repository_name
stringlengths
5
67
func_path_in_repository
stringlengths
4
234
func_name
stringlengths
0
314
whole_func_string
stringlengths
52
3.87M
language
stringclasses
6 values
func_code_string
stringlengths
52
3.87M
func_documentation_string
stringlengths
1
47.2k
func_code_url
stringlengths
85
339
gmr/queries
queries/session.py
Session._connect
def _connect(self): """Connect to PostgreSQL, either by reusing a connection from the pool if possible, or by creating the new connection. :rtype: psycopg2.extensions.connection :raises: pool.NoIdleConnectionsError """ # Attempt to get a cached connection from the connection pool try: connection = self._pool_manager.get(self.pid, self) LOGGER.debug("Re-using connection for %s", self.pid) except pool.NoIdleConnectionsError: if self._pool_manager.is_full(self.pid): raise # Create a new PostgreSQL connection kwargs = utils.uri_to_kwargs(self._uri) LOGGER.debug("Creating a new connection for %s", self.pid) connection = self._psycopg2_connect(kwargs) self._pool_manager.add(self.pid, connection) self._pool_manager.lock(self.pid, connection, self) # Added in because psycopg2ct connects and leaves the connection in # a weird state: consts.STATUS_DATESTYLE, returning from # Connection._setup without setting the state as const.STATUS_OK if utils.PYPY: connection.reset() # Register the custom data types self._register_unicode(connection) self._register_uuid(connection) return connection
python
def _connect(self): """Connect to PostgreSQL, either by reusing a connection from the pool if possible, or by creating the new connection. :rtype: psycopg2.extensions.connection :raises: pool.NoIdleConnectionsError """ # Attempt to get a cached connection from the connection pool try: connection = self._pool_manager.get(self.pid, self) LOGGER.debug("Re-using connection for %s", self.pid) except pool.NoIdleConnectionsError: if self._pool_manager.is_full(self.pid): raise # Create a new PostgreSQL connection kwargs = utils.uri_to_kwargs(self._uri) LOGGER.debug("Creating a new connection for %s", self.pid) connection = self._psycopg2_connect(kwargs) self._pool_manager.add(self.pid, connection) self._pool_manager.lock(self.pid, connection, self) # Added in because psycopg2ct connects and leaves the connection in # a weird state: consts.STATUS_DATESTYLE, returning from # Connection._setup without setting the state as const.STATUS_OK if utils.PYPY: connection.reset() # Register the custom data types self._register_unicode(connection) self._register_uuid(connection) return connection
Connect to PostgreSQL, either by reusing a connection from the pool if possible, or by creating the new connection. :rtype: psycopg2.extensions.connection :raises: pool.NoIdleConnectionsError
https://github.com/gmr/queries/blob/a68855013dc6aaf9ed7b6909a4701f8da8796a0a/queries/session.py#L273-L307
gmr/queries
queries/session.py
Session._get_cursor
def _get_cursor(self, connection, name=None): """Return a cursor for the given cursor_factory. Specify a name to use server-side cursors. :param connection: The connection to create a cursor on :type connection: psycopg2.extensions.connection :param str name: A cursor name for a server side cursor :rtype: psycopg2.extensions.cursor """ cursor = connection.cursor(name=name, cursor_factory=self._cursor_factory) if name is not None: cursor.scrollable = True cursor.withhold = True return cursor
python
def _get_cursor(self, connection, name=None): """Return a cursor for the given cursor_factory. Specify a name to use server-side cursors. :param connection: The connection to create a cursor on :type connection: psycopg2.extensions.connection :param str name: A cursor name for a server side cursor :rtype: psycopg2.extensions.cursor """ cursor = connection.cursor(name=name, cursor_factory=self._cursor_factory) if name is not None: cursor.scrollable = True cursor.withhold = True return cursor
Return a cursor for the given cursor_factory. Specify a name to use server-side cursors. :param connection: The connection to create a cursor on :type connection: psycopg2.extensions.connection :param str name: A cursor name for a server side cursor :rtype: psycopg2.extensions.cursor
https://github.com/gmr/queries/blob/a68855013dc6aaf9ed7b6909a4701f8da8796a0a/queries/session.py#L309-L324
gmr/queries
queries/session.py
Session._incr_exceptions
def _incr_exceptions(self): """Increment the number of exceptions for the current connection.""" self._pool_manager.get_connection(self.pid, self._conn).exceptions += 1
python
def _incr_exceptions(self): """Increment the number of exceptions for the current connection.""" self._pool_manager.get_connection(self.pid, self._conn).exceptions += 1
Increment the number of exceptions for the current connection.
https://github.com/gmr/queries/blob/a68855013dc6aaf9ed7b6909a4701f8da8796a0a/queries/session.py#L326-L328
gmr/queries
queries/session.py
Session._incr_executions
def _incr_executions(self): """Increment the number of executions for the current connection.""" self._pool_manager.get_connection(self.pid, self._conn).executions += 1
python
def _incr_executions(self): """Increment the number of executions for the current connection.""" self._pool_manager.get_connection(self.pid, self._conn).executions += 1
Increment the number of executions for the current connection.
https://github.com/gmr/queries/blob/a68855013dc6aaf9ed7b6909a4701f8da8796a0a/queries/session.py#L330-L332
gmr/queries
queries/session.py
Session._register_unicode
def _register_unicode(connection): """Register the cursor to be able to receive Unicode string. :type connection: psycopg2.extensions.connection :param connection: Where to register things """ psycopg2.extensions.register_type(psycopg2.extensions.UNICODE, connection) psycopg2.extensions.register_type(psycopg2.extensions.UNICODEARRAY, connection)
python
def _register_unicode(connection): """Register the cursor to be able to receive Unicode string. :type connection: psycopg2.extensions.connection :param connection: Where to register things """ psycopg2.extensions.register_type(psycopg2.extensions.UNICODE, connection) psycopg2.extensions.register_type(psycopg2.extensions.UNICODEARRAY, connection)
Register the cursor to be able to receive Unicode string. :type connection: psycopg2.extensions.connection :param connection: Where to register things
https://github.com/gmr/queries/blob/a68855013dc6aaf9ed7b6909a4701f8da8796a0a/queries/session.py#L345-L355
gmr/queries
queries/session.py
Session._status
def _status(self): """Return the current connection status as an integer value. The status should match one of the following constants: - queries.Session.INTRANS: Connection established, in transaction - queries.Session.PREPARED: Prepared for second phase of transaction - queries.Session.READY: Connected, no active transaction :rtype: int """ if self._conn.status == psycopg2.extensions.STATUS_BEGIN: return self.READY return self._conn.status
python
def _status(self): """Return the current connection status as an integer value. The status should match one of the following constants: - queries.Session.INTRANS: Connection established, in transaction - queries.Session.PREPARED: Prepared for second phase of transaction - queries.Session.READY: Connected, no active transaction :rtype: int """ if self._conn.status == psycopg2.extensions.STATUS_BEGIN: return self.READY return self._conn.status
Return the current connection status as an integer value. The status should match one of the following constants: - queries.Session.INTRANS: Connection established, in transaction - queries.Session.PREPARED: Prepared for second phase of transaction - queries.Session.READY: Connected, no active transaction :rtype: int
https://github.com/gmr/queries/blob/a68855013dc6aaf9ed7b6909a4701f8da8796a0a/queries/session.py#L368-L382
gmr/queries
queries/results.py
Results.as_dict
def as_dict(self): """Return a single row result as a dictionary. If the results contain multiple rows, a :py:class:`ValueError` will be raised. :return: dict :raises: ValueError """ if not self.cursor.rowcount: return {} self._rewind() if self.cursor.rowcount == 1: return dict(self.cursor.fetchone()) else: raise ValueError('More than one row')
python
def as_dict(self): """Return a single row result as a dictionary. If the results contain multiple rows, a :py:class:`ValueError` will be raised. :return: dict :raises: ValueError """ if not self.cursor.rowcount: return {} self._rewind() if self.cursor.rowcount == 1: return dict(self.cursor.fetchone()) else: raise ValueError('More than one row')
Return a single row result as a dictionary. If the results contain multiple rows, a :py:class:`ValueError` will be raised. :return: dict :raises: ValueError
https://github.com/gmr/queries/blob/a68855013dc6aaf9ed7b6909a4701f8da8796a0a/queries/results.py#L66-L81
gmr/queries
queries/results.py
Results.items
def items(self): """Return all of the rows that are in the result set. :rtype: list """ if not self.cursor.rowcount: return [] self.cursor.scroll(0, 'absolute') return self.cursor.fetchall()
python
def items(self): """Return all of the rows that are in the result set. :rtype: list """ if not self.cursor.rowcount: return [] self.cursor.scroll(0, 'absolute') return self.cursor.fetchall()
Return all of the rows that are in the result set. :rtype: list
https://github.com/gmr/queries/blob/a68855013dc6aaf9ed7b6909a4701f8da8796a0a/queries/results.py#L98-L108
gmr/queries
queries/utils.py
get_current_user
def get_current_user(): """Return the current username for the logged in user :rtype: str """ if pwd is None: return getpass.getuser() else: try: return pwd.getpwuid(os.getuid())[0] except KeyError as error: LOGGER.error('Could not get logged-in user: %s', error)
python
def get_current_user(): """Return the current username for the logged in user :rtype: str """ if pwd is None: return getpass.getuser() else: try: return pwd.getpwuid(os.getuid())[0] except KeyError as error: LOGGER.error('Could not get logged-in user: %s', error)
Return the current username for the logged in user :rtype: str
https://github.com/gmr/queries/blob/a68855013dc6aaf9ed7b6909a4701f8da8796a0a/queries/utils.py#L57-L69
gmr/queries
queries/utils.py
uri
def uri(host='localhost', port=5432, dbname='postgres', user='postgres', password=None): """Return a PostgreSQL connection URI for the specified values. :param str host: Host to connect to :param int port: Port to connect on :param str dbname: The database name :param str user: User to connect as :param str password: The password to use, None for no password :return str: The PostgreSQL connection URI """ if port: host = '%s:%s' % (host, port) if password: return 'postgresql://%s:%s@%s/%s' % (user, password, host, dbname) return 'postgresql://%s@%s/%s' % (user, host, dbname)
python
def uri(host='localhost', port=5432, dbname='postgres', user='postgres', password=None): """Return a PostgreSQL connection URI for the specified values. :param str host: Host to connect to :param int port: Port to connect on :param str dbname: The database name :param str user: User to connect as :param str password: The password to use, None for no password :return str: The PostgreSQL connection URI """ if port: host = '%s:%s' % (host, port) if password: return 'postgresql://%s:%s@%s/%s' % (user, password, host, dbname) return 'postgresql://%s@%s/%s' % (user, host, dbname)
Return a PostgreSQL connection URI for the specified values. :param str host: Host to connect to :param int port: Port to connect on :param str dbname: The database name :param str user: User to connect as :param str password: The password to use, None for no password :return str: The PostgreSQL connection URI
https://github.com/gmr/queries/blob/a68855013dc6aaf9ed7b6909a4701f8da8796a0a/queries/utils.py#L82-L98
gmr/queries
queries/utils.py
uri_to_kwargs
def uri_to_kwargs(uri): """Return a URI as kwargs for connecting to PostgreSQL with psycopg2, applying default values for non-specified areas of the URI. :param str uri: The connection URI :rtype: dict """ parsed = urlparse(uri) default_user = get_current_user() password = unquote(parsed.password) if parsed.password else None kwargs = {'host': parsed.hostname, 'port': parsed.port, 'dbname': parsed.path[1:] or default_user, 'user': parsed.username or default_user, 'password': password} values = parse_qs(parsed.query) if 'host' in values: kwargs['host'] = values['host'][0] for k in [k for k in values if k in KEYWORDS]: kwargs[k] = values[k][0] if len(values[k]) == 1 else values[k] try: if kwargs[k].isdigit(): kwargs[k] = int(kwargs[k]) except AttributeError: pass return kwargs
python
def uri_to_kwargs(uri): """Return a URI as kwargs for connecting to PostgreSQL with psycopg2, applying default values for non-specified areas of the URI. :param str uri: The connection URI :rtype: dict """ parsed = urlparse(uri) default_user = get_current_user() password = unquote(parsed.password) if parsed.password else None kwargs = {'host': parsed.hostname, 'port': parsed.port, 'dbname': parsed.path[1:] or default_user, 'user': parsed.username or default_user, 'password': password} values = parse_qs(parsed.query) if 'host' in values: kwargs['host'] = values['host'][0] for k in [k for k in values if k in KEYWORDS]: kwargs[k] = values[k][0] if len(values[k]) == 1 else values[k] try: if kwargs[k].isdigit(): kwargs[k] = int(kwargs[k]) except AttributeError: pass return kwargs
Return a URI as kwargs for connecting to PostgreSQL with psycopg2, applying default values for non-specified areas of the URI. :param str uri: The connection URI :rtype: dict
https://github.com/gmr/queries/blob/a68855013dc6aaf9ed7b6909a4701f8da8796a0a/queries/utils.py#L101-L127
gmr/queries
queries/utils.py
urlparse
def urlparse(url): """Parse the URL in a Python2/3 independent fashion. :param str url: The URL to parse :rtype: Parsed """ value = 'http%s' % url[5:] if url[:5] == 'postgresql' else url parsed = _urlparse.urlparse(value) path, query = parsed.path, parsed.query hostname = parsed.hostname if parsed.hostname else '' return PARSED(parsed.scheme.replace('http', 'postgresql'), parsed.netloc, path, parsed.params, query, parsed.fragment, parsed.username, parsed.password, hostname.replace('%2f', '/'), parsed.port)
python
def urlparse(url): """Parse the URL in a Python2/3 independent fashion. :param str url: The URL to parse :rtype: Parsed """ value = 'http%s' % url[5:] if url[:5] == 'postgresql' else url parsed = _urlparse.urlparse(value) path, query = parsed.path, parsed.query hostname = parsed.hostname if parsed.hostname else '' return PARSED(parsed.scheme.replace('http', 'postgresql'), parsed.netloc, path, parsed.params, query, parsed.fragment, parsed.username, parsed.password, hostname.replace('%2f', '/'), parsed.port)
Parse the URL in a Python2/3 independent fashion. :param str url: The URL to parse :rtype: Parsed
https://github.com/gmr/queries/blob/a68855013dc6aaf9ed7b6909a4701f8da8796a0a/queries/utils.py#L130-L150
gmr/queries
queries/tornado_session.py
Results.free
def free(self): """Release the results and connection lock from the TornadoSession object. This **must** be called after you finish processing the results from :py:meth:`TornadoSession.query <queries.TornadoSession.query>` or :py:meth:`TornadoSession.callproc <queries.TornadoSession.callproc>` or the connection will not be able to be reused by other asynchronous requests. """ self._freed = True self._cleanup(self.cursor, self._fd)
python
def free(self): """Release the results and connection lock from the TornadoSession object. This **must** be called after you finish processing the results from :py:meth:`TornadoSession.query <queries.TornadoSession.query>` or :py:meth:`TornadoSession.callproc <queries.TornadoSession.callproc>` or the connection will not be able to be reused by other asynchronous requests. """ self._freed = True self._cleanup(self.cursor, self._fd)
Release the results and connection lock from the TornadoSession object. This **must** be called after you finish processing the results from :py:meth:`TornadoSession.query <queries.TornadoSession.query>` or :py:meth:`TornadoSession.callproc <queries.TornadoSession.callproc>` or the connection will not be able to be reused by other asynchronous requests.
