|
"""The TempoSum benchmark.""" |
|
|
|
import json |
|
import os |
|
import datasets |
|
|
|
from contextlib import ExitStack |
|
|
|
_CITATION = """ |
|
@misc{cheang2023temposum, |
|
Author = {Chi Seng Cheang and Hou Pong Chan and Derek F. Wong and Xuebo Liu and Zhaocong Li and Yanming Sun and Shudong Liu and Lidia S. Chao}, |
|
Title = {TempoSum: Evaluating the Temporal Generalization of Abstractive Summarization}, |
|
Year = {2023}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """TempoSum: Evaluating the Temporal Generalization of Abstractive Summarization""" |
|
|
|
_URL = "https://huggingface.co/datasets/chiseng-cheang/TempoSum/resolve/main/data/" |
|
|
|
_DOCUMENT = "document" |
|
_SUMMARY = "summary" |
|
_TITLE = "title" |
|
|
|
_DATASET_CONFIGS = { |
|
"BBC_in-distribution": { |
|
"urls": { |
|
datasets.Split.TEST: os.path.join(_URL, "bbc_in_distribution.tar.gz"), |
|
}, |
|
"available_features": [_DOCUMENT, _SUMMARY], |
|
}, |
|
"BBC_future": { |
|
"urls": { |
|
datasets.Split.TEST: os.path.join(_URL, "bbc_future.tar.gz"), |
|
}, |
|
"available_features": [_DOCUMENT, _SUMMARY], |
|
}, |
|
"CNN_in-distribution": { |
|
"urls": { |
|
datasets.Split.TEST: os.path.join(_URL, "cnn_in_distribution.tar.gz"), |
|
}, |
|
"available_features": [_DOCUMENT, _SUMMARY], |
|
}, |
|
"CNN_future": { |
|
"urls": { |
|
datasets.Split.TEST: os.path.join(_URL, "cnn_future.tar.gz"), |
|
}, |
|
"available_features": [_DOCUMENT, _SUMMARY], |
|
}, |
|
} |
|
|
|
|
|
class TempoSumConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for TempoSum.""" |
|
def __init__(self, urls, available_features, **kwargs): |
|
super(TempoSumConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
self.features = datasets.Features({ |
|
feature: datasets.Value("String") for feature in available_features |
|
|
|
|
|
}) |
|
self.urls = urls |
|
self.available_features = available_features |
|
|
|
class TempoSum(datasets.GeneratorBasedBuilder): |
|
"""The TempoSum benchmark.""" |
|
BUILDER_CONFIGS = [] |
|
|
|
for datasplit_name, datasplit_config in _DATASET_CONFIGS.items(): |
|
BUILDER_CONFIGS.append( |
|
TempoSumConfig( |
|
name=datasplit_name, |
|
urls=datasplit_config['urls'], |
|
) |
|
) |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
homepage="https://github.com/AndyCheang/TempoSum", |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
dl_dirs = dl_manager.download_and_extract(self.config.urls) |
|
splits = [] |
|
for split in dl_dirs: |
|
splits.append( |
|
datasets.SplitGenerator( |
|
name=split._name, |
|
gen_kwargs={ |
|
'data_file': dl_dirs[split], |
|
'split': split, |
|
} |
|
) |
|
) |
|
return splits |
|
|
|
def _generate_examples(self, data_file, split): |
|
|
|
|
|
|
|
features = self.config.available_features |
|
with ExitStack() as stack: |
|
files = [stack.enter_context(open(os.path.join(data_file, feature))) \ |
|
for feature in features] |
|
|
|
for idx, sample_data in enumerate(zip(*files)): |
|
yield idx, { |
|
feature: feature_data |
|
for (feature, feature_data) in zip(features, sample_data) |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|