPIDER.py
CHANGED
@@ -36,10 +36,18 @@ def import_csv_data(filepath: str) -> List[Dict[str, str]]:
|
|
36 |
results.append(line)
|
37 |
return results
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
# Define constants
|
40 |
N_PATIENTS = 218
|
41 |
MIN_IVD = 0
|
42 |
MAX_IVD = 9
|
|
|
|
|
43 |
|
44 |
# TODO: Add BibTeX citation
|
45 |
# Find for instance the citation on arxiv or on the dataset repo/website
|
@@ -82,10 +90,12 @@ class CustomBuilderConfig(datasets.BuilderConfig):
|
|
82 |
data_dir: Optional[str] = None,
|
83 |
data_files: Optional[Union[str, Sequence, Mapping]] = None,
|
84 |
description: Optional[str] = None,
|
85 |
-
scan_types: List[str] =
|
|
|
86 |
):
|
87 |
super().__init__(name, version, data_dir, data_files, description)
|
88 |
self.scan_types = scan_types
|
|
|
89 |
|
90 |
|
91 |
class SPIDER(datasets.GeneratorBasedBuilder):
|
@@ -95,34 +105,49 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
95 |
|
96 |
BUILDER_CONFIG_CLASS = CustomBuilderConfig
|
97 |
|
98 |
-
BUILDER_CONFIGS = [
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
def _info(self):
|
128 |
"""
|
@@ -133,7 +158,7 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
133 |
"patient_id": datasets.Value("string"),
|
134 |
"scan_type": datasets.Value("string"),
|
135 |
# "raw_image": datasets.Image(),
|
136 |
-
"numeric_array": datasets.Array3D(dtype='int16'),
|
137 |
"metadata": {
|
138 |
"num_vertebrae": datasets.Value(dtype="string"),
|
139 |
"num_discs": datasets.Value(dtype="string"),
|
@@ -214,14 +239,14 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
214 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
215 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
216 |
paths_dict = dl_manager.download_and_extract(_URLS)
|
217 |
-
scan_types = self.config.scan_types
|
218 |
return [
|
219 |
datasets.SplitGenerator(
|
220 |
name=datasets.Split.TRAIN,
|
221 |
gen_kwargs={
|
222 |
"paths_dict": paths_dict,
|
223 |
"split": "train",
|
224 |
-
"scan_types": scan_types,
|
|
|
225 |
},
|
226 |
),
|
227 |
datasets.SplitGenerator(
|
@@ -229,7 +254,8 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
229 |
gen_kwargs={
|
230 |
"paths_dict": paths_dict,
|
231 |
"split": "validate",
|
232 |
-
"scan_types": scan_types,
|
|
|
233 |
},
|
234 |
),
|
235 |
datasets.SplitGenerator(
|
@@ -237,7 +263,8 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
237 |
gen_kwargs={
|
238 |
"paths_dict": paths_dict,
|
239 |
"split": "test",
|
240 |
-
"scan_types": scan_types,
|
|
|
241 |
},
|
242 |
),
|
243 |
]
|
@@ -245,8 +272,9 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
245 |
def _generate_examples(
|
246 |
self,
|
247 |
paths_dict: Dict[str, str],
|
248 |
-
split: str
|
249 |
-
scan_types: List[str]
|
|
|
250 |
validate_share: float = 0.3,
|
251 |
test_share: float = 0.2,
|
252 |
raw_image: bool = True,
|
@@ -385,7 +413,7 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
385 |
if col not in ['Patient']
|
386 |
}
|
387 |
|
388 |
-
#
|
389 |
image_files = [
|
390 |
file for file in os.listdir(os.path.join(paths_dict['images'], 'images'))
|
391 |
if file.endswith('.mha')
|
@@ -398,7 +426,7 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
398 |
]
|
399 |
assert len(mask_files) > 0, "No mask files found--check directory path."