https://github.com/gmr/queries/blob/a68855013dc6aaf9ed7b6909a4701f8da8796a0a/queries/tornado_session.py#L103-L113
gmr/queries
queries/tornado_session.py
TornadoSession._ensure_pool_exists
def _ensure_pool_exists(self): """Create the pool in the pool manager if it does not exist.""" if self.pid not in self._pool_manager: self._pool_manager.create(self.pid, self._pool_idle_ttl, self._pool_max_size, self._ioloop.time)
python
def _ensure_pool_exists(self): """Create the pool in the pool manager if it does not exist.""" if self.pid not in self._pool_manager: self._pool_manager.create(self.pid, self._pool_idle_ttl, self._pool_max_size, self._ioloop.time)
Create the pool in the pool manager if it does not exist.
https://github.com/gmr/queries/blob/a68855013dc6aaf9ed7b6909a4701f8da8796a0a/queries/tornado_session.py#L165-L169
gmr/queries
queries/tornado_session.py
TornadoSession._connect
def _connect(self): """Connect to PostgreSQL, either by reusing a connection from the pool if possible, or by creating the new connection. :rtype: psycopg2.extensions.connection :raises: pool.NoIdleConnectionsError """ future = concurrent.Future() # Attempt to get a cached connection from the connection pool try: connection = self._pool_manager.get(self.pid, self) self._connections[connection.fileno()] = connection future.set_result(connection) # Add the connection to the IOLoop self._ioloop.add_handler(connection.fileno(), self._on_io_events, ioloop.IOLoop.WRITE) except pool.NoIdleConnectionsError: self._create_connection(future) return future
python
def _connect(self): """Connect to PostgreSQL, either by reusing a connection from the pool if possible, or by creating the new connection. :rtype: psycopg2.extensions.connection :raises: pool.NoIdleConnectionsError """ future = concurrent.Future() # Attempt to get a cached connection from the connection pool try: connection = self._pool_manager.get(self.pid, self) self._connections[connection.fileno()] = connection future.set_result(connection) # Add the connection to the IOLoop self._ioloop.add_handler(connection.fileno(), self._on_io_events, ioloop.IOLoop.WRITE) except pool.NoIdleConnectionsError: self._create_connection(future) return future
Connect to PostgreSQL, either by reusing a connection from the pool if possible, or by creating the new connection. :rtype: psycopg2.extensions.connection :raises: pool.NoIdleConnectionsError
https://github.com/gmr/queries/blob/a68855013dc6aaf9ed7b6909a4701f8da8796a0a/queries/tornado_session.py#L244-L267
gmr/queries
queries/tornado_session.py
TornadoSession._create_connection
def _create_connection(self, future): """Create a new PostgreSQL connection :param tornado.concurrent.Future future: future for new conn result """ LOGGER.debug('Creating a new connection for %s', self.pid) # Create a new PostgreSQL connection kwargs = utils.uri_to_kwargs(self._uri) try: connection = self._psycopg2_connect(kwargs) except (psycopg2.Error, OSError, socket.error) as error: future.set_exception(error) return # Add the connection for use in _poll_connection fd = connection.fileno() self._connections[fd] = connection def on_connected(cf): """Invoked by the IOLoop when the future is complete for the connection :param Future cf: The future for the initial connection """ if cf.exception(): self._cleanup_fd(fd, True) future.set_exception(cf.exception()) else: try: # Add the connection to the pool LOGGER.debug('Connection established for %s', self.pid) self._pool_manager.add(self.pid, connection) except (ValueError, pool.PoolException) as err: LOGGER.exception('Failed to add %r to the pool', self.pid) self._cleanup_fd(fd) future.set_exception(err) return self._pool_manager.lock(self.pid, connection, self) # Added in because psycopg2cffi connects and leaves the # connection in a weird state: consts.STATUS_DATESTYLE, # returning from Connection._setup without setting the state # as const.STATUS_OK if utils.PYPY: connection.status = extensions.STATUS_READY # Register the custom data types self._register_unicode(connection) self._register_uuid(connection) # Set the future result future.set_result(connection) # Add a future that fires once connected self._futures[fd] = concurrent.Future() self._ioloop.add_future(self._futures[fd], on_connected) # Add the connection to the IOLoop self._ioloop.add_handler(connection.fileno(), self._on_io_events, ioloop.IOLoop.WRITE)
python
def _create_connection(self, future): """Create a new PostgreSQL connection :param tornado.concurrent.Future future: future for new conn result """ LOGGER.debug('Creating a new connection for %s', self.pid) # Create a new PostgreSQL connection kwargs = utils.uri_to_kwargs(self._uri) try: connection = self._psycopg2_connect(kwargs) except (psycopg2.Error, OSError, socket.error) as error: future.set_exception(error) return # Add the connection for use in _poll_connection fd = connection.fileno() self._connections[fd] = connection def on_connected(cf): """Invoked by the IOLoop when the future is complete for the connection :param Future cf: The future for the initial connection """ if cf.exception(): self._cleanup_fd(fd, True) future.set_exception(cf.exception()) else: try: # Add the connection to the pool LOGGER.debug('Connection established for %s', self.pid) self._pool_manager.add(self.pid, connection) except (ValueError, pool.PoolException) as err: LOGGER.exception('Failed to add %r to the pool', self.pid) self._cleanup_fd(fd) future.set_exception(err) return self._pool_manager.lock(self.pid, connection, self) # Added in because psycopg2cffi connects and leaves the # connection in a weird state: consts.STATUS_DATESTYLE, # returning from Connection._setup without setting the state # as const.STATUS_OK if utils.PYPY: connection.status = extensions.STATUS_READY # Register the custom data types self._register_unicode(connection) self._register_uuid(connection) # Set the future result future.set_result(connection) # Add a future that fires once connected self._futures[fd] = concurrent.Future() self._ioloop.add_future(self._futures[fd], on_connected) # Add the connection to the IOLoop self._ioloop.add_handler(connection.fileno(), self._on_io_events, ioloop.IOLoop.WRITE)
Create a new PostgreSQL connection :param tornado.concurrent.Future future: future for new conn result
https://github.com/gmr/queries/blob/a68855013dc6aaf9ed7b6909a4701f8da8796a0a/queries/tornado_session.py#L269-L336
gmr/queries
queries/tornado_session.py
TornadoSession._execute
def _execute(self, method, query, parameters=None): """Issue a query asynchronously on the server, mogrifying the parameters against the sql statement and yielding the results as a :py:class:`Results <queries.tornado_session.Results>` object. This function reduces duplicate code for callproc and query by getting the class attribute for the method passed in as the function to call. :param str method: The method attribute to use :param str query: The SQL statement or Stored Procedure name :param list|dict parameters: A dictionary of query parameters :rtype: Results :raises: queries.DataError :raises: queries.DatabaseError :raises: queries.IntegrityError :raises: queries.InternalError :raises: queries.InterfaceError :raises: queries.NotSupportedError :raises: queries.OperationalError :raises: queries.ProgrammingError """ future = concurrent.Future() def on_connected(cf): """Invoked by the future returned by self._connect""" if cf.exception(): future.set_exception(cf.exception()) return # Get the psycopg2 connection object and cursor conn = cf.result() cursor = self._get_cursor(conn) def completed(qf): """Invoked by the IOLoop when the future has completed""" if qf.exception(): self._incr_exceptions(conn) err = qf.exception() LOGGER.debug('Cleaning cursor due to exception: %r', err) self._exec_cleanup(cursor, conn.fileno()) future.set_exception(err) else: self._incr_executions(conn) value = Results(cursor, self._exec_cleanup, conn.fileno()) future.set_result(value) # Setup a callback to wait on the query result self._futures[conn.fileno()] = concurrent.Future() # Add the future to the IOLoop self._ioloop.add_future(self._futures[conn.fileno()], completed) # Get the cursor, execute the query func = getattr(cursor, method) try: func(query, parameters) except Exception as error: future.set_exception(error) # Ensure the pool exists for the connection self._ensure_pool_exists() # Grab a connection to PostgreSQL self._ioloop.add_future(self._connect(), on_connected) # Return the future for the query result return future
python
def _execute(self, method, query, parameters=None): """Issue a query asynchronously on the server, mogrifying the parameters against the sql statement and yielding the results as a :py:class:`Results <queries.tornado_session.Results>` object. This function reduces duplicate code for callproc and query by getting the class attribute for the method passed in as the function to call. :param str method: The method attribute to use :param str query: The SQL statement or Stored Procedure name :param list|dict parameters: A dictionary of query parameters :rtype: Results :raises: queries.DataError :raises: queries.DatabaseError :raises: queries.IntegrityError :raises: queries.InternalError :raises: queries.InterfaceError :raises: queries.NotSupportedError :raises: queries.OperationalError :raises: queries.ProgrammingError """ future = concurrent.Future() def on_connected(cf): """Invoked by the future returned by self._connect""" if cf.exception(): future.set_exception(cf.exception()) return # Get the psycopg2 connection object and cursor conn = cf.result() cursor = self._get_cursor(conn) def completed(qf): """Invoked by the IOLoop when the future has completed""" if qf.exception(): self._incr_exceptions(conn) err = qf.exception() LOGGER.debug('Cleaning cursor due to exception: %r', err) self._exec_cleanup(cursor, conn.fileno()) future.set_exception(err) else: self._incr_executions(conn) value = Results(cursor, self._exec_cleanup, conn.fileno()) future.set_result(value) # Setup a callback to wait on the query result self._futures[conn.fileno()] = concurrent.Future() # Add the future to the IOLoop self._ioloop.add_future(self._futures[conn.fileno()], completed) # Get the cursor, execute the query func = getattr(cursor, method) try: func(query, parameters) except Exception as error: future.set_exception(error) # Ensure the pool exists for the connection self._ensure_pool_exists() # Grab a connection to PostgreSQL self._ioloop.add_future(self._connect(), on_connected) # Return the future for the query result return future
Issue a query asynchronously on the server, mogrifying the parameters against the sql statement and yielding the results as a :py:class:`Results <queries.tornado_session.Results>` object. This function reduces duplicate code for callproc and query by getting the class attribute for the method passed in as the function to call. :param str method: The method attribute to use :param str query: The SQL statement or Stored Procedure name :param list|dict parameters: A dictionary of query parameters :rtype: Results :raises: queries.DataError :raises: queries.DatabaseError :raises: queries.IntegrityError :raises: queries.InternalError :raises: queries.InterfaceError :raises: queries.NotSupportedError :raises: queries.OperationalError :raises: queries.ProgrammingError
https://github.com/gmr/queries/blob/a68855013dc6aaf9ed7b6909a4701f8da8796a0a/queries/tornado_session.py#L338-L406
gmr/queries
queries/tornado_session.py
TornadoSession._exec_cleanup
def _exec_cleanup(self, cursor, fd): """Close the cursor, remove any references to the fd in internal state and remove the fd from the ioloop. :param psycopg2.extensions.cursor cursor: The cursor to close :param int fd: The connection file descriptor """ LOGGER.debug('Closing cursor and cleaning %s', fd) try: cursor.close() except (psycopg2.Error, psycopg2.Warning) as error: LOGGER.debug('Error closing the cursor: %s', error) self._cleanup_fd(fd) # If the cleanup callback exists, remove it if self._cleanup_callback: self._ioloop.remove_timeout(self._cleanup_callback) # Create a new cleanup callback to clean the pool of idle connections self._cleanup_callback = self._ioloop.add_timeout( self._ioloop.time() + self._pool_idle_ttl + 1, self._pool_manager.clean, self.pid)
python
def _exec_cleanup(self, cursor, fd): """Close the cursor, remove any references to the fd in internal state and remove the fd from the ioloop. :param psycopg2.extensions.cursor cursor: The cursor to close :param int fd: The connection file descriptor """ LOGGER.debug('Closing cursor and cleaning %s', fd) try: cursor.close() except (psycopg2.Error, psycopg2.Warning) as error: LOGGER.debug('Error closing the cursor: %s', error) self._cleanup_fd(fd) # If the cleanup callback exists, remove it if self._cleanup_callback: self._ioloop.remove_timeout(self._cleanup_callback) # Create a new cleanup callback to clean the pool of idle connections self._cleanup_callback = self._ioloop.add_timeout( self._ioloop.time() + self._pool_idle_ttl + 1, self._pool_manager.clean, self.pid)
