Datasets:
WesleyHsieh0806
commited on
Commit
•
7de324b
1
Parent(s):
bc8a7b7
amodal annotations for visualization, training, and evaluation
Browse files- README.md +3 -147
- amodal_annotations/{test_with_freeform_amodal_boxes_Jan10_2023_oof_visibility.json → test.json} +0 -0
- amodal_annotations/{train_with_freeform_amodal_boxes_may12_2022_oof_visibility.json → train.json} +0 -0
- amodal_annotations/train_lvis_v1.json +3 -0
- amodal_annotations/{validation_with_freeform_amodal_boxes_Aug10_2022_oof_visibility.json → validation.json} +0 -0
- amodal_annotations/validation_lvis_v1.json +3 -0
README.md
CHANGED
@@ -1,147 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
Official Source for Downloading the TAO-Amodal Dataset.
|
5 |
-
|
6 |
-
[**📙 Project Page**](https://tao-amodal.github.io/) | [**💻 Code**](https://github.com/WesleyHsieh0806/TAO-Amodal) | [**📎 Paper Link**](https://arxiv.org/abs/2312.12433) | [**✏️ Citations**](#citations)
|
7 |
-
|
8 |
-
<div align="center">
|
9 |
-
<a href="https://tao-amodal.github.io/"><img width="95%" alt="TAO-Amodal" src="https://tao-amodal.github.io/static/images/webpage_preview.png"></a>
|
10 |
-
</div>
|
11 |
-
|
12 |
-
</br>
|
13 |
-
|
14 |
-
Contact: [🙋🏻♂️Cheng-Yen (Wesley) Hsieh](https://wesleyhsieh0806.github.io/)
|
15 |
-
|
16 |
-
## Dataset Description
|
17 |
-
Our dataset augments the TAO dataset with amodal bounding box annotations for fully invisible, out-of-frame, and occluded objects.
|
18 |
-
Note that this implies TAO-Amodal also includes modal segmentation masks (as visualized in the color overlays above).
|
19 |
-
Our dataset encompasses 880 categories, aimed at assessing the occlusion reasoning capabilities of current trackers
|
20 |
-
through the paradigm of Tracking Any Object with Amodal perception (TAO-Amodal).
|
21 |
-
|
22 |
-
### Dataset Download
|
23 |
-
1. Download all the annotations.
|
24 |
-
```bash
|
25 |
-
git lfs install
|
26 |
-
git clone [email protected]:datasets/chengyenhsieh/TAO-Amodal
|
27 |
-
```
|
28 |
-
|
29 |
-
2. Download all the video frames:
|
30 |
-
|
31 |
-
You can either download the frames following the instructions [here](https://motchallenge.net/tao_download.php) (recommended) or modify our provided [script](./download_TAO.sh) and run
|
32 |
-
```bash
|
33 |
-
bash download_TAO.sh
|
34 |
-
```
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
## 📚 Dataset Structure
|
40 |
-
|
41 |
-
The dataset should be structured like this:
|
42 |
-
```bash
|
43 |
-
├── frames
|
44 |
-
└── train
|
45 |
-
├── ArgoVerse
|
46 |
-
├── BDD
|
47 |
-
├── Charades
|
48 |
-
├── HACS
|
49 |
-
├── LaSOT
|
50 |
-
└── YFCC100M
|
51 |
-
├── amodal_annotations
|
52 |
-
├── train/validation/test.json
|
53 |
-
├── train_lvis_v1.json
|
54 |
-
└── validation_lvis_v1.json
|
55 |
-
├── example_output
|
56 |
-
└── prediction.json
|
57 |
-
└── BURST_annotations
|
58 |
-
└── train
|
59 |
-
└── train_visibility.json
|
60 |
-
|
61 |
-
```
|
62 |
-
|
63 |
-
## 📚 File Descriptions
|
64 |
-
|
65 |
-
| File Name | Description |
|
66 |
-
| ------------------ | ---------------------------------- |
|
67 |
-
| train/validation/test.json | Formal annotation files. We use these annotations for visualization. Categories include those in [lvis](https://www.lvisdataset.org/) v0.5 and freeform categories. |
|
68 |
-
| train_lvis_v1.json | We use this file to train our [amodal-expander](https://tao-amodal.github.io/index.html#Amodal-Expander), treating each image frame as an independent sequence. Categories are aligned with those in lvis v1.0. |
|
69 |
-
| validation_lvis_v1.json | We use this file to evaluate our [amodal-expander](https://tao-amodal.github.io/index.html#Amodal-Expander). Categories are aligned with those in lvis v1.0. |
|
70 |
-
| prediction.json | Example output json from amodal-expander. Tracker predictions should be structured like this file to be evaluated with our [evaluation toolkit](https://github.com/WesleyHsieh0806/TAO-Amodal?tab=readme-ov-file#bar_chart-evaluation). |
|
71 |
-
| BURST_annotations/XXX.json | Modal mask annotations from [BURST dataset](https://github.com/Ali2500/BURST-benchmark) with our heuristic visibility attributes. We provide these files for the convenience of visualization |
|
72 |
-
|
73 |
-
### Annotation and Prediction Format
|
74 |
-
|
75 |
-
Our annotations are structured similarly as [TAO](https://github.com/TAO-Dataset/annotations) with some modifications.
