File size: 4,028 Bytes
27b2113 3a8d406 27b2113 aad6247 27b2113 c48fb13 27b2113 3a8d406 27b2113 3a8d406 27b2113 3a8d406 27b2113 3a8d406 27b2113 3a8d406 27b2113 3a8d406 27b2113 8866d24 3a8d406 27b2113 3a8d406 27b2113 3ef64f0 27b2113 3a8d406 27b2113 57db608 3a8d406 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
"""The TempoSum benchmark."""
import json
import os
import datasets
from contextlib import ExitStack
_CITATION = """
@misc{cheang2023temposum,
Author = {Chi Seng Cheang and Hou Pong Chan and Derek F. Wong and Xuebo Liu and Zhaocong Li and Yanming Sun and Shudong Liu and Lidia S. Chao},
Title = {TempoSum: Evaluating the Temporal Generalization of Abstractive Summarization},
Year = {2023},
}
"""
_DESCRIPTION = """TempoSum: Evaluating the Temporal Generalization of Abstractive Summarization"""
_URL = "https://huggingface.co/datasets/chiseng-cheang/TempoSum/resolve/main/data/"
_DOCUMENT = "document"
_SUMMARY = "summary"
_TITLE = "title"
_DATASET_CONFIGS = {
"BBC_in-distribution": {
"urls": {
datasets.Split.TEST: os.path.join(_URL, "bbc_in_distribution.tar.gz"),
},
"available_features": [_DOCUMENT, _SUMMARY],
},
"BBC_future": {
"urls": {
datasets.Split.TEST: os.path.join(_URL, "bbc_future.tar.gz"),
},
"available_features": [_DOCUMENT, _SUMMARY],
},
"CNN_in-distribution": {
"urls": {
datasets.Split.TEST: os.path.join(_URL, "cnn_in_distribution.tar.gz"),
},
"available_features": [_DOCUMENT, _SUMMARY],
},
"CNN_future": {
"urls": {
datasets.Split.TEST: os.path.join(_URL, "cnn_future.tar.gz"),
},
"available_features": [_DOCUMENT, _SUMMARY],
},
}
class TempoSumConfig(datasets.BuilderConfig):
"""BuilderConfig for TempoSum."""
def __init__(self, urls, available_features, **kwargs):
super(TempoSumConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
self.features = datasets.Features({
feature: datasets.Value("string") for feature in available_features
# _DOCUMENT: datasets.Value("string"),
# _SUMMARY: datasets.Value("string"),
})
self.urls = urls
self.available_features = available_features
class TempoSum(datasets.GeneratorBasedBuilder):
"""The TempoSum benchmark."""
BUILDER_CONFIGS = []
for datasplit_name, datasplit_config in _DATASET_CONFIGS.items():
BUILDER_CONFIGS.append(
TempoSumConfig(
name=datasplit_name,
urls=datasplit_config['urls'],
available_features=datasplit_config['available_features'],
)
)
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
homepage="https://github.com/AndyCheang/TempoSum",
)
def _split_generators(self, dl_manager):
dl_dirs = dl_manager.download_and_extract(self.config.urls)
splits = []
for split in dl_dirs:
splits.append(
datasets.SplitGenerator(
name=split._name,
gen_kwargs={
'data_file': dl_dirs[split],
'split': split,
}
)
)
return splits
def _generate_examples(self, data_file, split):
# document_path = os.path.join(data_file, _DOCUMENT)
# summary_path = os.path.join(data_file, _SUMMARY)
features = self.config.available_features
with ExitStack() as stack:
files = [stack.enter_context(open(os.path.join(data_file, feature))) \
for feature in features]
for idx, sample_data in enumerate(zip(*files)):
yield idx, {
feature: feature_data
for (feature, feature_data) in zip(features, sample_data)
}
# with open(document_path, 'r') as document_reader, open(summary_path, 'r') as summary_reader:
# for idx, (document, summary) in enumerate(zip(document_reader, summary_reader)):
# yield idx, {
# _DOCUMENT: document,
# _SUMMARY: summary,
# } |