Close the cursor, remove any references to the fd in internal state and remove the fd from the ioloop. :param psycopg2.extensions.cursor cursor: The cursor to close :param int fd: The connection file descriptor
https://github.com/gmr/queries/blob/a68855013dc6aaf9ed7b6909a4701f8da8796a0a/queries/tornado_session.py#L408-L431
gmr/queries
queries/tornado_session.py
TornadoSession._cleanup_fd
def _cleanup_fd(self, fd, close=False): """Ensure the socket socket is removed from the IOLoop, the connection stack, and futures stack. :param int fd: The fd # to cleanup """ self._ioloop.remove_handler(fd) if fd in self._connections: try: self._pool_manager.free(self.pid, self._connections[fd]) except pool.ConnectionNotFoundError: pass if close: self._connections[fd].close() del self._connections[fd] if fd in self._futures: del self._futures[fd]
python
def _cleanup_fd(self, fd, close=False): """Ensure the socket socket is removed from the IOLoop, the connection stack, and futures stack. :param int fd: The fd # to cleanup """ self._ioloop.remove_handler(fd) if fd in self._connections: try: self._pool_manager.free(self.pid, self._connections[fd]) except pool.ConnectionNotFoundError: pass if close: self._connections[fd].close() del self._connections[fd] if fd in self._futures: del self._futures[fd]
Ensure the socket socket is removed from the IOLoop, the connection stack, and futures stack. :param int fd: The fd # to cleanup
https://github.com/gmr/queries/blob/a68855013dc6aaf9ed7b6909a4701f8da8796a0a/queries/tornado_session.py#L433-L450
gmr/queries
queries/tornado_session.py
TornadoSession._incr_exceptions
def _incr_exceptions(self, conn): """Increment the number of exceptions for the current connection. :param psycopg2.extensions.connection conn: the psycopg2 connection """ self._pool_manager.get_connection(self.pid, conn).exceptions += 1
python
def _incr_exceptions(self, conn): """Increment the number of exceptions for the current connection. :param psycopg2.extensions.connection conn: the psycopg2 connection """ self._pool_manager.get_connection(self.pid, conn).exceptions += 1
Increment the number of exceptions for the current connection. :param psycopg2.extensions.connection conn: the psycopg2 connection
https://github.com/gmr/queries/blob/a68855013dc6aaf9ed7b6909a4701f8da8796a0a/queries/tornado_session.py#L452-L458
gmr/queries
queries/tornado_session.py
TornadoSession._incr_executions
def _incr_executions(self, conn): """Increment the number of executions for the current connection. :param psycopg2.extensions.connection conn: the psycopg2 connection """ self._pool_manager.get_connection(self.pid, conn).executions += 1
python
def _incr_executions(self, conn): """Increment the number of executions for the current connection. :param psycopg2.extensions.connection conn: the psycopg2 connection """ self._pool_manager.get_connection(self.pid, conn).executions += 1
Increment the number of executions for the current connection. :param psycopg2.extensions.connection conn: the psycopg2 connection
https://github.com/gmr/queries/blob/a68855013dc6aaf9ed7b6909a4701f8da8796a0a/queries/tornado_session.py#L460-L466
gmr/queries
queries/tornado_session.py
TornadoSession._on_io_events
def _on_io_events(self, fd=None, _events=None): """Invoked by Tornado's IOLoop when there are events for the fd :param int fd: The file descriptor for the event :param int _events: The events raised """ if fd not in self._connections: LOGGER.warning('Received IO event for non-existing connection') return self._poll_connection(fd)
python
def _on_io_events(self, fd=None, _events=None): """Invoked by Tornado's IOLoop when there are events for the fd :param int fd: The file descriptor for the event :param int _events: The events raised """ if fd not in self._connections: LOGGER.warning('Received IO event for non-existing connection') return self._poll_connection(fd)
Invoked by Tornado's IOLoop when there are events for the fd :param int fd: The file descriptor for the event :param int _events: The events raised
https://github.com/gmr/queries/blob/a68855013dc6aaf9ed7b6909a4701f8da8796a0a/queries/tornado_session.py#L468-L478
gmr/queries
queries/tornado_session.py
TornadoSession._poll_connection
def _poll_connection(self, fd): """Check with psycopg2 to see what action to take. If the state is POLL_OK, we should have a pending callback for that fd. :param int fd: The socket fd for the postgresql connection """ try: state = self._connections[fd].poll() except (OSError, socket.error) as error: self._ioloop.remove_handler(fd) if fd in self._futures and not self._futures[fd].done(): self._futures[fd].set_exception( psycopg2.OperationalError('Connection error (%s)' % error) ) except (psycopg2.Error, psycopg2.Warning) as error: if fd in self._futures and not self._futures[fd].done(): self._futures[fd].set_exception(error) else: if state == extensions.POLL_OK: if fd in self._futures and not self._futures[fd].done(): self._futures[fd].set_result(True) elif state == extensions.POLL_WRITE: self._ioloop.update_handler(fd, ioloop.IOLoop.WRITE) elif state == extensions.POLL_READ: self._ioloop.update_handler(fd, ioloop.IOLoop.READ) elif state == extensions.POLL_ERROR: self._ioloop.remove_handler(fd) if fd in self._futures and not self._futures[fd].done(): self._futures[fd].set_exception( psycopg2.Error('Poll Error'))
python
def _poll_connection(self, fd): """Check with psycopg2 to see what action to take. If the state is POLL_OK, we should have a pending callback for that fd. :param int fd: The socket fd for the postgresql connection """ try: state = self._connections[fd].poll() except (OSError, socket.error) as error: self._ioloop.remove_handler(fd) if fd in self._futures and not self._futures[fd].done(): self._futures[fd].set_exception( psycopg2.OperationalError('Connection error (%s)' % error) ) except (psycopg2.Error, psycopg2.Warning) as error: if fd in self._futures and not self._futures[fd].done(): self._futures[fd].set_exception(error) else: if state == extensions.POLL_OK: if fd in self._futures and not self._futures[fd].done(): self._futures[fd].set_result(True) elif state == extensions.POLL_WRITE: self._ioloop.update_handler(fd, ioloop.IOLoop.WRITE) elif state == extensions.POLL_READ: self._ioloop.update_handler(fd, ioloop.IOLoop.READ) elif state == extensions.POLL_ERROR: self._ioloop.remove_handler(fd) if fd in self._futures and not self._futures[fd].done(): self._futures[fd].set_exception( psycopg2.Error('Poll Error'))
Check with psycopg2 to see what action to take. If the state is POLL_OK, we should have a pending callback for that fd. :param int fd: The socket fd for the postgresql connection
https://github.com/gmr/queries/blob/a68855013dc6aaf9ed7b6909a4701f8da8796a0a/queries/tornado_session.py#L480-L510
jquast/wcwidth
setup.py
main
def main(): """Setup.py entry point.""" import codecs setuptools.setup( name='wcwidth', version='0.1.7', description=("Measures number of Terminal column cells " "of wide-character codes"), long_description=codecs.open( os.path.join(HERE, 'README.rst'), 'r', 'utf8').read(), author='Jeff Quast', author_email='[email protected]', license='MIT', packages=['wcwidth', 'wcwidth.tests'], url='https://github.com/jquast/wcwidth', include_package_data=True, test_suite='wcwidth.tests', zip_safe=True, classifiers=[ 'Intended Audience :: Developers', 'Natural Language :: English', 'Development Status :: 3 - Alpha', 'Environment :: Console', 'License :: OSI Approved :: MIT License', 'Operating System :: POSIX', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Localization', 'Topic :: Software Development :: Internationalization', 'Topic :: Terminals' ], keywords=['terminal', 'emulator', 'wcwidth', 'wcswidth', 'cjk', 'combining', 'xterm', 'console', ], cmdclass={'update': SetupUpdate}, )
python
def main(): """Setup.py entry point.""" import codecs setuptools.setup( name='wcwidth', version='0.1.7', description=("Measures number of Terminal column cells " "of wide-character codes"), long_description=codecs.open( os.path.join(HERE, 'README.rst'), 'r', 'utf8').read(), author='Jeff Quast', author_email='[email protected]', license='MIT', packages=['wcwidth', 'wcwidth.tests'], url='https://github.com/jquast/wcwidth', include_package_data=True, test_suite='wcwidth.tests', zip_safe=True, classifiers=[ 'Intended Audience :: Developers', 'Natural Language :: English', 'Development Status :: 3 - Alpha', 'Environment :: Console', 'License :: OSI Approved :: MIT License', 'Operating System :: POSIX', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Localization', 'Topic :: Software Development :: Internationalization', 'Topic :: Terminals' ], keywords=['terminal', 'emulator', 'wcwidth', 'wcswidth', 'cjk', 'combining', 'xterm', 'console', ], cmdclass={'update': SetupUpdate}, )
Setup.py entry point.
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/setup.py#L271-L307
jquast/wcwidth
setup.py
SetupUpdate._do_readme_update
def _do_readme_update(self): """Patch README.rst to reflect the data files used in release.""" import codecs import glob # read in, data_in = codecs.open( os.path.join(HERE, 'README.rst'), 'r', 'utf8').read() # search for beginning and end positions, pos_begin = data_in.find(self.README_PATCH_FROM) assert pos_begin != -1, (pos_begin, self.README_PATCH_FROM) pos_begin += len(self.README_PATCH_FROM) pos_end = data_in.find(self.README_PATCH_TO) assert pos_end != -1, (pos_end, self.README_PATCH_TO) glob_pattern = os.path.join(HERE, 'data', '*.txt') file_descriptions = [ self._describe_file_header(fpath) for fpath in glob.glob(glob_pattern)] # patch, data_out = ( data_in[:pos_begin] + '\n\n' + '\n'.join(file_descriptions) + '\n\n' + data_in[pos_end:] ) # write. print("patching {} ..".format(self.README_RST)) codecs.open( self.README_RST, 'w', 'utf8').write(data_out)
python
def _do_readme_update(self): """Patch README.rst to reflect the data files used in release.""" import codecs import glob # read in, data_in = codecs.open( os.path.join(HERE, 'README.rst'), 'r', 'utf8').read() # search for beginning and end positions, pos_begin = data_in.find(self.README_PATCH_FROM) assert pos_begin != -1, (pos_begin, self.README_PATCH_FROM) pos_begin += len(self.README_PATCH_FROM) pos_end = data_in.find(self.README_PATCH_TO) assert pos_end != -1, (pos_end, self.README_PATCH_TO) glob_pattern = os.path.join(HERE, 'data', '*.txt') file_descriptions = [ self._describe_file_header(fpath) for fpath in glob.glob(glob_pattern)] # patch, data_out = ( data_in[:pos_begin] + '\n\n' + '\n'.join(file_descriptions) + '\n\n' + data_in[pos_end:] ) # write. print("patching {} ..".format(self.README_RST)) codecs.open( self.README_RST, 'w', 'utf8').write(data_out)
Patch README.rst to reflect the data files used in release.
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/setup.py#L78-L112
jquast/wcwidth
setup.py
SetupUpdate._do_east_asian
def _do_east_asian(self): """Fetch and update east-asian tables.""" self._do_retrieve(self.EAW_URL, self.EAW_IN) (version, date, values) = self._parse_east_asian( fname=self.EAW_IN, properties=(u'W', u'F',) ) table = self._make_table(values) self._do_write(self.EAW_OUT, 'WIDE_EASTASIAN', version, date, table)
python
def _do_east_asian(self): """Fetch and update east-asian tables.""" self._do_retrieve(self.EAW_URL, self.EAW_IN) (version, date, values) = self._parse_east_asian( fname=self.EAW_IN, properties=(u'W', u'F',) ) table = self._make_table(values) self._do_write(self.EAW_OUT, 'WIDE_EASTASIAN', version, date, table)
Fetch and update east-asian tables.
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/setup.py#L114-L122
jquast/wcwidth
setup.py
SetupUpdate._do_zero_width
def _do_zero_width(self): """Fetch and update zero width tables.""" self._do_retrieve(self.UCD_URL, self.UCD_IN) (version, date, values) = self._parse_category( fname=self.UCD_IN, categories=('Me', 'Mn',) ) table = self._make_table(values) self._do_write(self.ZERO_OUT, 'ZERO_WIDTH', version, date, table)
python
def _do_zero_width(self): """Fetch and update zero width tables.""" self._do_retrieve(self.UCD_URL, self.UCD_IN) (version, date, values) = self._parse_category( fname=self.UCD_IN, categories=('Me', 'Mn',) ) table = self._make_table(values) self._do_write(self.ZERO_OUT, 'ZERO_WIDTH', version, date, table)
Fetch and update zero width tables.
