Datasets:
Tasks:
Other
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
Polish
Size:
10K - 100K
Tags:
structure-prediction
License:
File size: 13,768 Bytes
b194823 fbe2ec4 b194823 fbe2ec4 b194823 9ba5cea b194823 9ba5cea b194823 6fd17a2 b194823 6fd17a2 b194823 6fd17a2 b194823 6fd17a2 b194823 6fd17a2 b194823 37c36fc b194823 780a6a8 b194823 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- pl
license:
- cc-by-3.0
multilinguality:
- monolingual
size_categories:
- 18K
- 10K<n<100K
source_datasets:
- original
task_categories:
- other
task_ids:
- named-entity-recognition
pretty_name: KPWr-NER
tags:
- structure-prediction
---
# KPWR-NER
## Description
KPWR-NER is a part the Polish Corpus of Wrocław University of Technology (*Korpus Języka Polskiego Politechniki Wrocławskiej*). Its objective is named entity recognition for fine-grained categories of entities. It is the ‘n82’ version of the KPWr, which means that number of classes is restricted to 82 (originally 120). During corpus creation, texts were annotated by humans from various sources, covering many domains and genres.
## Tasks (input, output and metrics)
Named entity recognition (NER) - tagging entities in text with their corresponding type.
**Input** ('*tokens'* column): sequence of tokens
**Output** ('*ner'* column): sequence of predicted tokens’ classes in BIO notation (82 possible classes, described in detail in the annotation guidelines)
**Measurements**: F1-score (seqeval)
**Example**:
Input: `[‘Roboty’, ‘mają’, ‘kilkanaście’, ‘lat’, ‘i’, ‘pochodzą’, ‘z’, ‘USA’, ‘,’, ‘Wysokie’, ‘napięcie’, ‘jest’, ‘dużo’, ‘młodsze’, ‘,’, ‘powstało’, ‘w’, ‘Niemczech’, ‘.’]`
Input (translated by DeepL): `Robots are more than a dozen years old and come from the US, High Voltage is much younger, having been developed in Germany.`
Output: `[‘B-nam_pro_title’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘B-nam_loc_gpe_country’, ‘O’, ‘B-nam_pro_title’, ‘I-nam_pro_title’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘B-nam_loc_gpe_country’, ‘O’]`
## Data splits
| Subset | Cardinality (sentences) |
|--------|------------------------:|
| train | 13959 |
| dev | 0 |
| test | 4323 |
## Class distribution (without "O" and "I-*")
| Class | train | validation | test |
|:----------------------------|--------:|-------------:|----------:|
| B-nam_liv_person | 0.21910 | - | 0.21422 |
| B-nam_loc_gpe_city | 0.10101 | - | 0.09865 |
| B-nam_loc_gpe_country | 0.07467 | - | 0.08059 |
| B-nam_org_institution | 0.05893 | - | 0.06005 |
| B-nam_org_organization | 0.04448 | - | 0.05553 |
| B-nam_org_group_team | 0.03492 | - | 0.03363 |
| B-nam_adj_country | 0.03410 | - | 0.03747 |
| B-nam_org_company | 0.02439 | - | 0.01716 |
| B-nam_pro_media_periodic | 0.02250 | - | 0.01896 |
| B-nam_fac_road | 0.01995 | - | 0.02144 |
| B-nam_liv_god | 0.01934 | - | 0.00790 |
| B-nam_org_nation | 0.01739 | - | 0.01828 |
| B-nam_oth_tech | 0.01724 | - | 0.01377 |
| B-nam_pro_media_web | 0.01709 | - | 0.00903 |
| B-nam_fac_goe | 0.01596 | - | 0.01445 |
| B-nam_eve_human | 0.01573 | - | 0.01761 |
| B-nam_pro_title | 0.01558 | - | 0.00790 |
| B-nam_pro_brand | 0.01543 | - | 0.01038 |
| B-nam_org_political_party | 0.01264 | - | 0.01309 |
| B-nam_loc_gpe_admin1 | 0.01219 | - | 0.01445 |
| B-nam_eve_human_sport | 0.01174 | - | 0.01242 |
| B-nam_pro_software | 0.01091 | - | 0.02190 |
| B-nam_adj | 0.00963 | - | 0.01174 |
| B-nam_loc_gpe_admin3 | 0.00888 | - | 0.01061 |
| B-nam_pro_model_car | 0.00873 | - | 0.00587 |
| B-nam_loc_hydronym_river | 0.00843 | - | 0.01151 |
| B-nam_oth | 0.00775 | - | 0.00497 |
| B-nam_pro_title_document | 0.00738 | - | 0.01986 |
| B-nam_loc_astronomical | 0.00730 | - | - |
| B-nam_oth_currency | 0.00723 | - | 0.01151 |
| B-nam_adj_city | 0.00670 | - | 0.00948 |
| B-nam_org_group_band | 0.00587 | - | 0.00429 |
| B-nam_loc_gpe_admin2 | 0.00565 | - | 0.00813 |
| B-nam_loc_gpe_district | 0.00504 | - | 0.00406 |
