Update README.md
Browse files
README.md
CHANGED
@@ -16,6 +16,78 @@ dataset_info:
|
|
16 |
download_size: 112131877
|
17 |
dataset_size: 247037602
|
18 |
---
|
|
|
19 |
# Dataset Card for "roots-viz-data"
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
download_size: 112131877
|
17 |
dataset_size: 247037602
|
18 |
---
|
19 |
+
|
20 |
# Dataset Card for "roots-viz-data"
|
21 |
|
22 |
+
```python
|
23 |
+
import os
|
24 |
+
import numpy as np
|
25 |
+
import pandas as pd
|
26 |
+
from sklearn.feature_extraction.text import TfidfTransformer
|
27 |
+
from sklearn.decomposition import TruncatedSVD
|
28 |
+
from tqdm.notebook import tqdm
|
29 |
+
from openTSNE import TSNE
|
30 |
+
import datashader as ds
|
31 |
+
import colorcet as cc
|
32 |
+
|
33 |
+
import vectorizers
|
34 |
+
from vectorizers.transformers import CountFeatureCompressionTransformer, InformationWeightTransformer
|
35 |
+
|
36 |
+
from dask.distributed import Client, LocalCluster
|
37 |
+
import dask.dataframe as dd
|
38 |
+
import dask_ml.feature_extraction.text
|
39 |
+
import dask.bag as db
|
40 |
+
|
41 |
+
from transformers import AutoTokenizer, AutoModel
|
42 |
+
from huggingface_hub import notebook_login, HfApi, hf_hub_download, Repository
|
43 |
+
from datasets import load_dataset
|
44 |
+
from datasets.utils.py_utils import convert_file_size_to_int
|
45 |
+
|
46 |
+
def batch_tokenize(batch):
|
47 |
+
return {'tokenized': [' '.join(e.tokens) for e in tokenizer(batch['text']).encodings]}
|
48 |
+
|
49 |
+
dset = dset.map(batch_tokenize, batched=True, batch_size=64, num_proc=28)
|
50 |
+
|
51 |
+
max_shard_size = convert_file_size_to_int('300MB')
|
52 |
+
dataset_nbytes = dset.data.nbytes
|
53 |
+
num_shards = int(dataset_nbytes / max_shard_size) + 1
|
54 |
+
num_shards = max(num_shards, 1)
|
55 |
+
print(f"Sharding into {num_shards} files.")
|
56 |
+
os.makedirs(f"{dset_name}/tokenized", exist_ok=True)
|
57 |
+
for shard_index in tqdm(range(num_shards)):
|
58 |
+
shard = dset.shard(num_shards=num_shards, index=shard_index, contiguous=True)
|
59 |
+
shard.to_parquet(f"{dset_name}/tokenized/tokenized-{shard_index:03d}.parquet")
|
60 |
+
|
61 |
+
client = Client()
|
62 |
+
client
|
63 |
+
|
64 |
+
df = dd.read_parquet(f'{dset_name}/tokenized/')
|
65 |
+
vect = dask_ml.feature_extraction.text.CountVectorizer(tokenizer=str.split,
|
66 |
+
token_pattern=None,
|
67 |
+
vocabulary=vocab)
|
68 |
+
tokenized_bag = df['tokenized'].to_bag()
|
69 |
+
X = vect.transform(tokenized_bag)
|
70 |
+
|
71 |
+
counts = X.compute()
|
72 |
+
client.shutdown()
|
73 |
+
|
74 |
+
tfidf_transformer = TfidfTransformer(sublinear_tf=True, norm="l2")
|
75 |
+
tfidf = tfidf_transformer.fit_transform(counts)
|
76 |
+
|
77 |
+
svd = TruncatedSVD(n_components=160)
|
78 |
+
X_svd = svd.fit_transform(tfidf)
|
79 |
+
|
80 |
+
tsne = TSNE(
|
81 |
+
perplexity=30,
|
82 |
+
n_jobs=28,
|
83 |
+
random_state=42,
|
84 |
+
verbose=True,
|
85 |
+
)
|
86 |
+
|
87 |
+
tsne_embedding = tsne.fit(X)
|
88 |
+
|
89 |
+
df = pd.DataFrame(data=tsne_embedding, columns=['x','y'])
|
90 |
+
agg = ds.Canvas(plot_height=600, plot_width=600).points(df, 'x', 'y')
|
91 |
+
img = ds.tf.shade(agg, cmap=cc.fire, how='eq_hist')
|
92 |
+
ds.tf.set_background(img, "black")
|
93 |
+
```
|