wsd_polish_datasets / wsd_polish_datasets.py
jbaran's picture
chore: add WSD dataset
b805ec1
raw
history blame
7.49 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import json
from typing import Sequence
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@InProceedings{10.1007/978-3-031-08754-7_70,
author="Janz, Arkadiusz
and Dziob, Agnieszka
and Oleksy, Marcin
and Baran, Joanna",
editor="Groen, Derek
and de Mulatier, Cl{\'e}lia
and Paszynski, Maciej
and Krzhizhanovskaya, Valeria V.
and Dongarra, Jack J.
and Sloot, Peter M. A.",
title="A Unified Sense Inventory for Word Sense Disambiguation in Polish",
booktitle="Computational Science -- ICCS 2022",
year="2022",
publisher="Springer International Publishing",
address="Cham",
pages="682--689",
isbn="978-3-031-08754-7"
}
"""
_DESCRIPTION = """\
Polish WSD training data manually annotated by experts according to plWordNet-4.2.
"""
_LICENSE = "cc-by-4.0"
_BASE_URL = "https://huggingface.co/datasets/clarin-knext/wsd_polish_datasets/resolve/main/data/"
_CORPUS_NAMES = [
"sherlock",
"skladnica",
"wikiglex",
"emoglex",
"walenty",
"kpwr",
"kpwr-100",
]
_DATA_TYPES = [
"sentence",
"text",
]
_URLS = {
"text": {corpus: f"{_BASE_URL}{corpus}_text.jsonl" for corpus in _CORPUS_NAMES},
"sentence": {
corpus: f"{_BASE_URL}{corpus}_sentences.jsonl" for corpus in _CORPUS_NAMES
},
}
class WsdPolishBuilderConfig(datasets.BuilderConfig):
def __init__(
self,
data_urls: Sequence[str],
corpus: str,
data_type: str,
**kwargs,
):
super(WsdPolishBuilderConfig, self).__init__(
name=f"{corpus}_{data_type}",
version=datasets.Version("1.0.0"),
**kwargs,
)
self.data_type = data_type
self.corpus = corpus
self.data_urls = data_urls
if self.data_type not in _DATA_TYPES:
raise ValueError(
f"Corpus type {self.data_type} is not supported. Enter one of: {_DATA_TYPES}"
)
if self.corpus not in (*_CORPUS_NAMES, "all"):
raise ValueError(
f"Corpus name `{self.corpus}` is not available. Enter one of: {(*_CORPUS_NAMES, 'all')}"
)
class WsdPolishDataset(datasets.GeneratorBasedBuilder):
"""Polish WSD training data"""
BUILDER_CONFIGS = [
WsdPolishBuilderConfig(
corpus=corpus_name,
data_type=data_type,
data_urls=[_URLS[data_type][corpus_name]],
description=f"Data part covering `{corpus_name}` corpora in `{data_type}` segmentation.",
)
for corpus_name, data_type in itertools.product(_CORPUS_NAMES, _DATA_TYPES)
]
BUILDER_CONFIGS.extend(
[
WsdPolishBuilderConfig(
corpus="all",
data_type=data_type,
data_urls=_URLS[data_type].copy().values(),
description=f"Data part covering `all` corpora in `{data_type}` segmentation.",
)
for data_type in _DATA_TYPES
]
)
DEFAULT_CONFIG_NAME = "skladnica_text"
def _info(self) -> datasets.DatasetInfo:
text_features = {
"text": datasets.Value("string"),
"tokens": datasets.features.Sequence(
dict(
{
"position": datasets.features.Sequence(
length=2,
feature=datasets.Value("int32"),
),
"orth": datasets.Value("string"),
"lemma": datasets.Value("string"),
}
),
),
"phrases": datasets.features.Sequence(
dict(
{
"indices": datasets.features.Sequence(
feature=datasets.Value("int32")
),
"head": datasets.Value("int32"),
"lemma": datasets.Value("string"),
}
),
),
"wsd": datasets.features.Sequence(
dict(
{
"index": datasets.Value("int32"),
"plWN_syn_id": datasets.Value("string"),
"plWN_lex_id": datasets.Value("string"),
}
),
),
}
if self.config.data_type == "sentence":
features = datasets.Features(
{
"sentences": datasets.features.Sequence(text_features),
}
)
else:
features = datasets.Features(text_features)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
filepaths = dl_manager.download_and_extract(self.config.data_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepaths": filepaths,
},
),
]
def _generate_examples(self, filepaths: Sequence[str]):
key_iter = 0
for filepath in filepaths:
with open(filepath, encoding="utf-8") as f:
for data in (json.loads(line) for line in f):
if self.config.data_type == "sentence":
yield key_iter, {
"sentences": [
self._process_example(sent)
for sent in data["sentences"]
]
}
else:
data.pop("context_file")
yield key_iter, self._process_example(data)
key_iter += 1
@staticmethod
def _process_example(data: dict) -> dict:
return {
"text": data["text"],
"tokens": [
{
"position": tok["position"],
"orth": tok["orth"],
"lemma": tok["lemma"],
}
for tok in data["tokens"]
],
"wsd": [
{
"index": tok["index"],
"plWN_syn_id": tok["plWN_syn_id"],
"plWN_lex_id": tok["plWN_lex_id"],
}
for tok in data["wsd"]
],
"phrases": [
{
"indices": tok["indices"],
"head": tok["head"],
"lemma": tok["lemma"],
}
for tok in data["phrases"]
],
}