|
76 |
-
Annotations:
|
77 |
-
```bash
|
78 |
-
|
79 |
-
Annotation file format:
|
80 |
-
{
|
81 |
-
"info" : info,
|
82 |
-
"images" : [image],
|
83 |
-
"videos": [video],
|
84 |
-
"tracks": [track],
|
85 |
-
"annotations" : [annotation],
|
86 |
-
"categories": [category],
|
87 |
-
"licenses" : [license],
|
88 |
-
}
|
89 |
-
annotation: {
|
90 |
-
"id": int,
|
91 |
-
"image_id": int,
|
92 |
-
"track_id": int,
|
93 |
-
"bbox": [x,y,width,height],
|
94 |
-
"area": float,
|
95 |
-
|
96 |
-
# Redundant field for compatibility with COCO scripts
|
97 |
-
"category_id": int,
|
98 |
-
"video_id": int,
|
99 |
-
|
100 |
-
# Other important attributes for evaluation on TAO-Amodal
|
101 |
-
"amodal_bbox": [x,y,width,height],
|
102 |
-
"amodal_is_uncertain": bool,
|
103 |
-
"visibility": float, (0.~1.0)
|
104 |
-
}
|
105 |
-
image, info, video, track, category, licenses, : Same as TAO
|
106 |
-
```
|
107 |
-
|
108 |
-
Predictions should be structured as:
|
109 |
-
|
110 |
-
```bash
|
111 |
-
[{
|
112 |
-
"image_id" : int,
|
113 |
-
"category_id" : int,
|
114 |
-
"bbox" : [x,y,width,height],
|
115 |
-
"score" : float,
|
116 |
-
"track_id": int,
|
117 |
-
"video_id": int
|
118 |
-
}]
|
119 |
-
```
|
120 |
-
Refer to the instructions of [TAO dataset](https://github.com/TAO-Dataset/tao/blob/master/docs/evaluation.md) for further details
|
121 |
-
|
122 |
-
## 📺 Example Sequences
|
123 |
-
Check [here](https://tao-amodal.github.io/#TAO-Amodal) for more examples and [here](https://github.com/WesleyHsieh0806/TAO-Amodal?tab=readme-ov-file#artist-visualization) for visualization code.
|
124 |
-
[<img src="https://tao-amodal.github.io/static/images/car_and_bus.png" width="50%">](https://tao-amodal.github.io/dataset.html "tao-amodal")
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
## Citation
|
129 |
-
|
130 |
-
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
|
131 |
-
```
|
132 |
-
@misc{hsieh2023tracking,
|
133 |
-
title={Tracking Any Object Amodally},
|
134 |
-
author={Cheng-Yen Hsieh and Tarasha Khurana and Achal Dave and Deva Ramanan},
|
135 |
-
year={2023},
|
136 |
-
eprint={2312.12433},
|
137 |
-
archivePrefix={arXiv},
|
138 |
-
primaryClass={cs.CV}
|
139 |
-
}
|
140 |
-
```
|
141 |
-
|
142 |
-
---
|
143 |
-
task_categories:
|
144 |
-
- object-detection
|
145 |
-
- multi-object-tracking
|
146 |
-
license: mit
|
147 |
-
---
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d49e8f4a19e17187986b38cda99ce55c98c03f7eae159df28b6b7fc40c4b272f
|
3 |
+
size 5416
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
amodal_annotations/{test_with_freeform_amodal_boxes_Jan10_2023_oof_visibility.json → test.json}
RENAMED
File without changes
|
amodal_annotations/{train_with_freeform_amodal_boxes_may12_2022_oof_visibility.json → train.json}
RENAMED
File without changes
|
amodal_annotations/train_lvis_v1.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d6481ee8465eb1c2d54a3e49428fb62ae0596a89f739eb9951b4a6319fe01e8
|
3 |
+
size 29326966
|
amodal_annotations/{validation_with_freeform_amodal_boxes_Aug10_2022_oof_visibility.json → validation.json}
RENAMED
File without changes
|
amodal_annotations/validation_lvis_v1.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30bd767b05912e808c1c011ac1dd9bb33fb40c7c671ac3e3b3a015f86129ec24
|
3 |
+
size 66643652
|