| B-nam_loc_land_continent | 0.00459 | - | 0.00722 |
| B-nam_loc_country_region | 0.00459 | - | 0.00090 |
| B-nam_loc_land_mountain | 0.00414 | - | 0.00203 |
| B-nam_pro_title_book | 0.00384 | - | 0.00248 |
| B-nam_loc_historical_region | 0.00376 | - | 0.00497 |
| B-nam_loc | 0.00361 | - | 0.00090 |
| B-nam_eve | 0.00361 | - | 0.00181 |
| B-nam_org_group | 0.00331 | - | 0.00406 |
| B-nam_loc_land_island | 0.00331 | - | 0.00248 |
| B-nam_pro_media_tv | 0.00316 | - | 0.00158 |
| B-nam_liv_habitant | 0.00316 | - | 0.00158 |
| B-nam_eve_human_cultural | 0.00316 | - | 0.00497 |
| B-nam_pro_title_tv | 0.00309 | - | 0.00542 |
| B-nam_oth_license | 0.00286 | - | 0.00248 |
| B-nam_num_house | 0.00256 | - | 0.00248 |
| B-nam_pro_title_treaty | 0.00248 | - | 0.00045 |
| B-nam_fac_system | 0.00248 | - | 0.00587 |
| B-nam_loc_gpe_subdivision | 0.00241 | - | 0.00587 |
| B-nam_loc_land_region | 0.00226 | - | 0.00248 |
| B-nam_pro_title_album | 0.00218 | - | 0.00158 |
| B-nam_adj_person | 0.00203 | - | 0.00406 |
| B-nam_fac_square | 0.00196 | - | 0.00135 |
| B-nam_pro_award | 0.00188 | - | 0.00519 |
| B-nam_eve_human_holiday | 0.00188 | - | 0.00203 |
| B-nam_pro_title_song | 0.00166 | - | 0.00158 |
| B-nam_pro_media_radio | 0.00151 | - | 0.00068 |
| B-nam_pro_vehicle | 0.00151 | - | 0.00090 |
| B-nam_oth_position | 0.00143 | - | 0.00226 |
| B-nam_liv_animal | 0.00143 | - | 0.00248 |
| B-nam_pro | 0.00135 | - | 0.00045 |
| B-nam_oth_www | 0.00120 | - | 0.00451 |
| B-nam_num_phone | 0.00120 | - | 0.00045 |
| B-nam_pro_title_article | 0.00113 | - | - |
| B-nam_oth_data_format | 0.00113 | - | 0.00226 |
| B-nam_fac_bridge | 0.00105 | - | 0.00090 |
| B-nam_liv_character | 0.00098 | - | - |
| B-nam_pro_software_game | 0.00090 | - | 0.00068 |
| B-nam_loc_hydronym_lake | 0.00090 | - | 0.00045 |
| B-nam_loc_gpe_conurbation | 0.00090 | - | - |
| B-nam_pro_media | 0.00083 | - | 0.00181 |
| B-nam_loc_land | 0.00075 | - | 0.00045 |
| B-nam_loc_land_peak | 0.00075 | - | - |
| B-nam_fac_park | 0.00068 | - | 0.00226 |
| B-nam_org_organization_sub | 0.00060 | - | 0.00068 |
| B-nam_loc_hydronym | 0.00060 | - | 0.00023 |
| B-nam_loc_hydronym_sea | 0.00045 | - | 0.00068 |
| B-nam_loc_hydronym_ocean | 0.00045 | - | 0.00023 |
| B-nam_fac_goe_stop | 0.00038 | - | 0.00090 |
## Citation
```
@inproceedings{broda-etal-2012-kpwr,
title = "{KPW}r: Towards a Free Corpus of {P}olish",
author = "Broda, Bartosz and
Marci{\'n}czuk, Micha{\l} and
Maziarz, Marek and
Radziszewski, Adam and
Wardy{\'n}ski, Adam",
booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}'12)",
month = may,
year = "2012",
address = "Istanbul, Turkey",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2012/pdf/965_Paper.pdf",
pages = "3218--3222",
abstract = "This paper presents our efforts aimed at collecting and annotating a free Polish corpus. The corpus will serve for us as training and testing material for experiments with Machine Learning algorithms. As others may also benefit from the resource, we are going to release it under a Creative Commons licence, which is hoped to remove unnecessary usage restrictions, but also to facilitate reproduction of our experimental results. The corpus is being annotated with various types of linguistic entities: chunks and named entities, selected syntactic and semantic relations, word senses and anaphora. We report on the current state of the project as well as our ultimate goals.",
}
```
## License
```
Creative Commons Attribution 3.0 Unported Licence
```
## Links
[HuggingFace](https://huggingface.co/datasets/clarin-pl/kpwr-ner)
[Source](https://clarin-pl.eu/index.php/kpwr-en/)
[Paper](https://aclanthology.org/L12-1574/)
[KPWr annotation guidelines](http://www.nlp.pwr.wroc.pl/narzedzia-i-zasoby/zasoby/kpwr-lemma/16-narzedzia-zasoby/79-wytyczne)
[KPWr annotation guidelines - named entities](https://clarin-pl.eu/dspace/handle/11321/294)
