Chris Oswald commited on
Commit
b949ef2
1 Parent(s): 1c9918d
Files changed (1) hide show
  1. SPIDER.py +25 -26
SPIDER.py CHANGED
@@ -431,15 +431,6 @@ class SPIDER(datasets.GeneratorBasedBuilder):
431
  k:v for k,v in item.items() if k not in exclude_vars
432
  }
433
 
434
- # Merge patient records for radiological gradings data
435
- grades_dict = {}
436
- for patient_id in patient_ids:
437
- patient_grades = [
438
- x for x in grades_data if x['Patient'] == str(patient_id)
439
- ]
440
- if patient_grades:
441
- grades_dict[str(patient_id)] = patient_grades
442
-
443
  # # Determine maximum number of radiological gradings per patient
444
  # max_ivd = 0
445
  # for temp_dict_1 in grades_dict.values():
@@ -447,6 +438,31 @@ class SPIDER(datasets.GeneratorBasedBuilder):
447
  # if int(temp_dict_2['IVD label']) > max_ivd:
448
  # max_ivd = int(temp_dict_2['IVD label'])
449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
450
  # Import image and mask data
451
  image_files = [
452
  file for file in os.listdir(os.path.join(paths_dict['images'], 'images'))
@@ -525,23 +541,6 @@ class SPIDER(datasets.GeneratorBasedBuilder):
525
  if k not in ['Patient', 'IVD label']
526
  }
527
  patient_grades_dict[key] = value
528
-
529
- print(example, patient_grades_dict)
530
- # Pad patient radiological gradings so that data for all patients
531
- # have the same dimensions
532
- if len(patient_grades_dict) < MAX_IVD:
533
- for i in range(len(patient_grades_dict) + 1, MAX_IVD + 1):
534
- print(i)
535
- patient_grades_dict[f'IVD{i}'] = {
536
- "Modic": "",
537
- "UP endplate": "",
538
- "LOW endplate": "",
539
- "Spondylolisthesis": "",
540
- "Disc herniation": "",
541
- "Disc narrowing": "",
542
- "Disc bulging": "",
543
- "Pfirrman grade": "",
544
- }
545
 
546
  # Prepare example return dict
547
  return_dict = {'patient_id':patient_id, 'scan_type':scan_type}
 
431
  k:v for k,v in item.items() if k not in exclude_vars
432
  }
433
 
 
 
 
 
 
 
 
 
 
434
  # # Determine maximum number of radiological gradings per patient
435
  # max_ivd = 0
436
  # for temp_dict_1 in grades_dict.values():
 
438
  # if int(temp_dict_2['IVD label']) > max_ivd:
439
  # max_ivd = int(temp_dict_2['IVD label'])
440
 
441
+ # Merge patient records for radiological gradings data
442
+ grades_dict = {}
443
+ for patient_id in patient_ids:
444
+ patient_grades = [
445
+ x for x in grades_data if x['Patient'] == str(patient_id)
446
+ ]
447
+ # Pad radiological gradings so that data for all patients have
448
+ # the same dimensions
449
+ if len(patient_grades) < MAX_IVD:
450
+ for i in range(len(patient_grades) + 1, MAX_IVD + 1):
451
+ patient_grades.append({
452
+ "Patient": f"{patient_id}",
453
+ "IVD label": f"{i}",
454
+ "Modic": "",
455
+ "UP endplate": "",
456
+ "LOW endplate": "",
457
+ "Spondylolisthesis": "",
458
+ "Disc herniation": "",
459
+ "Disc narrowing": "",
460
+ "Disc bulging": "",
461
+ "Pfirrman grade": "",
462
+ })
463
+ assert len(patient_grades) == MAX_IVD, "Rad. gradings not padded correctly"
464
+ grades_dict[str(patient_id)] = patient_grades
465
+
466
  # Import image and mask data
467
  image_files = [
468
  file for file in os.listdir(os.path.join(paths_dict['images'], 'images'))
 
541
  if k not in ['Patient', 'IVD label']
542
  }
543
  patient_grades_dict[key] = value
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
544
 
545
  # Prepare example return dict
546
  return_dict = {'patient_id':patient_id, 'scan_type':scan_type}