|
400 |
|
401 |
-
# Filter image and mask data based on scan types
|
402 |
image_files = [
|
403 |
file for file in image_files
|
404 |
if any(scan_type in file for scan_type in scan_types)
|
|
|
36 |
results.append(line)
|
37 |
return results
|
38 |
|
39 |
+
def standardize_3D_image(image: np.ndarray) -> np.ndarray:
|
40 |
+
"""TODO"""
|
41 |
+
if image.shape[0] < image.shape[2]:
|
42 |
+
image = np.transpose(image, axes=[1, 2, 0])
|
43 |
+
return image
|
44 |
+
|
45 |
# Define constants
|
46 |
N_PATIENTS = 218
|
47 |
MIN_IVD = 0
|
48 |
MAX_IVD = 9
|
49 |
+
DEFAULT_SCAN_TYPES = ['t1', 't2', 't2_SPACE']
|
50 |
+
DEFAULT_RESIZE = (512, 512, 30)
|
51 |
|
52 |
# TODO: Add BibTeX citation
|
53 |
# Find for instance the citation on arxiv or on the dataset repo/website
|
|
|
90 |
data_dir: Optional[str] = None,
|
91 |
data_files: Optional[Union[str, Sequence, Mapping]] = None,
|
92 |
description: Optional[str] = None,
|
93 |
+
scan_types: List[str] = DEFAULT_SCAN_TYPES,
|
94 |
+
resize_dims: Tuple[int, int, int] = DEFAULT_RESIZE,
|
95 |
):
|
96 |
super().__init__(name, version, data_dir, data_files, description)
|
97 |
self.scan_types = scan_types
|
98 |
+
self.resize_dims = resize_dims
|
99 |
|
100 |
|
101 |
class SPIDER(datasets.GeneratorBasedBuilder):
|
|
|
105 |
|
106 |
BUILDER_CONFIG_CLASS = CustomBuilderConfig
|
107 |
|
108 |
+
# BUILDER_CONFIGS = [
|
109 |
+
# CustomBuilderConfig(
|
110 |
+
# name="all_scan_types",
|
111 |
+
# version=VERSION,
|
112 |
+
# description="Use images of all scan types (t1, t2, t2 SPACE)",
|
113 |
+
# scan_types=['t1', 't2', 't2_SPACE'],
|
114 |
+
# resize_dims=DEFAULT_RESIZE,
|
115 |
+
# ),
|
116 |
+
# CustomBuilderConfig(
|
117 |
+
# name="t1_scan_types",
|
118 |
+
# version=VERSION,
|
119 |
+
# description="Use images of t1 scan types only",
|
120 |
+
# scan_types=['t1'],
|
121 |
+
# resize_dims=DEFAULT_RESIZE,
|
122 |
+
# ),
|
123 |
+
# CustomBuilderConfig(
|
124 |
+
# name="t2_scan_types",
|
125 |
+
# version=VERSION,
|
126 |
+
# description="Use images of t2 scan types only",
|
127 |
+
# scan_types=['t2'],
|
128 |
+
# resize_dims=DEFAULT_RESIZE,
|
129 |
+
# ),
|
130 |
+
# CustomBuilderConfig(
|
131 |
+
# name="t2_SPACE_scan_types",
|
132 |
+
# version=VERSION,
|
133 |
+
# description="Use images of t2 SPACE scan types only",
|
134 |
+
# scan_types=['t2_SPACE'],
|
135 |
+
# resize_dims=DEFAULT_RESIZE,
|
136 |
+
# ),
|
137 |
+
# ]
|
138 |
+
|
139 |
+
# DEFAULT_CONFIG_NAME = "all_scan_types"
|
140 |
+
|
141 |
+
def __init__(
|
142 |
+
self,
|
143 |
+
*args,
|
144 |
+
scan_types: List[str] = DEFAULT_SCAN_TYPES,
|
145 |
+
resize_dims: Tuple[int, int, int] = DEFAULT_RESIZE,
|
146 |
+
**kwargs,
|
147 |
+
):
|
148 |
+
super().__init__(*args, **kwargs)
|
149 |
+
self.scan_types = scan_types
|
150 |
+
self.resize_dims = resize_dims
|
151 |
|
152 |
def _info(self):
|
153 |
"""
|
|
|
158 |
"patient_id": datasets.Value("string"),
|
159 |
"scan_type": datasets.Value("string"),
|
160 |
# "raw_image": datasets.Image(),
|
161 |
+
"numeric_array": datasets.Array3D(shape=self.resize_dims, dtype='int16'),
|
162 |
"metadata": {
|
163 |
"num_vertebrae": datasets.Value(dtype="string"),
|
164 |
"num_discs": datasets.Value(dtype="string"),
|
|
|
239 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
240 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
241 |
paths_dict = dl_manager.download_and_extract(_URLS)
|
|
|
242 |
return [
|
243 |
datasets.SplitGenerator(
|
244 |
name=datasets.Split.TRAIN,
|
245 |
gen_kwargs={
|
246 |
"paths_dict": paths_dict,
|
247 |
"split": "train",
|
248 |
+
"scan_types": self.scan_types,
|
249 |
+
"resize_dims": self.resize_dims,
|
250 |
},
|
251 |
),
|
252 |
datasets.SplitGenerator(
|
|
|
254 |
gen_kwargs={
|
255 |
"paths_dict": paths_dict,
|
256 |
"split": "validate",
|
257 |
+
"scan_types": self.scan_types,
|
258 |
+
"resize_dims": self.resize_dims,
|
259 |
},
|
260 |
),
|
261 |
datasets.SplitGenerator(
|
|
|
263 |
gen_kwargs={
|
264 |
"paths_dict": paths_dict,
|
265 |
"split": "test",
|
266 |
+
"scan_types": self.scan_types,
|
267 |
+
"resize_dims": self.resize_dims,
|
268 |
},
|
269 |
),
|
270 |
]
|
|
|
272 |
def _generate_examples(
|
273 |
self,
|
274 |
paths_dict: Dict[str, str],
|
275 |
+
split: str,
|
276 |
+
scan_types: List[str],
|
277 |
+
resize_dims: Tuple[int, int, int],
|
278 |
validate_share: float = 0.3,
|
279 |
test_share: float = 0.2,
|
280 |
raw_image: bool = True,
|
|
|
413 |
if col not in ['Patient']
|
414 |
}
|
415 |
|
416 |
+
# Get list of image and mask data files
|
417 |
image_files = [
|
418 |
file for file in os.listdir(os.path.join(paths_dict['images'], 'images'))
|
419 |
if file.endswith('.mha')
|
|
|
426 |
]
|
427 |
assert len(mask_files) > 0, "No mask files found--check directory path."
|
428 |
|
429 |
+
# Filter image and mask data files based on scan types
|
430 |
image_files = [
|
431 |
file for file in image_files
|
432 |
if any(scan_type in file for scan_type in scan_types)
|