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/setup.py#L124-L132
jquast/wcwidth
setup.py
SetupUpdate._make_table
def _make_table(values): """Return a tuple of lookup tables for given values.""" import collections table = collections.deque() start, end = values[0], values[0] for num, value in enumerate(values): if num == 0: table.append((value, value,)) continue start, end = table.pop() if end == value - 1: table.append((start, value,)) else: table.append((start, end,)) table.append((value, value,)) return tuple(table)
python
def _make_table(values): """Return a tuple of lookup tables for given values.""" import collections table = collections.deque() start, end = values[0], values[0] for num, value in enumerate(values): if num == 0: table.append((value, value,)) continue start, end = table.pop() if end == value - 1: table.append((start, value,)) else: table.append((start, end,)) table.append((value, value,)) return tuple(table)
Return a tuple of lookup tables for given values.
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/setup.py#L135-L150
jquast/wcwidth
setup.py
SetupUpdate._do_retrieve
def _do_retrieve(url, fname): """Retrieve given url to target filepath fname.""" folder = os.path.dirname(fname) if not os.path.exists(folder): os.makedirs(folder) print("{}/ created.".format(folder)) if not os.path.exists(fname): with open(fname, 'wb') as fout: print("retrieving {}.".format(url)) resp = urlopen(url) fout.write(resp.read()) print("{} saved.".format(fname)) else: print("re-using artifact {}".format(fname)) return fname
python
def _do_retrieve(url, fname): """Retrieve given url to target filepath fname.""" folder = os.path.dirname(fname) if not os.path.exists(folder): os.makedirs(folder) print("{}/ created.".format(folder)) if not os.path.exists(fname): with open(fname, 'wb') as fout: print("retrieving {}.".format(url)) resp = urlopen(url) fout.write(resp.read()) print("{} saved.".format(fname)) else: print("re-using artifact {}".format(fname)) return fname
Retrieve given url to target filepath fname.
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/setup.py#L153-L167
jquast/wcwidth
setup.py
SetupUpdate._parse_east_asian
def _parse_east_asian(fname, properties=(u'W', u'F',)): """Parse unicode east-asian width tables.""" version, date, values = None, None, [] print("parsing {} ..".format(fname)) for line in open(fname, 'rb'): uline = line.decode('utf-8') if version is None: version = uline.split(None, 1)[1].rstrip() continue elif date is None: date = uline.split(':', 1)[1].rstrip() continue if uline.startswith('#') or not uline.lstrip(): continue addrs, details = uline.split(';', 1) if any(details.startswith(property) for property in properties): start, stop = addrs, addrs if '..' in addrs: start, stop = addrs.split('..') values.extend(range(int(start, 16), int(stop, 16) + 1)) return version, date, sorted(values)
python
def _parse_east_asian(fname, properties=(u'W', u'F',)): """Parse unicode east-asian width tables.""" version, date, values = None, None, [] print("parsing {} ..".format(fname)) for line in open(fname, 'rb'): uline = line.decode('utf-8') if version is None: version = uline.split(None, 1)[1].rstrip() continue elif date is None: date = uline.split(':', 1)[1].rstrip() continue if uline.startswith('#') or not uline.lstrip(): continue addrs, details = uline.split(';', 1) if any(details.startswith(property) for property in properties): start, stop = addrs, addrs if '..' in addrs: start, stop = addrs.split('..') values.extend(range(int(start, 16), int(stop, 16) + 1)) return version, date, sorted(values)
Parse unicode east-asian width tables.
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/setup.py#L180-L201
jquast/wcwidth
setup.py
SetupUpdate._parse_category
def _parse_category(fname, categories): """Parse unicode category tables.""" version, date, values = None, None, [] print("parsing {} ..".format(fname)) for line in open(fname, 'rb'): uline = line.decode('utf-8') if version is None: version = uline.split(None, 1)[1].rstrip() continue elif date is None: date = uline.split(':', 1)[1].rstrip() continue if uline.startswith('#') or not uline.lstrip(): continue addrs, details = uline.split(';', 1) addrs, details = addrs.rstrip(), details.lstrip() if any(details.startswith('{} #'.format(value)) for value in categories): start, stop = addrs, addrs if '..' in addrs: start, stop = addrs.split('..') values.extend(range(int(start, 16), int(stop, 16) + 1)) return version, date, sorted(values)
python
def _parse_category(fname, categories): """Parse unicode category tables.""" version, date, values = None, None, [] print("parsing {} ..".format(fname)) for line in open(fname, 'rb'): uline = line.decode('utf-8') if version is None: version = uline.split(None, 1)[1].rstrip() continue elif date is None: date = uline.split(':', 1)[1].rstrip() continue if uline.startswith('#') or not uline.lstrip(): continue addrs, details = uline.split(';', 1) addrs, details = addrs.rstrip(), details.lstrip() if any(details.startswith('{} #'.format(value)) for value in categories): start, stop = addrs, addrs if '..' in addrs: start, stop = addrs.split('..') values.extend(range(int(start, 16), int(stop, 16) + 1)) return version, date, sorted(values)
Parse unicode category tables.
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/setup.py#L204-L226
jquast/wcwidth
setup.py
SetupUpdate._do_write
def _do_write(fname, variable, version, date, table): """Write combining tables to filesystem as python code.""" # pylint: disable=R0914 # Too many local variables (19/15) (col 4) print("writing {} ..".format(fname)) import unicodedata import datetime import string utc_now = datetime.datetime.utcnow() indent = 4 with open(fname, 'w') as fout: fout.write( '"""{variable_proper} table. Created by setup.py."""\n' "# Generated: {iso_utc}\n" "# Source: {version}\n" "# Date: {date}\n" "{variable} = (".format(iso_utc=utc_now.isoformat(), version=version, date=date, variable=variable, variable_proper=variable.title())) for start, end in table: ucs_start, ucs_end = unichr(start), unichr(end) hex_start, hex_end = ('0x{0:04x}'.format(start), '0x{0:04x}'.format(end)) try: name_start = string.capwords(unicodedata.name(ucs_start)) except ValueError: name_start = u'' try: name_end = string.capwords(unicodedata.name(ucs_end)) except ValueError: name_end = u'' fout.write('\n' + (' ' * indent)) fout.write('({0}, {1},),'.format(hex_start, hex_end)) fout.write(' # {0:24s}..{1}'.format( name_start[:24].rstrip() or '(nil)', name_end[:24].rstrip())) fout.write('\n)\n') print("complete.")
python
def _do_write(fname, variable, version, date, table): """Write combining tables to filesystem as python code.""" # pylint: disable=R0914 # Too many local variables (19/15) (col 4) print("writing {} ..".format(fname)) import unicodedata import datetime import string utc_now = datetime.datetime.utcnow() indent = 4 with open(fname, 'w') as fout: fout.write( '"""{variable_proper} table. Created by setup.py."""\n' "# Generated: {iso_utc}\n" "# Source: {version}\n" "# Date: {date}\n" "{variable} = (".format(iso_utc=utc_now.isoformat(), version=version, date=date, variable=variable, variable_proper=variable.title())) for start, end in table: ucs_start, ucs_end = unichr(start), unichr(end) hex_start, hex_end = ('0x{0:04x}'.format(start), '0x{0:04x}'.format(end)) try: name_start = string.capwords(unicodedata.name(ucs_start)) except ValueError: name_start = u'' try: name_end = string.capwords(unicodedata.name(ucs_end)) except ValueError: name_end = u'' fout.write('\n' + (' ' * indent)) fout.write('({0}, {1},),'.format(hex_start, hex_end)) fout.write(' # {0:24s}..{1}'.format( name_start[:24].rstrip() or '(nil)', name_end[:24].rstrip())) fout.write('\n)\n') print("complete.")
Write combining tables to filesystem as python code.
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/setup.py#L229-L268
jquast/wcwidth
bin/wcwidth-libc-comparator.py
report_ucs_msg
def report_ucs_msg(ucs, wcwidth_libc, wcwidth_local): """ Return string report of combining character differences. :param ucs: unicode point. :type ucs: unicode :param wcwidth_libc: libc-wcwidth's reported character length. :type comb_py: int :param wcwidth_local: wcwidth's reported character length. :type comb_wc: int :rtype: unicode """ ucp = (ucs.encode('unicode_escape')[2:] .decode('ascii') .upper() .lstrip('0')) url = "http://codepoints.net/U+{}".format(ucp) name = unicodedata.name(ucs) return (u"libc,ours={},{} [--o{}o--] name={} val={} {}" " ".format(wcwidth_libc, wcwidth_local, ucs, name, ord(ucs), url))
python
def report_ucs_msg(ucs, wcwidth_libc, wcwidth_local): """ Return string report of combining character differences. :param ucs: unicode point. :type ucs: unicode :param wcwidth_libc: libc-wcwidth's reported character length. :type comb_py: int :param wcwidth_local: wcwidth's reported character length. :type comb_wc: int :rtype: unicode """ ucp = (ucs.encode('unicode_escape')[2:] .decode('ascii') .upper() .lstrip('0')) url = "http://codepoints.net/U+{}".format(ucp) name = unicodedata.name(ucs) return (u"libc,ours={},{} [--o{}o--] name={} val={} {}" " ".format(wcwidth_libc, wcwidth_local, ucs, name, ord(ucs), url))
Return string report of combining character differences. :param ucs: unicode point. :type ucs: unicode :param wcwidth_libc: libc-wcwidth's reported character length. :type comb_py: int :param wcwidth_local: wcwidth's reported character length. :type comb_wc: int :rtype: unicode
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/bin/wcwidth-libc-comparator.py#L44-L63
jquast/wcwidth
bin/wcwidth-libc-comparator.py
main
def main(using_locale=('en_US', 'UTF-8',)): """ Program entry point. Load the entire Unicode table into memory, excluding those that: - are not named (func unicodedata.name returns empty string), - are combining characters. Using ``locale``, for each unicode character string compare libc's wcwidth with local wcwidth.wcwidth() function; when they differ, report a detailed AssertionError to stdout. """ all_ucs = (ucs for ucs in [unichr(val) for val in range(sys.maxunicode)] if is_named(ucs) and isnt_combining(ucs)) libc_name = ctypes.util.find_library('c') if not libc_name: raise ImportError("Can't find C library.") libc = ctypes.cdll.LoadLibrary(libc_name) libc.wcwidth.argtypes = [ctypes.c_wchar, ] libc.wcwidth.restype = ctypes.c_int assert getattr(libc, 'wcwidth', None) is not None assert getattr(libc, 'wcswidth', None) is not None locale.setlocale(locale.LC_ALL, using_locale) for ucs in all_ucs: try: _is_equal_wcwidth(libc, ucs) except AssertionError as err: print(err)
python
def main(using_locale=('en_US', 'UTF-8',)): """ Program entry point. Load the entire Unicode table into memory, excluding those that: - are not named (func unicodedata.name returns empty string), - are combining characters. Using ``locale``, for each unicode character string compare libc's wcwidth with local wcwidth.wcwidth() function; when they differ, report a detailed AssertionError to stdout. """ all_ucs = (ucs for ucs in [unichr(val) for val in range(sys.maxunicode)] if is_named(ucs) and isnt_combining(ucs)) libc_name = ctypes.util.find_library('c') if not libc_name: raise ImportError("Can't find C library.") libc = ctypes.cdll.LoadLibrary(libc_name) libc.wcwidth.argtypes = [ctypes.c_wchar, ] libc.wcwidth.restype = ctypes.c_int assert getattr(libc, 'wcwidth', None) is not None assert getattr(libc, 'wcswidth', None) is not None locale.setlocale(locale.LC_ALL, using_locale) for ucs in all_ucs: try: _is_equal_wcwidth(libc, ucs) except AssertionError as err: print(err)
Program entry point. Load the entire Unicode table into memory, excluding those that: - are not named (func unicodedata.name returns empty string), - are combining characters. Using ``locale``, for each unicode character string compare libc's wcwidth with local wcwidth.wcwidth() function; when they differ, report a detailed AssertionError to stdout.
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/bin/wcwidth-libc-comparator.py#L89-L123
jquast/wcwidth
bin/wcwidth-browser.py
validate_args
def validate_args(opts): """Validate and return options provided by docopt parsing.""" if opts['--wide'] is None: opts['--wide'] = 2 else: assert opts['--wide'] in ("1", "2"), opts['--wide'] if opts['--alignment'] is None: opts['--alignment'] = 'left' else: assert opts['--alignment'] in ('left', 'right'), opts['--alignment'] opts['--wide'] = int(opts['--wide']) opts['character_factory'] = WcWideCharacterGenerator if opts['--combining']: opts['character_factory'] = WcCombinedCharacterGenerator return opts
python
def validate_args(opts): """Validate and return options provided by docopt parsing.""" if opts['--wide'] is None: opts['--wide'] = 2 else: assert opts['--wide'] in ("1", "2"), opts['--wide'] if opts['--alignment'] is None: opts['--alignment'] = 'left' else: assert opts['--alignment'] in ('left', 'right'), opts['--alignment'] opts['--wide'] = int(opts['--wide']) opts['character_factory'] = WcWideCharacterGenerator if opts['--combining']: opts['character_factory'] = WcCombinedCharacterGenerator return opts
Validate and return options provided by docopt parsing.
