m_lama / m_lama.py
system's picture
system HF staff
Update files from the datasets library (from 1.6.1)
b5380dd
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The mLAMA Dataset"""
import json
import os
import datasets
_CITATION = """
@article{kassner2021multilingual,
author = {Nora Kassner and
Philipp Dufter and
Hinrich Sch{\"{u}}tze},
title = {Multilingual {LAMA:} Investigating Knowledge in Multilingual Pretrained
Language Models},
journal = {CoRR},
volume = {abs/2102.00894},
year = {2021},
url = {https://arxiv.org/abs/2102.00894},
archivePrefix = {arXiv},
eprint = {2102.00894},
timestamp = {Tue, 09 Feb 2021 13:35:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2102-00894.bib},
bibsource = {dblp computer science bibliography, https://dblp.org},
note = {to appear in EACL2021}
}
"""
_DESCRIPTION = """mLAMA: a multilingual version of the LAMA benchmark (T-REx and GoogleRE) covering 53 languages."""
_HOMEPAGE = "http://cistern.cis.lmu.de/mlama/"
_LICENSE = "The Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). https://creativecommons.org/licenses/by-nc-sa/4.0/"
_URL = "http://cistern.cis.lmu.de/mlama/mlama1.1.zip"
_LANGUAGES = (
"af",
"ar",
"az",
"be",
"bg",
"bn",
"ca",
"ceb",
"cs",
"cy",
"da",
"de",
"el",
"en",
"es",
"et",
"eu",
"fa",
"fi",
"fr",
"ga",
"gl",
"he",
"hi",
"hr",
"hu",
"hy",
"id",
"it",
"ja",
"ka",
"ko",
"la",
"lt",
"lv",
"ms",
"nl",
"pl",
"pt",
"ro",
"ru",
"sk",
"sl",
"sq",
"sr",
"sv",
"ta",
"th",
"tr",
"uk",
"ur",
"vi",
"zh",
)
_RELATIONS = (
"place_of_birth",
"place_of_death",
"P1001",
"P101",
"P103",
"P106",
"P108",
"P127",
"P1303",
"P131",
"P136",
"P1376",
"P138",
"P140",
"P1412",
"P159",
"P17",
"P176",
"P178",
"P19",
"P190",
"P20",
"P264",
"P27",
"P276",
"P279",
"P30",
"P31",
"P36",
"P361",
"P364",
"P37",
"P39",
"P407",
"P413",
"P449",
"P463",
"P47",
"P495",
"P527",
"P530",
"P740",
"P937",
)
class MLamaConfig(datasets.BuilderConfig):
"""BuilderConfig for mLAMA."""
def __init__(self, languages=None, relations=None, **kwargs):
"""BuilderConfig for mLAMA.
Args:
languages: A subset of af,ar,az,be,bg,bn,ca,ceb,cs,cy,da,de,el,en,es,et,eu,fa,fi,fr,ga,gl,he,hi,hr,hu,hy,id,it,ja,ka,ko,la,lt,lv,ms,nl,pl,pt,ro,ru,sk,sl,sq,sr,sv,ta,th,tr,uk,ur,vi,zh
relations: A subset of place_of_birth,place_of_death,P1001,P101,P103,P106,P108,P127,P1303,P131,P136,P1376,P138,P140,P1412,P159,P17,P176,P178,P19,P190,P20,P264,P27,P276,P279,P30,P31,P36,P361,P364,P37,P39,P407,P413,P449,P463,P47,P495,P527,P530,P740,P937
**kwargs: keyword arguments forwarded to super.
"""
super(MLamaConfig, self).__init__(**kwargs)
self.languages = languages if languages is not None else _LANGUAGES
self.relations = relations if relations is not None else _RELATIONS
class MLama(datasets.GeneratorBasedBuilder):
"""multilingual LAMA Dataset (mLAMA)"""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIG_CLASS = MLamaConfig
BUILDER_CONFIGS = [
MLamaConfig(
name="all",
languages=None,
relations=None,
version=datasets.Version("1.1.0"),
description="Import of mLAMA for all languages and all relations.",
)
]
def _info(self):
features = datasets.Features(
{
"uuid": datasets.Value("string"),
"lineid": datasets.Value("uint32"),
"obj_uri": datasets.Value("string"),
"obj_label": datasets.Value("string"),
"sub_uri": datasets.Value("string"),
"sub_label": datasets.Value("string"),
"template": datasets.Value("string"),
"language": datasets.Value("string"),
"predicate_id": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, "mlama1.1"),
"split": "test",
},
),
]
def _generate_examples(self, filepath, split):
"""Yields examples from the mLAMA dataset."""
id_ = -1
for language in self.config.languages:
# load templates
templates = {}
with open(os.path.join(filepath, language, "templates.jsonl"), encoding="utf-8") as fp:
for line in fp:
line = json.loads(line)
templates[line["relation"]] = line["template"]
for relation in self.config.relations:
# load triples
with open(os.path.join(filepath, language, f"{relation}.jsonl"), encoding="utf-8") as fp:
for line in fp:
triple = json.loads(line)
triple["language"] = language
triple["predicate_id"] = relation
triple["template"] = templates.get(relation, "")
id_ += 1
yield id_, triple