# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import json from typing import Sequence import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """\ @InProceedings{10.1007/978-3-031-08754-7_70, author="Janz, Arkadiusz and Dziob, Agnieszka and Oleksy, Marcin and Baran, Joanna", editor="Groen, Derek and de Mulatier, Cl{\'e}lia and Paszynski, Maciej and Krzhizhanovskaya, Valeria V. and Dongarra, Jack J. and Sloot, Peter M. A.", title="A Unified Sense Inventory for Word Sense Disambiguation in Polish", booktitle="Computational Science -- ICCS 2022", year="2022", publisher="Springer International Publishing", address="Cham", pages="682--689", isbn="978-3-031-08754-7" } """ _DESCRIPTION = """\ Polish WSD training data manually annotated by experts according to plWordNet-4.2. """ _LICENSE = "cc-by-4.0" _BASE_URL = "https://huggingface.co/datasets/clarin-knext/wsd_polish_datasets/resolve/main/data/" _CORPUS_NAMES = [ "sherlock", "skladnica", "wikiglex", "emoglex", "walenty", "kpwr", "kpwr-100", ] _DATA_TYPES = [ "sentence", "text", ] _URLS = { "text": {corpus: f"{_BASE_URL}{corpus}_text.jsonl" for corpus in _CORPUS_NAMES}, "sentence": { corpus: f"{_BASE_URL}{corpus}_sentences.jsonl" for corpus in _CORPUS_NAMES }, } class WsdPolishBuilderConfig(datasets.BuilderConfig): def __init__( self, data_urls: Sequence[str], corpus: str, data_type: str, **kwargs, ): super(WsdPolishBuilderConfig, self).__init__( name=f"{corpus}_{data_type}", version=datasets.Version("1.0.0"), **kwargs, ) self.data_type = data_type self.corpus = corpus self.data_urls = data_urls if self.data_type not in _DATA_TYPES: raise ValueError( f"Corpus type {self.data_type} is not supported. Enter one of: {_DATA_TYPES}" ) if self.corpus not in (*_CORPUS_NAMES, "all"): raise ValueError( f"Corpus name `{self.corpus}` is not available. Enter one of: {(*_CORPUS_NAMES, 'all')}" ) class WsdPolishDataset(datasets.GeneratorBasedBuilder): """Polish WSD training data""" BUILDER_CONFIGS = [ WsdPolishBuilderConfig( corpus=corpus_name, data_type=data_type, data_urls=[_URLS[data_type][corpus_name]], description=f"Data part covering `{corpus_name}` corpora in `{data_type}` segmentation.", ) for corpus_name, data_type in itertools.product(_CORPUS_NAMES, _DATA_TYPES) ] BUILDER_CONFIGS.extend( [ WsdPolishBuilderConfig( corpus="all", data_type=data_type, data_urls=_URLS[data_type].copy().values(), description=f"Data part covering `all` corpora in `{data_type}` segmentation.", ) for data_type in _DATA_TYPES ] ) DEFAULT_CONFIG_NAME = "skladnica_text" def _info(self) -> datasets.DatasetInfo: text_features = { "text": datasets.Value("string"), "tokens": datasets.features.Sequence( dict( { "position": datasets.features.Sequence( length=2, feature=datasets.Value("int32"), ), "orth": datasets.Value("string"), "lemma": datasets.Value("string"), } ), ), "phrases": datasets.features.Sequence( dict( { "indices": datasets.features.Sequence( feature=datasets.Value("int32") ), "head": datasets.Value("int32"), "lemma": datasets.Value("string"), } ), ), "wsd": datasets.features.Sequence( dict( { "index": datasets.Value("int32"), "plWN_syn_id": datasets.Value("string"), "plWN_lex_id": datasets.Value("string"), } ), ), } if self.config.data_type == "sentence": features = datasets.Features( { "sentences": datasets.features.Sequence(text_features), } ) else: features = datasets.Features(text_features) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): filepaths = dl_manager.download_and_extract(self.config.data_urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepaths": filepaths, }, ), ] def _generate_examples(self, filepaths: Sequence[str]): key_iter = 0 for filepath in filepaths: with open(filepath, encoding="utf-8") as f: for data in (json.loads(line) for line in f): if self.config.data_type == "sentence": yield key_iter, { "sentences": [ self._process_example(sent) for sent in data["sentences"] ] } else: data.pop("context_file") yield key_iter, self._process_example(data) key_iter += 1 @staticmethod def _process_example(data: dict) -> dict: return { "text": data["text"], "tokens": [ { "position": tok["position"], "orth": tok["orth"], "lemma": tok["lemma"], } for tok in data["tokens"] ], "wsd": [ { "index": tok["index"], "plWN_syn_id": tok["plWN_syn_id"], "plWN_lex_id": tok["plWN_lex_id"], } for tok in data["wsd"] ], "phrases": [ { "indices": tok["indices"], "head": tok["head"], "lemma": tok["lemma"], } for tok in data["phrases"] ], }