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/bin/wcwidth-browser.py#L661-L675
jquast/wcwidth
bin/wcwidth-browser.py
main
def main(opts): """Program entry point.""" term = Terminal() style = Style() # if the terminal supports colors, use a Style instance with some # standout colors (magenta, cyan). if term.number_of_colors: style = Style(attr_major=term.magenta, attr_minor=term.bright_cyan, alignment=opts['--alignment']) style.name_len = term.width - 15 screen = Screen(term, style, wide=opts['--wide']) pager = Pager(term, screen, opts['character_factory']) with term.location(), term.cbreak(), \ term.fullscreen(), term.hidden_cursor(): pager.run(writer=echo, reader=term.inkey) return 0
python
def main(opts): """Program entry point.""" term = Terminal() style = Style() # if the terminal supports colors, use a Style instance with some # standout colors (magenta, cyan). if term.number_of_colors: style = Style(attr_major=term.magenta, attr_minor=term.bright_cyan, alignment=opts['--alignment']) style.name_len = term.width - 15 screen = Screen(term, style, wide=opts['--wide']) pager = Pager(term, screen, opts['character_factory']) with term.location(), term.cbreak(), \ term.fullscreen(), term.hidden_cursor(): pager.run(writer=echo, reader=term.inkey) return 0
Program entry point.
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/bin/wcwidth-browser.py#L678-L697
jquast/wcwidth
bin/wcwidth-browser.py
Screen.hint_width
def hint_width(self): """Width of a column segment.""" return sum((len(self.style.delimiter), self.wide, len(self.style.delimiter), len(u' '), UCS_PRINTLEN + 2, len(u' '), self.style.name_len,))
python
def hint_width(self): """Width of a column segment.""" return sum((len(self.style.delimiter), self.wide, len(self.style.delimiter), len(u' '), UCS_PRINTLEN + 2, len(u' '), self.style.name_len,))
Width of a column segment.
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/bin/wcwidth-browser.py#L220-L228
jquast/wcwidth
bin/wcwidth-browser.py
Screen.head_item
def head_item(self): """Text of a single column heading.""" delimiter = self.style.attr_minor(self.style.delimiter) hint = self.style.header_hint * self.wide heading = (u'{delimiter}{hint}{delimiter}' .format(delimiter=delimiter, hint=hint)) alignment = lambda *args: ( self.term.rjust(*args) if self.style.alignment == 'right' else self.term.ljust(*args)) txt = alignment(heading, self.hint_width, self.style.header_fill) return self.style.attr_major(txt)
python
def head_item(self): """Text of a single column heading.""" delimiter = self.style.attr_minor(self.style.delimiter) hint = self.style.header_hint * self.wide heading = (u'{delimiter}{hint}{delimiter}' .format(delimiter=delimiter, hint=hint)) alignment = lambda *args: ( self.term.rjust(*args) if self.style.alignment == 'right' else self.term.ljust(*args)) txt = alignment(heading, self.hint_width, self.style.header_fill) return self.style.attr_major(txt)
Text of a single column heading.
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/bin/wcwidth-browser.py#L231-L241
jquast/wcwidth
bin/wcwidth-browser.py
Screen.msg_intro
def msg_intro(self): """Introductory message disabled above heading.""" delim = self.style.attr_minor(self.style.delimiter) txt = self.intro_msg_fmt.format(delim=delim).rstrip() return self.term.center(txt)
python
def msg_intro(self): """Introductory message disabled above heading.""" delim = self.style.attr_minor(self.style.delimiter) txt = self.intro_msg_fmt.format(delim=delim).rstrip() return self.term.center(txt)
Introductory message disabled above heading.
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/bin/wcwidth-browser.py#L244-L248
jquast/wcwidth
bin/wcwidth-browser.py
Screen.num_columns
def num_columns(self): """Number of columns displayed.""" if self.term.is_a_tty: return self.term.width // self.hint_width return 1
python
def num_columns(self): """Number of columns displayed.""" if self.term.is_a_tty: return self.term.width // self.hint_width return 1
Number of columns displayed.
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/bin/wcwidth-browser.py#L256-L260
jquast/wcwidth
bin/wcwidth-browser.py
Pager.on_resize
def on_resize(self, *args): """Signal handler callback for SIGWINCH.""" # pylint: disable=W0613 # Unused argument 'args' self.screen.style.name_len = min(self.screen.style.name_len, self.term.width - 15) assert self.term.width >= self.screen.hint_width, ( 'Screen to small {}, must be at least {}'.format( self.term.width, self.screen.hint_width)) self._set_lastpage() self.dirty = self.STATE_REFRESH
python
def on_resize(self, *args): """Signal handler callback for SIGWINCH.""" # pylint: disable=W0613 # Unused argument 'args' self.screen.style.name_len = min(self.screen.style.name_len, self.term.width - 15) assert self.term.width >= self.screen.hint_width, ( 'Screen to small {}, must be at least {}'.format( self.term.width, self.screen.hint_width)) self._set_lastpage() self.dirty = self.STATE_REFRESH
Signal handler callback for SIGWINCH.
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/bin/wcwidth-browser.py#L305-L315
jquast/wcwidth
bin/wcwidth-browser.py
Pager._set_lastpage
def _set_lastpage(self): """Calculate value of class attribute ``last_page``.""" self.last_page = (len(self._page_data) - 1) // self.screen.page_size
python
def _set_lastpage(self): """Calculate value of class attribute ``last_page``.""" self.last_page = (len(self._page_data) - 1) // self.screen.page_size
Calculate value of class attribute ``last_page``.
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/bin/wcwidth-browser.py#L317-L319
jquast/wcwidth
bin/wcwidth-browser.py
Pager.display_initialize
def display_initialize(self): """Display 'please wait' message, and narrow build warning.""" echo(self.term.home + self.term.clear) echo(self.term.move_y(self.term.height // 2)) echo(self.term.center('Initializing page data ...').rstrip()) flushout() if LIMIT_UCS == 0x10000: echo('\n\n') echo(self.term.blink_red(self.term.center( 'narrow Python build: upperbound value is {n}.' .format(n=LIMIT_UCS)).rstrip())) echo('\n\n') flushout()
python
def display_initialize(self): """Display 'please wait' message, and narrow build warning.""" echo(self.term.home + self.term.clear) echo(self.term.move_y(self.term.height // 2)) echo(self.term.center('Initializing page data ...').rstrip()) flushout() if LIMIT_UCS == 0x10000: echo('\n\n') echo(self.term.blink_red(self.term.center( 'narrow Python build: upperbound value is {n}.' .format(n=LIMIT_UCS)).rstrip())) echo('\n\n') flushout()
Display 'please wait' message, and narrow build warning.
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/bin/wcwidth-browser.py#L321-L334
jquast/wcwidth
bin/wcwidth-browser.py
Pager.initialize_page_data
def initialize_page_data(self): """Initialize the page data for the given screen.""" if self.term.is_a_tty: self.display_initialize() self.character_generator = self.character_factory(self.screen.wide) page_data = list() while True: try: page_data.append(next(self.character_generator)) except StopIteration: break if LIMIT_UCS == 0x10000: echo(self.term.center('press any key.').rstrip()) flushout() self.term.inkey(timeout=None) return page_data
python
def initialize_page_data(self): """Initialize the page data for the given screen.""" if self.term.is_a_tty: self.display_initialize() self.character_generator = self.character_factory(self.screen.wide) page_data = list() while True: try: page_data.append(next(self.character_generator)) except StopIteration: break if LIMIT_UCS == 0x10000: echo(self.term.center('press any key.').rstrip()) flushout() self.term.inkey(timeout=None) return page_data
Initialize the page data for the given screen.
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/bin/wcwidth-browser.py#L336-L351
jquast/wcwidth
bin/wcwidth-browser.py
Pager.page_data
def page_data(self, idx, offset): """ Return character data for page of given index and offset. :param idx: page index. :type idx: int :param offset: scrolling region offset of current page. :type offset: int :returns: list of tuples in form of ``(ucs, name)`` :rtype: list[(unicode, unicode)] """ size = self.screen.page_size while offset < 0 and idx: offset += size idx -= 1 offset = max(0, offset) while offset >= size: offset -= size idx += 1 if idx == self.last_page: offset = 0 idx = min(max(0, idx), self.last_page) start = (idx * self.screen.page_size) + offset end = start + self.screen.page_size return (idx, offset), self._page_data[start:end]
python
def page_data(self, idx, offset): """ Return character data for page of given index and offset. :param idx: page index. :type idx: int :param offset: scrolling region offset of current page. :type offset: int :returns: list of tuples in form of ``(ucs, name)`` :rtype: list[(unicode, unicode)] """ size = self.screen.page_size while offset < 0 and idx: offset += size idx -= 1 offset = max(0, offset) while offset >= size: offset -= size idx += 1 if idx == self.last_page: offset = 0 idx = min(max(0, idx), self.last_page) start = (idx * self.screen.page_size) + offset end = start + self.screen.page_size return (idx, offset), self._page_data[start:end]
Return character data for page of given index and offset. :param idx: page index. :type idx: int :param offset: scrolling region offset of current page. :type offset: int :returns: list of tuples in form of ``(ucs, name)`` :rtype: list[(unicode, unicode)]
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/bin/wcwidth-browser.py#L353-L381
jquast/wcwidth
bin/wcwidth-browser.py
Pager._run_notty
def _run_notty(self, writer): """Pager run method for terminals that are not a tty.""" page_idx = page_offset = 0 while True: npage_idx, _ = self.draw(writer, page_idx + 1, page_offset) if npage_idx == self.last_page: # page displayed was last page, quit. break page_idx = npage_idx self.dirty = self.STATE_DIRTY return
python
def _run_notty(self, writer): """Pager run method for terminals that are not a tty.""" page_idx = page_offset = 0 while True: npage_idx, _ = self.draw(writer, page_idx + 1, page_offset) if npage_idx == self.last_page: # page displayed was last page, quit. break page_idx = npage_idx self.dirty = self.STATE_DIRTY return
Pager run method for terminals that are not a tty.
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/bin/wcwidth-browser.py#L383-L393
jquast/wcwidth
bin/wcwidth-browser.py
Pager._run_tty
def _run_tty(self, writer, reader): """Pager run method for terminals that are a tty.""" # allow window-change signal to reflow screen signal.signal(signal.SIGWINCH, self.on_resize) page_idx = page_offset = 0 while True: if self.dirty: page_idx, page_offset = self.draw(writer, page_idx, page_offset) self.dirty = self.STATE_CLEAN inp = reader(timeout=0.25) if inp is not None: nxt, noff = self.process_keystroke(inp, page_idx, page_offset) if not self.dirty: self.dirty = nxt != page_idx or noff != page_offset page_idx, page_offset = nxt, noff if page_idx == -1: return
python
def _run_tty(self, writer, reader): """Pager run method for terminals that are a tty.""" # allow window-change signal to reflow screen signal.signal(signal.SIGWINCH, self.on_resize) page_idx = page_offset = 0 while True: if self.dirty: page_idx, page_offset = self.draw(writer, page_idx, page_offset) self.dirty = self.STATE_CLEAN inp = reader(timeout=0.25) if inp is not None: nxt, noff = self.process_keystroke(inp, page_idx, page_offset) if not self.dirty: self.dirty = nxt != page_idx or noff != page_offset page_idx, page_offset = nxt, noff if page_idx == -1: return
Pager run method for terminals that are a tty.
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/bin/wcwidth-browser.py#L395-L416
jquast/wcwidth
bin/wcwidth-browser.py
Pager.run
def run(self, writer, reader): """ Pager entry point. In interactive mode (terminal is a tty), run until ``process_keystroke()`` detects quit keystroke ('q'). In non-interactive mode, exit after displaying all unicode points. :param writer: callable writes to output stream, receiving unicode. :type writer: callable :param reader: callable reads keystrokes from input stream, sending instance of blessed.keyboard.Keystroke. :type reader: callable """ self._page_data = self.initialize_page_data() self._set_lastpage() if not self.term.is_a_tty: self._run_notty(writer) else: self._run_tty(writer, reader)
python
def run(self, writer, reader): """ Pager entry point. In interactive mode (terminal is a tty), run until ``process_keystroke()`` detects quit keystroke ('q'). In non-interactive mode, exit after displaying all unicode points. :param writer: callable writes to output stream, receiving unicode. :type writer: callable :param reader: callable reads keystrokes from input stream, sending instance of blessed.keyboard.Keystroke. :type reader: callable """ self._page_data = self.initialize_page_data() self._set_lastpage() if not self.term.is_a_tty: self._run_notty(writer) else: self._run_tty(writer, reader)
Pager entry point. In interactive mode (terminal is a tty), run until ``process_keystroke()`` detects quit keystroke ('q'). In non-interactive mode, exit after displaying all unicode points. :param writer: callable writes to output stream, receiving unicode. :type writer: callable :param reader: callable reads keystrokes from input stream, sending instance of blessed.keyboard.Keystroke. :type reader: callable
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/bin/wcwidth-browser.py#L418-L437
jquast/wcwidth
bin/wcwidth-browser.py
Pager.process_keystroke
def process_keystroke(self, inp, idx, offset): """ Process keystroke ``inp``, adjusting screen parameters. :param inp: return value of Terminal.inkey(). :type inp: blessed.keyboard.Keystroke :param idx: page index. :type idx: int :param offset: scrolling region offset of current page. :type offset: int :returns: tuple of next (idx, offset). :rtype: (int, int) """ if inp.lower() in (u'q', u'Q'): # exit return (-1, -1) self._process_keystroke_commands(inp) idx, offset = self._process_keystroke_movement(inp, idx, offset) return idx, offset
python
def process_keystroke(self, inp, idx, offset): """ Process keystroke ``inp``, adjusting screen parameters. :param inp: return value of Terminal.inkey(). :type inp: blessed.keyboard.Keystroke :param idx: page index. :type idx: int :param offset: scrolling region offset of current page. :type offset: int :returns: tuple of next (idx, offset). :rtype: (int, int) """ if inp.lower() in (u'q', u'Q'): # exit return (-1, -1) self._process_keystroke_commands(inp) idx, offset = self._process_keystroke_movement(inp, idx, offset) return idx, offset
Process keystroke ``inp``, adjusting screen parameters. :param inp: return value of Terminal.inkey(). :type inp: blessed.keyboard.Keystroke :param idx: page index. :type idx: int :param offset: scrolling region offset of current page. :type offset: int :returns: tuple of next (idx, offset). :rtype: (int, int)
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/bin/wcwidth-browser.py#L439-L457
jquast/wcwidth
bin/wcwidth-browser.py
Pager._process_keystroke_commands
def _process_keystroke_commands(self, inp): """Process keystrokes that issue commands (side effects).""" if inp in (u'1', u'2'): # chose 1 or 2-character wide if int(inp) != self.screen.wide: self.screen.wide = int(inp) self.on_resize(None, None) elif inp in (u'_', u'-'): # adjust name length -2 nlen = max(1, self.screen.style.name_len - 2) if nlen != self.screen.style.name_len: self.screen.style.name_len = nlen self.on_resize(None, None) elif inp in (u'+', u'='): # adjust name length +2 nlen = min(self.term.width - 8, self.screen.style.name_len + 2) if nlen != self.screen.style.name_len: self.screen.style.name_len = nlen self.on_resize(None, None) elif inp == u'2' and self.screen.wide != 2: # change 2 or 1-cell wide view self.screen.wide = 2 self.on_resize(None, None)
python
def _process_keystroke_commands(self, inp): """Process keystrokes that issue commands (side effects).""" if inp in (u'1', u'2'): # chose 1 or 2-character wide if int(inp) != self.screen.wide: self.screen.wide = int(inp) self.on_resize(None, None) elif inp in (u'_', u'-'): # adjust name length -2 nlen = max(1, self.screen.style.name_len - 2) if nlen != self.screen.style.name_len: self.screen.style.name_len = nlen self.on_resize(None, None) elif inp in (u'+', u'='): # adjust name length +2 nlen = min(self.term.width - 8, self.screen.style.name_len + 2) if nlen != self.screen.style.name_len: self.screen.style.name_len = nlen self.on_resize(None, None) elif inp == u'2' and self.screen.wide != 2: # change 2 or 1-cell wide view self.screen.wide = 2 self.on_resize(None, None)
Process keystrokes that issue commands (side effects).