## Examples
### Loading
```python
from pprint import pprint
from datasets import load_dataset
dataset = load_dataset("clarin-pl/kpwr-ner")
pprint(dataset['train'][0])
# {'lemmas': ['roborally', 'czy', 'wysoki', 'napięcie', '?'],
# 'ner': [73, 160, 73, 151, 160],
# 'orth': ['subst:sg:nom:n',
# 'qub',
# 'adj:sg:nom:n:pos',
# 'subst:sg:nom:n',
# 'interp'],
# 'tokens': ['RoboRally', 'czy', 'Wysokie', 'napięcie', '?']}
```
### Evaluation
```python
import random
from pprint import pprint
from datasets import load_dataset, load_metric
dataset = load_dataset("clarin-pl/kpwr-ner")
references = dataset["test"]["ner"]
# generate random predictions
predictions = [
[
random.randrange(dataset["train"].features["ner"].feature.num_classes)
for _ in range(len(labels))
]
for labels in references
]
# transform to original names of labels
references_named = [
[dataset["train"].features["ner"].feature.names[label] for label in labels]
for labels in references
]
predictions_named = [
[dataset["train"].features["ner"].feature.names[label] for label in labels]
for labels in predictions
]
# utilise seqeval to evaluate
seqeval = load_metric("seqeval")
seqeval_score = seqeval.compute(
predictions=predictions_named, references=references_named, scheme="IOB2"
)
pprint(seqeval_score, depth=1)
# {'nam_adj': {...},
# 'nam_adj_city': {...},
# 'nam_adj_country': {...},
# 'nam_adj_person': {...},
# 'nam_eve': {...},
# 'nam_eve_human': {...},
# 'nam_eve_human_cultural': {...},
# 'nam_eve_human_holiday': {...},
# 'nam_eve_human_sport': {...},
# 'nam_fac_bridge': {...},
# 'nam_fac_goe': {...},
# 'nam_fac_goe_stop': {...},
# 'nam_fac_park': {...},
# 'nam_fac_road': {...},
# 'nam_fac_square': {...},
# 'nam_fac_system': {...},
# 'nam_liv_animal': {...},
# 'nam_liv_character': {...},
# 'nam_liv_god': {...},
# 'nam_liv_habitant': {...},
# 'nam_liv_person': {...},
# 'nam_loc': {...},
# 'nam_loc_astronomical': {...},
# 'nam_loc_country_region': {...},
# 'nam_loc_gpe_admin1': {...},
# 'nam_loc_gpe_admin2': {...},
# 'nam_loc_gpe_admin3': {...},
# 'nam_loc_gpe_city': {...},
# 'nam_loc_gpe_conurbation': {...},
# 'nam_loc_gpe_country': {...},
# 'nam_loc_gpe_district': {...},
# 'nam_loc_gpe_subdivision': {...},
# 'nam_loc_historical_region': {...},
# 'nam_loc_hydronym': {...},
# 'nam_loc_hydronym_lake': {...},
# 'nam_loc_hydronym_ocean': {...},
# 'nam_loc_hydronym_river': {...},
# 'nam_loc_hydronym_sea': {...},
# 'nam_loc_land': {...},
# 'nam_loc_land_continent': {...},
# 'nam_loc_land_island': {...},
# 'nam_loc_land_mountain': {...},
# 'nam_loc_land_peak': {...},
# 'nam_loc_land_region': {...},
# 'nam_num_house': {...},
# 'nam_num_phone': {...},
# 'nam_org_company': {...},
# 'nam_org_group': {...},
# 'nam_org_group_band': {...},
# 'nam_org_group_team': {...},
# 'nam_org_institution': {...},
# 'nam_org_nation': {...},
# 'nam_org_organization': {...},
# 'nam_org_organization_sub': {...},
# 'nam_org_political_party': {...},
# 'nam_oth': {...},
# 'nam_oth_currency': {...},
# 'nam_oth_data_format': {...},
# 'nam_oth_license': {...},
# 'nam_oth_position': {...},
# 'nam_oth_tech': {...},
# 'nam_oth_www': {...},
# 'nam_pro': {...},
# 'nam_pro_award': {...},
# 'nam_pro_brand': {...},
# 'nam_pro_media': {...},
# 'nam_pro_media_periodic': {...},
# 'nam_pro_media_radio': {...},
# 'nam_pro_media_tv': {...},
# 'nam_pro_media_web': {...},
# 'nam_pro_model_car': {...},
# 'nam_pro_software': {...},
# 'nam_pro_software_game': {...},
# 'nam_pro_title': {...},
# 'nam_pro_title_album': {...},
# 'nam_pro_title_article': {...},
# 'nam_pro_title_book': {...},
# 'nam_pro_title_document': {...},
# 'nam_pro_title_song': {...},
# 'nam_pro_title_treaty': {...},
# 'nam_pro_title_tv': {...},
# 'nam_pro_vehicle': {...},
# 'overall_accuracy': 0.006156203762418094,
# 'overall_f1': 0.0009844258777797407,
# 'overall_precision': 0.0005213624939842789,
# 'overall_recall': 0.008803611738148984}
``` |