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/bin/wcwidth-browser.py#L459-L481
jquast/wcwidth
bin/wcwidth-browser.py
Pager._process_keystroke_movement
def _process_keystroke_movement(self, inp, idx, offset): """Process keystrokes that adjust index and offset.""" term = self.term if inp in (u'y', u'k') or inp.code in (term.KEY_UP,): # scroll backward 1 line idx, offset = (idx, offset - self.screen.num_columns) elif inp in (u'e', u'j') or inp.code in (term.KEY_ENTER, term.KEY_DOWN,): # scroll forward 1 line idx, offset = (idx, offset + self.screen.num_columns) elif inp in (u'f', u' ') or inp.code in (term.KEY_PGDOWN,): # scroll forward 1 page idx, offset = (idx + 1, offset) elif inp == u'b' or inp.code in (term.KEY_PGUP,): # scroll backward 1 page idx, offset = (max(0, idx - 1), offset) elif inp.code in (term.KEY_SDOWN,): # scroll forward 10 pages idx, offset = (max(0, idx + 10), offset) elif inp.code in (term.KEY_SUP,): # scroll forward 10 pages idx, offset = (max(0, idx - 10), offset) elif inp.code == term.KEY_HOME: # top idx, offset = (0, 0) elif inp.code == term.KEY_END: # bottom idx, offset = (self.last_page, 0) return idx, offset
python
def _process_keystroke_movement(self, inp, idx, offset): """Process keystrokes that adjust index and offset.""" term = self.term if inp in (u'y', u'k') or inp.code in (term.KEY_UP,): # scroll backward 1 line idx, offset = (idx, offset - self.screen.num_columns) elif inp in (u'e', u'j') or inp.code in (term.KEY_ENTER, term.KEY_DOWN,): # scroll forward 1 line idx, offset = (idx, offset + self.screen.num_columns) elif inp in (u'f', u' ') or inp.code in (term.KEY_PGDOWN,): # scroll forward 1 page idx, offset = (idx + 1, offset) elif inp == u'b' or inp.code in (term.KEY_PGUP,): # scroll backward 1 page idx, offset = (max(0, idx - 1), offset) elif inp.code in (term.KEY_SDOWN,): # scroll forward 10 pages idx, offset = (max(0, idx + 10), offset) elif inp.code in (term.KEY_SUP,): # scroll forward 10 pages idx, offset = (max(0, idx - 10), offset) elif inp.code == term.KEY_HOME: # top idx, offset = (0, 0) elif inp.code == term.KEY_END: # bottom idx, offset = (self.last_page, 0) return idx, offset
Process keystrokes that adjust index and offset.
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/bin/wcwidth-browser.py#L483-L511
jquast/wcwidth
bin/wcwidth-browser.py
Pager.draw
def draw(self, writer, idx, offset): """ Draw the current page view to ``writer``. :param writer: callable writes to output stream, receiving unicode. :type writer: callable :param idx: current page index. :type idx: int :param offset: scrolling region offset of current page. :type offset: int :returns: tuple of next (idx, offset). :rtype: (int, int) """ # as our screen can be resized while we're mid-calculation, # our self.dirty flag can become re-toggled; because we are # not re-flowing our pagination, we must begin over again. while self.dirty: self.draw_heading(writer) self.dirty = self.STATE_CLEAN (idx, offset), data = self.page_data(idx, offset) for txt in self.page_view(data): writer(txt) self.draw_status(writer, idx) flushout() return idx, offset
python
def draw(self, writer, idx, offset): """ Draw the current page view to ``writer``. :param writer: callable writes to output stream, receiving unicode. :type writer: callable :param idx: current page index. :type idx: int :param offset: scrolling region offset of current page. :type offset: int :returns: tuple of next (idx, offset). :rtype: (int, int) """ # as our screen can be resized while we're mid-calculation, # our self.dirty flag can become re-toggled; because we are # not re-flowing our pagination, we must begin over again. while self.dirty: self.draw_heading(writer) self.dirty = self.STATE_CLEAN (idx, offset), data = self.page_data(idx, offset) for txt in self.page_view(data): writer(txt) self.draw_status(writer, idx) flushout() return idx, offset
Draw the current page view to ``writer``. :param writer: callable writes to output stream, receiving unicode. :type writer: callable :param idx: current page index. :type idx: int :param offset: scrolling region offset of current page. :type offset: int :returns: tuple of next (idx, offset). :rtype: (int, int)
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/bin/wcwidth-browser.py#L513-L537
jquast/wcwidth
bin/wcwidth-browser.py
Pager.draw_heading
def draw_heading(self, writer): """ Conditionally redraw screen when ``dirty`` attribute is valued REFRESH. When Pager attribute ``dirty`` is ``STATE_REFRESH``, cursor is moved to (0,0), screen is cleared, and heading is displayed. :param writer: callable writes to output stream, receiving unicode. :returns: True if class attribute ``dirty`` is ``STATE_REFRESH``. """ if self.dirty == self.STATE_REFRESH: writer(u''.join( (self.term.home, self.term.clear, self.screen.msg_intro, '\n', self.screen.header, '\n',))) return True
python
def draw_heading(self, writer): """ Conditionally redraw screen when ``dirty`` attribute is valued REFRESH. When Pager attribute ``dirty`` is ``STATE_REFRESH``, cursor is moved to (0,0), screen is cleared, and heading is displayed. :param writer: callable writes to output stream, receiving unicode. :returns: True if class attribute ``dirty`` is ``STATE_REFRESH``. """ if self.dirty == self.STATE_REFRESH: writer(u''.join( (self.term.home, self.term.clear, self.screen.msg_intro, '\n', self.screen.header, '\n',))) return True
Conditionally redraw screen when ``dirty`` attribute is valued REFRESH. When Pager attribute ``dirty`` is ``STATE_REFRESH``, cursor is moved to (0,0), screen is cleared, and heading is displayed. :param writer: callable writes to output stream, receiving unicode. :returns: True if class attribute ``dirty`` is ``STATE_REFRESH``.
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/bin/wcwidth-browser.py#L539-L554
jquast/wcwidth
bin/wcwidth-browser.py
Pager.draw_status
def draw_status(self, writer, idx): """ Conditionally draw status bar when output terminal is a tty. :param writer: callable writes to output stream, receiving unicode. :param idx: current page position index. :type idx: int """ if self.term.is_a_tty: writer(self.term.hide_cursor()) style = self.screen.style writer(self.term.move(self.term.height - 1)) if idx == self.last_page: last_end = u'(END)' else: last_end = u'/{0}'.format(self.last_page) txt = (u'Page {idx}{last_end} - ' u'{q} to quit, [keys: {keyset}]' .format(idx=style.attr_minor(u'{0}'.format(idx)), last_end=style.attr_major(last_end), keyset=style.attr_major('kjfb12-='), q=style.attr_minor(u'q'))) writer(self.term.center(txt).rstrip())
python
def draw_status(self, writer, idx): """ Conditionally draw status bar when output terminal is a tty. :param writer: callable writes to output stream, receiving unicode. :param idx: current page position index. :type idx: int """ if self.term.is_a_tty: writer(self.term.hide_cursor()) style = self.screen.style writer(self.term.move(self.term.height - 1)) if idx == self.last_page: last_end = u'(END)' else: last_end = u'/{0}'.format(self.last_page) txt = (u'Page {idx}{last_end} - ' u'{q} to quit, [keys: {keyset}]' .format(idx=style.attr_minor(u'{0}'.format(idx)), last_end=style.attr_major(last_end), keyset=style.attr_major('kjfb12-='), q=style.attr_minor(u'q'))) writer(self.term.center(txt).rstrip())
Conditionally draw status bar when output terminal is a tty. :param writer: callable writes to output stream, receiving unicode. :param idx: current page position index. :type idx: int
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/bin/wcwidth-browser.py#L556-L578
jquast/wcwidth
bin/wcwidth-browser.py
Pager.page_view
def page_view(self, data): """ Generator yields text to be displayed for the current unicode pageview. :param data: The current page's data as tuple of ``(ucs, name)``. :rtype: generator """ if self.term.is_a_tty: yield self.term.move(self.screen.row_begins, 0) # sequence clears to end-of-line clear_eol = self.term.clear_eol # sequence clears to end-of-screen clear_eos = self.term.clear_eos # track our current column and row, where column is # the whole segment of unicode value text, and draw # only self.screen.num_columns before end-of-line. # # use clear_eol at end of each row to erase over any # "ghosted" text, and clear_eos at end of screen to # clear the same, especially for the final page which # is often short. col = 0 for ucs, name in data: val = self.text_entry(ucs, name) col += 1 if col == self.screen.num_columns: col = 0 if self.term.is_a_tty: val = u''.join((val, clear_eol, u'\n')) else: val = u''.join((val.rstrip(), u'\n')) yield val if self.term.is_a_tty: yield u''.join((clear_eol, u'\n', clear_eos))
python
def page_view(self, data): """ Generator yields text to be displayed for the current unicode pageview. :param data: The current page's data as tuple of ``(ucs, name)``. :rtype: generator """ if self.term.is_a_tty: yield self.term.move(self.screen.row_begins, 0) # sequence clears to end-of-line clear_eol = self.term.clear_eol # sequence clears to end-of-screen clear_eos = self.term.clear_eos # track our current column and row, where column is # the whole segment of unicode value text, and draw # only self.screen.num_columns before end-of-line. # # use clear_eol at end of each row to erase over any # "ghosted" text, and clear_eos at end of screen to # clear the same, especially for the final page which # is often short. col = 0 for ucs, name in data: val = self.text_entry(ucs, name) col += 1 if col == self.screen.num_columns: col = 0 if self.term.is_a_tty: val = u''.join((val, clear_eol, u'\n')) else: val = u''.join((val.rstrip(), u'\n')) yield val if self.term.is_a_tty: yield u''.join((clear_eol, u'\n', clear_eos))
Generator yields text to be displayed for the current unicode pageview. :param data: The current page's data as tuple of ``(ucs, name)``. :rtype: generator
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/bin/wcwidth-browser.py#L580-L615
jquast/wcwidth
bin/wcwidth-browser.py
Pager.text_entry
def text_entry(self, ucs, name): """ Display a single column segment row describing ``(ucs, name)``. :param ucs: target unicode point character string. :param name: name of unicode point. :rtype: unicode """ style = self.screen.style if len(name) > style.name_len: idx = max(0, style.name_len - len(style.continuation)) name = u''.join((name[:idx], style.continuation if idx else u'')) if style.alignment == 'right': fmt = u' '.join(('0x{val:0>{ucs_printlen}x}', '{name:<{name_len}s}', '{delimiter}{ucs}{delimiter}' )) else: fmt = u' '.join(('{delimiter}{ucs}{delimiter}', '0x{val:0>{ucs_printlen}x}', '{name:<{name_len}s}')) delimiter = style.attr_minor(style.delimiter) if len(ucs) != 1: # determine display of combining characters val = ord(ucs[1]) # a combining character displayed of any fg color # will reset the foreground character of the cell # combined with (iTerm2, OSX). disp_ucs = style.attr_major(ucs[0:2]) if len(ucs) > 2: disp_ucs += ucs[2] else: # non-combining val = ord(ucs) disp_ucs = style.attr_major(ucs) return fmt.format(name_len=style.name_len, ucs_printlen=UCS_PRINTLEN, delimiter=delimiter, name=name, ucs=disp_ucs, val=val)
python
def text_entry(self, ucs, name): """ Display a single column segment row describing ``(ucs, name)``. :param ucs: target unicode point character string. :param name: name of unicode point. :rtype: unicode """ style = self.screen.style if len(name) > style.name_len: idx = max(0, style.name_len - len(style.continuation)) name = u''.join((name[:idx], style.continuation if idx else u'')) if style.alignment == 'right': fmt = u' '.join(('0x{val:0>{ucs_printlen}x}', '{name:<{name_len}s}', '{delimiter}{ucs}{delimiter}' )) else: fmt = u' '.join(('{delimiter}{ucs}{delimiter}', '0x{val:0>{ucs_printlen}x}', '{name:<{name_len}s}')) delimiter = style.attr_minor(style.delimiter) if len(ucs) != 1: # determine display of combining characters val = ord(ucs[1]) # a combining character displayed of any fg color # will reset the foreground character of the cell # combined with (iTerm2, OSX). disp_ucs = style.attr_major(ucs[0:2]) if len(ucs) > 2: disp_ucs += ucs[2] else: # non-combining val = ord(ucs) disp_ucs = style.attr_major(ucs) return fmt.format(name_len=style.name_len, ucs_printlen=UCS_PRINTLEN, delimiter=delimiter, name=name, ucs=disp_ucs, val=val)
Display a single column segment row describing ``(ucs, name)``. :param ucs: target unicode point character string. :param name: name of unicode point. :rtype: unicode
https://github.com/jquast/wcwidth/blob/78800b68911880ef4ef95ae83886154710441871/bin/wcwidth-browser.py#L617-L658
matthew-brett/delocate
delocate/tools.py
back_tick
def back_tick(cmd, ret_err=False, as_str=True, raise_err=None): """ Run command `cmd`, return stdout, or stdout, stderr if `ret_err` Roughly equivalent to ``check_output`` in Python 2.7 Parameters ---------- cmd : sequence command to execute ret_err : bool, optional If True, return stderr in addition to stdout. If False, just return stdout as_str : bool, optional Whether to decode outputs to unicode string on exit. raise_err : None or bool, optional If True, raise RuntimeError for non-zero return code. If None, set to True when `ret_err` is False, False if `ret_err` is True Returns ------- out : str or tuple If `ret_err` is False, return stripped string containing stdout from `cmd`. If `ret_err` is True, return tuple of (stdout, stderr) where ``stdout`` is the stripped stdout, and ``stderr`` is the stripped stderr. Raises ------ Raises RuntimeError if command returns non-zero exit code and `raise_err` is True """ if raise_err is None: raise_err = False if ret_err else True cmd_is_seq = isinstance(cmd, (list, tuple)) proc = Popen(cmd, stdout=PIPE, stderr=PIPE, shell=not cmd_is_seq) out, err = proc.communicate() retcode = proc.returncode cmd_str = ' '.join(cmd) if cmd_is_seq else cmd if retcode is None: proc.terminate() raise RuntimeError(cmd_str + ' process did not terminate') if raise_err and retcode != 0: raise RuntimeError('{0} returned code {1} with error {2}'.format( cmd_str, retcode, err.decode('latin-1'))) out = out.strip() if as_str: out = out.decode('latin-1') if not ret_err: return out err = err.strip() if as_str: err = err.decode('latin-1') return out, err
python
def back_tick(cmd, ret_err=False, as_str=True, raise_err=None): """ Run command `cmd`, return stdout, or stdout, stderr if `ret_err` Roughly equivalent to ``check_output`` in Python 2.7 Parameters ---------- cmd : sequence command to execute ret_err : bool, optional If True, return stderr in addition to stdout. If False, just return stdout as_str : bool, optional Whether to decode outputs to unicode string on exit. raise_err : None or bool, optional If True, raise RuntimeError for non-zero return code. If None, set to True when `ret_err` is False, False if `ret_err` is True Returns ------- out : str or tuple If `ret_err` is False, return stripped string containing stdout from `cmd`. If `ret_err` is True, return tuple of (stdout, stderr) where ``stdout`` is the stripped stdout, and ``stderr`` is the stripped stderr. Raises ------ Raises RuntimeError if command returns non-zero exit code and `raise_err` is True """ if raise_err is None: raise_err = False if ret_err else True cmd_is_seq = isinstance(cmd, (list, tuple)) proc = Popen(cmd, stdout=PIPE, stderr=PIPE, shell=not cmd_is_seq) out, err = proc.communicate() retcode = proc.returncode cmd_str = ' '.join(cmd) if cmd_is_seq else cmd if retcode is None: proc.terminate() raise RuntimeError(cmd_str + ' process did not terminate') if raise_err and retcode != 0: raise RuntimeError('{0} returned code {1} with error {2}'.format( cmd_str, retcode, err.decode('latin-1'))) out = out.strip() if as_str: out = out.decode('latin-1') if not ret_err: return out err = err.strip() if as_str: err = err.decode('latin-1') return out, err
Run command `cmd`, return stdout, or stdout, stderr if `ret_err` Roughly equivalent to ``check_output`` in Python 2.7 Parameters ---------- cmd : sequence command to execute ret_err : bool, optional If True, return stderr in addition to stdout. If False, just return stdout as_str : bool, optional Whether to decode outputs to unicode string on exit. raise_err : None or bool, optional If True, raise RuntimeError for non-zero return code. If None, set to True when `ret_err` is False, False if `ret_err` is True Returns ------- out : str or tuple If `ret_err` is False, return stripped string containing stdout from `cmd`. If `ret_err` is True, return tuple of (stdout, stderr) where ``stdout`` is the stripped stdout, and ``stderr`` is the stripped stderr. Raises ------ Raises RuntimeError if command returns non-zero exit code and `raise_err` is True
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/tools.py#L17-L69
matthew-brett/delocate
delocate/tools.py
unique_by_index
def unique_by_index(sequence): """ unique elements in `sequence` in the order in which they occur Parameters ---------- sequence : iterable Returns ------- uniques : list unique elements of sequence, ordered by the order in which the element occurs in `sequence` """ uniques = [] for element in sequence: if element not in uniques: uniques.append(element) return uniques
python
def unique_by_index(sequence): """ unique elements in `sequence` in the order in which they occur Parameters ---------- sequence : iterable Returns ------- uniques : list unique elements of sequence, ordered by the order in which the element occurs in `sequence` """ uniques = [] for element in sequence: if element not in uniques: uniques.append(element) return uniques
unique elements in `sequence` in the order in which they occur Parameters ---------- sequence : iterable Returns ------- uniques : list unique elements of sequence, ordered by the order in which the element occurs in `sequence`
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/tools.py#L72-L89
matthew-brett/delocate
delocate/tools.py
ensure_permissions
def ensure_permissions(mode_flags=stat.S_IWUSR): """decorator to ensure a filename has given permissions. If changed, original permissions are restored after the decorated modification. """ def decorator(f): def modify(filename, *args, **kwargs): m = chmod_perms(filename) if exists(filename) else mode_flags if not m & mode_flags: os.chmod(filename, m | mode_flags) try: return f(filename, *args, **kwargs) finally: # restore original permissions if not m & mode_flags: os.chmod(filename, m) return modify return decorator
python
def ensure_permissions(mode_flags=stat.S_IWUSR): """decorator to ensure a filename has given permissions. If changed, original permissions are restored after the decorated modification. """ def decorator(f): def modify(filename, *args, **kwargs): m = chmod_perms(filename) if exists(filename) else mode_flags if not m & mode_flags: os.chmod(filename, m | mode_flags) try: return f(filename, *args, **kwargs) finally: # restore original permissions if not m & mode_flags: os.chmod(filename, m) return modify return decorator
decorator to ensure a filename has given permissions. If changed, original permissions are restored after the decorated modification.
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/tools.py#L97-L117
matthew-brett/delocate
delocate/tools.py
get_install_names
def get_install_names(filename): """ Return install names from library named in `filename` Returns tuple of install names tuple will be empty if no install names, or if this is not an object file. Parameters ---------- filename : str filename of library Returns ------- install_names : tuple tuple of install names for library `filename` """ lines = _cmd_out_err(['otool', '-L', filename]) if not _line0_says_object(lines[0], filename): return () names = tuple(parse_install_name(line)[0] for line in lines[1:]) install_id = get_install_id(filename) if not install_id is None: assert names[0] == install_id return names[1:] return names
python
def get_install_names(filename): """ Return install names from library named in `filename` Returns tuple of install names tuple will be empty if no install names, or if this is not an object file. Parameters ---------- filename : str filename of library Returns ------- install_names : tuple tuple of install names for library `filename` """ lines = _cmd_out_err(['otool', '-L', filename]) if not _line0_says_object(lines[0], filename): return () names = tuple(parse_install_name(line)[0] for line in lines[1:]) install_id = get_install_id(filename) if not install_id is None: assert names[0] == install_id return names[1:] return names
Return install names from library named in `filename` Returns tuple of install names tuple will be empty if no install names, or if this is not an object file. Parameters ---------- filename : str filename of library Returns ------- install_names : tuple tuple of install names for library `filename`
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/tools.py#L197-L222
matthew-brett/delocate
delocate/tools.py
get_install_id
def get_install_id(filename): """ Return install id from library named in `filename` Returns None if no install id, or if this is not an object file. Parameters ---------- filename : str filename of library Returns ------- install_id : str install id of library `filename`, or None if no install id """ lines = _cmd_out_err(['otool', '-D', filename]) if not _line0_says_object(lines[0], filename): return None if len(lines) == 1: return None if len(lines) != 2: raise InstallNameError('Unexpected otool output ' + '\n'.join(lines)) return lines[1].strip()
python
def get_install_id(filename): """ Return install id from library named in `filename` Returns None if no install id, or if this is not an object file. Parameters ---------- filename : str filename of library Returns ------- install_id : str install id of library `filename`, or None if no install id """ lines = _cmd_out_err(['otool', '-D', filename]) if not _line0_says_object(lines[0], filename): return None if len(lines) == 1: return None if len(lines) != 2: raise InstallNameError('Unexpected otool output ' + '\n'.join(lines)) return lines[1].strip()
Return install id from library named in `filename` Returns None if no install id, or if this is not an object file. Parameters ---------- filename : str filename of library Returns ------- install_id : str install id of library `filename`, or None if no install id
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/tools.py#L225-L247
matthew-brett/delocate
delocate/tools.py
set_install_name
def set_install_name(filename, oldname, newname): """ Set install name `oldname` to `newname` in library filename Parameters ---------- filename : str filename of library oldname : str current install name in library newname : str replacement name for `oldname` """ names = get_install_names(filename) if oldname not in names: raise InstallNameError('{0} not in install names for {1}'.format( oldname, filename)) back_tick(['install_name_tool', '-change', oldname, newname, filename])
python
def set_install_name(filename, oldname, newname): """ Set install name `oldname` to `newname` in library filename Parameters ---------- filename : str filename of library oldname : str current install name in library newname : str replacement name for `oldname` """ names = get_install_names(filename) if oldname not in names: raise InstallNameError('{0} not in install names for {1}'.format( oldname, filename)) back_tick(['install_name_tool', '-change', oldname, newname, filename])
Set install name `oldname` to `newname` in library filename Parameters ---------- filename : str filename of library oldname : str current install name in library newname : str replacement name for `oldname`
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/tools.py#L251-L267
matthew-brett/delocate
delocate/tools.py
set_install_id
def set_install_id(filename, install_id): """ Set install id for library named in `filename` Parameters ---------- filename : str filename of library install_id : str install id for library `filename` Raises ------ RuntimeError if `filename` has not install id """ if get_install_id(filename) is None: raise InstallNameError('{0} has no install id'.format(filename)) back_tick(['install_name_tool', '-id', install_id, filename])
python
def set_install_id(filename, install_id): """ Set install id for library named in `filename` Parameters ---------- filename : str filename of library install_id : str install id for library `filename` Raises ------ RuntimeError if `filename` has not install id """ if get_install_id(filename) is None: raise InstallNameError('{0} has no install id'.format(filename)) back_tick(['install_name_tool', '-id', install_id, filename])
Set install id for library named in `filename` Parameters ---------- filename : str filename of library install_id : str install id for library `filename` Raises ------ RuntimeError if `filename` has not install id
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/tools.py#L271-L287
matthew-brett/delocate
delocate/tools.py
get_rpaths
def get_rpaths(filename): """ Return a tuple of rpaths from the library `filename` If `filename` is not a library then the returned tuple will be empty. Parameters ---------- filaname : str filename of library Returns ------- rpath : tuple rpath paths in `filename` """ try: lines = _cmd_out_err(['otool', '-l', filename]) except RuntimeError: return () if not _line0_says_object(lines[0], filename): return () lines = [line.strip() for line in lines] paths = [] line_no = 1 while line_no < len(lines): line = lines[line_no] line_no += 1 if line != 'cmd LC_RPATH': continue cmdsize, path = lines[line_no:line_no+2] assert cmdsize.startswith('cmdsize ') paths.append(RPATH_RE.match(path).groups()[0]) line_no += 2 return tuple(paths)
python
def get_rpaths(filename): """ Return a tuple of rpaths from the library `filename` If `filename` is not a library then the returned tuple will be empty. Parameters ---------- filaname : str filename of library Returns ------- rpath : tuple rpath paths in `filename` """ try: lines = _cmd_out_err(['otool', '-l', filename]) except RuntimeError: return () if not _line0_says_object(lines[0], filename): return () lines = [line.strip() for line in lines] paths = [] line_no = 1 while line_no < len(lines): line = lines[line_no] line_no += 1 if line != 'cmd LC_RPATH': continue cmdsize, path = lines[line_no:line_no+2] assert cmdsize.startswith('cmdsize ') paths.append(RPATH_RE.match(path).groups()[0]) line_no += 2 return tuple(paths)
Return a tuple of rpaths from the library `filename` If `filename` is not a library then the returned tuple will be empty. Parameters ---------- filaname : str filename of library Returns ------- rpath : tuple rpath paths in `filename`
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/tools.py#L292-L325
matthew-brett/delocate
delocate/tools.py
dir2zip
def dir2zip(in_dir, zip_fname): """ Make a zip file `zip_fname` with contents of directory `in_dir` The recorded filenames are relative to `in_dir`, so doing a standard zip unpack of the resulting `zip_fname` in an empty directory will result in the original directory contents. Parameters ---------- in_dir : str Directory path containing files to go in the zip archive zip_fname : str Filename of zip archive to write """ z = zipfile.ZipFile(zip_fname, 'w', compression=zipfile.ZIP_DEFLATED) for root, dirs, files in os.walk(in_dir): for file in files: in_fname = pjoin(root, file) in_stat = os.stat(in_fname) # Preserve file permissions, but allow copy info = zipfile.ZipInfo(in_fname) info.filename = relpath(in_fname, in_dir) if os.path.sep == '\\': # Make the path unix friendly on windows. # PyPI won't accept wheels with windows path separators info.filename = relpath(in_fname, in_dir).replace('\\', '/') # Set time from modification time info.date_time = time.localtime(in_stat.st_mtime) # See https://stackoverflow.com/questions/434641/how-do-i-set-permissions-attributes-on-a-file-in-a-zip-file-using-pythons-zip/48435482#48435482 # Also set regular file permissions perms = stat.S_IMODE(in_stat.st_mode) | stat.S_IFREG info.external_attr = perms << 16 with open_readable(in_fname, 'rb') as fobj: contents = fobj.read() z.writestr(info, contents, zipfile.ZIP_DEFLATED) z.close()
python
def dir2zip(in_dir, zip_fname): """ Make a zip file `zip_fname` with contents of directory `in_dir` The recorded filenames are relative to `in_dir`, so doing a standard zip unpack of the resulting `zip_fname` in an empty directory will result in the original directory contents. Parameters ---------- in_dir : str Directory path containing files to go in the zip archive zip_fname : str Filename of zip archive to write """ z = zipfile.ZipFile(zip_fname, 'w', compression=zipfile.ZIP_DEFLATED) for root, dirs, files in os.walk(in_dir): for file in files: in_fname = pjoin(root, file) in_stat = os.stat(in_fname) # Preserve file permissions, but allow copy info = zipfile.ZipInfo(in_fname) info.filename = relpath(in_fname, in_dir) if os.path.sep == '\\': # Make the path unix friendly on windows. # PyPI won't accept wheels with windows path separators info.filename = relpath(in_fname, in_dir).replace('\\', '/') # Set time from modification time info.date_time = time.localtime(in_stat.st_mtime) # See https://stackoverflow.com/questions/434641/how-do-i-set-permissions-attributes-on-a-file-in-a-zip-file-using-pythons-zip/48435482#48435482 # Also set regular file permissions perms = stat.S_IMODE(in_stat.st_mode) | stat.S_IFREG info.external_attr = perms << 16 with open_readable(in_fname, 'rb') as fobj: contents = fobj.read() z.writestr(info, contents, zipfile.ZIP_DEFLATED) z.close()
Make a zip file `zip_fname` with contents of directory `in_dir` The recorded filenames are relative to `in_dir`, so doing a standard zip unpack of the resulting `zip_fname` in an empty directory will result in the original directory contents. Parameters ---------- in_dir : str Directory path containing files to go in the zip archive zip_fname : str Filename of zip archive to write
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/tools.py#L357-L393
matthew-brett/delocate
delocate/tools.py
find_package_dirs
def find_package_dirs(root_path): """ Find python package directories in directory `root_path` Parameters ---------- root_path : str Directory to search for package subdirectories Returns ------- package_sdirs : set Set of strings where each is a subdirectory of `root_path`, containing an ``__init__.py`` file. Paths prefixed by `root_path` """ package_sdirs = set() for entry in os.listdir(root_path): fname = entry if root_path == '.' else pjoin(root_path, entry) if isdir(fname) and exists(pjoin(fname, '__init__.py')): package_sdirs.add(fname) return package_sdirs
python
def find_package_dirs(root_path): """ Find python package directories in directory `root_path` Parameters ---------- root_path : str Directory to search for package subdirectories Returns ------- package_sdirs : set Set of strings where each is a subdirectory of `root_path`, containing an ``__init__.py`` file. Paths prefixed by `root_path` """ package_sdirs = set() for entry in os.listdir(root_path): fname = entry if root_path == '.' else pjoin(root_path, entry) if isdir(fname) and exists(pjoin(fname, '__init__.py')): package_sdirs.add(fname) return package_sdirs
Find python package directories in directory `root_path` Parameters ---------- root_path : str Directory to search for package subdirectories Returns ------- package_sdirs : set Set of strings where each is a subdirectory of `root_path`, containing an ``__init__.py`` file. Paths prefixed by `root_path`
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/tools.py#L396-L415
matthew-brett/delocate
delocate/tools.py
cmp_contents
def cmp_contents(filename1, filename2): """ Returns True if contents of the files are the same Parameters ---------- filename1 : str filename of first file to compare filename2 : str filename of second file to compare Returns ------- tf : bool True if binary contents of `filename1` is same as binary contents of `filename2`, False otherwise. """ with open_readable(filename1, 'rb') as fobj: contents1 = fobj.read() with open_readable(filename2, 'rb') as fobj: contents2 = fobj.read() return contents1 == contents2
python
def cmp_contents(filename1, filename2): """ Returns True if contents of the files are the same Parameters ---------- filename1 : str filename of first file to compare filename2 : str filename of second file to compare Returns ------- tf : bool True if binary contents of `filename1` is same as binary contents of `filename2`, False otherwise. """ with open_readable(filename1, 'rb') as fobj: contents1 = fobj.read() with open_readable(filename2, 'rb') as fobj: contents2 = fobj.read() return contents1 == contents2
Returns True if contents of the files are the same Parameters ---------- filename1 : str filename of first file to compare filename2 : str filename of second file to compare Returns ------- tf : bool True if binary contents of `filename1` is same as binary contents of `filename2`, False otherwise.
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/tools.py#L418-L438
matthew-brett/delocate
delocate/tools.py
get_archs
def get_archs(libname): """ Return architecture types from library `libname` Parameters ---------- libname : str filename of binary for which to return arch codes Returns ------- arch_names : frozenset Empty (frozen)set if no arch codes. If not empty, contains one or more of 'ppc', 'ppc64', 'i386', 'x86_64' """ if not exists(libname): raise RuntimeError(libname + " is not a file") try: stdout = back_tick(['lipo', '-info', libname]) except RuntimeError: return frozenset() lines = [line.strip() for line in stdout.split('\n') if line.strip()] # For some reason, output from lipo -info on .a file generates this line if lines[0] == "input file {0} is not a fat file".format(libname): line = lines[1] else: assert len(lines) == 1 line = lines[0] for reggie in ( 'Non-fat file: {0} is architecture: (.*)'.format(libname), 'Architectures in the fat file: {0} are: (.*)'.format(libname)): reggie = re.compile(reggie) match = reggie.match(line) if not match is None: return frozenset(match.groups()[0].split(' ')) raise ValueError("Unexpected output: '{0}' for {1}".format( stdout, libname))
python
def get_archs(libname): """ Return architecture types from library `libname` Parameters ---------- libname : str filename of binary for which to return arch codes Returns ------- arch_names : frozenset Empty (frozen)set if no arch codes. If not empty, contains one or more of 'ppc', 'ppc64', 'i386', 'x86_64' """ if not exists(libname): raise RuntimeError(libname + " is not a file") try: stdout = back_tick(['lipo', '-info', libname]) except RuntimeError: return frozenset() lines = [line.strip() for line in stdout.split('\n') if line.strip()] # For some reason, output from lipo -info on .a file generates this line if lines[0] == "input file {0} is not a fat file".format(libname): line = lines[1] else: assert len(lines) == 1 line = lines[0] for reggie in ( 'Non-fat file: {0} is architecture: (.*)'.format(libname), 'Architectures in the fat file: {0} are: (.*)'.format(libname)): reggie = re.compile(reggie) match = reggie.match(line) if not match is None: return frozenset(match.groups()[0].split(' ')) raise ValueError("Unexpected output: '{0}' for {1}".format( stdout, libname))
Return architecture types from library `libname` Parameters ---------- libname : str filename of binary for which to return arch codes Returns ------- arch_names : frozenset Empty (frozen)set if no arch codes. If not empty, contains one or more of 'ppc', 'ppc64', 'i386', 'x86_64'
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/tools.py#L441-L476
matthew-brett/delocate
delocate/tools.py
validate_signature
def validate_signature(filename): """ Remove invalid signatures from a binary file If the file signature is missing or valid then it will be ignored Invalid signatures are replaced with an ad-hoc signature. This is the closest you can get to removing a signature on MacOS Parameters ---------- filename : str Filepath to a binary file """ out, err = back_tick(['codesign', '--verify', filename], ret_err=True, as_str=True, raise_err=False) if not err: return # The existing signature is valid if 'code object is not signed at all' in err: return # File has no signature, and adding a new one isn't necessary # This file's signature is invalid and needs to be replaced replace_signature(filename, '-')
python
def validate_signature(filename): """ Remove invalid signatures from a binary file If the file signature is missing or valid then it will be ignored Invalid signatures are replaced with an ad-hoc signature. This is the closest you can get to removing a signature on MacOS Parameters ---------- filename : str Filepath to a binary file """ out, err = back_tick(['codesign', '--verify', filename], ret_err=True, as_str=True, raise_err=False) if not err: return # The existing signature is valid if 'code object is not signed at all' in err: return # File has no signature, and adding a new one isn't necessary # This file's signature is invalid and needs to be replaced replace_signature(filename, '-')
Remove invalid signatures from a binary file If the file signature is missing or valid then it will be ignored Invalid signatures are replaced with an ad-hoc signature. This is the closest you can get to removing a signature on MacOS Parameters ---------- filename : str Filepath to a binary file
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/tools.py#L513-L534
matthew-brett/delocate
versioneer.py
os_path_relpath
def os_path_relpath(path, start=os.path.curdir): """Return a relative version of a path""" if not path: raise ValueError("no path specified") start_list = [x for x in os.path.abspath(start).split(os.path.sep) if x] path_list = [x for x in os.path.abspath(path).split(os.path.sep) if x] # Work out how much of the filepath is shared by start and path. i = len(os.path.commonprefix([start_list, path_list])) rel_list = [os.path.pardir] * (len(start_list)-i) + path_list[i:] if not rel_list: return os.path.curdir return os.path.join(*rel_list)
python
def os_path_relpath(path, start=os.path.curdir): """Return a relative version of a path""" if not path: raise ValueError("no path specified") start_list = [x for x in os.path.abspath(start).split(os.path.sep) if x] path_list = [x for x in os.path.abspath(path).split(os.path.sep) if x] # Work out how much of the filepath is shared by start and path. i = len(os.path.commonprefix([start_list, path_list])) rel_list = [os.path.pardir] * (len(start_list)-i) + path_list[i:] if not rel_list: return os.path.curdir return os.path.join(*rel_list)
Return a relative version of a path
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/versioneer.py#L596-L611
matthew-brett/delocate
delocate/fuse.py
fuse_trees
def fuse_trees(to_tree, from_tree, lib_exts=('.so', '.dylib', '.a')): """ Fuse path `from_tree` into path `to_tree` For each file in `from_tree` - check for library file extension (in `lib_exts` - if present, check if there is a file with matching relative path in `to_tree`, if so, use :func:`delocate.tools.lipo_fuse` to fuse the two libraries together and write into `to_tree`. If any of these conditions are not met, just copy the file from `from_tree` to `to_tree`. Parameters --------- to_tree : str path of tree to fuse into (update into) from_tree : str path of tree to fuse from (update from) lib_exts : sequence, optional filename extensions for libraries """ for from_dirpath, dirnames, filenames in os.walk(from_tree): to_dirpath = pjoin(to_tree, relpath(from_dirpath, from_tree)) # Copy any missing directories in to_path for dirname in tuple(dirnames): to_path = pjoin(to_dirpath, dirname) if not exists(to_path): from_path = pjoin(from_dirpath, dirname) shutil.copytree(from_path, to_path) # If copying, don't further analyze this directory dirnames.remove(dirname) for fname in filenames: root, ext = splitext(fname) from_path = pjoin(from_dirpath, fname) to_path = pjoin(to_dirpath, fname) if not exists(to_path): _copyfile(from_path, to_path) elif cmp_contents(from_path, to_path): pass elif ext in lib_exts: # existing lib that needs fuse lipo_fuse(from_path, to_path, to_path) else: # existing not-lib file not identical to source _copyfile(from_path, to_path)
python
def fuse_trees(to_tree, from_tree, lib_exts=('.so', '.dylib', '.a')): """ Fuse path `from_tree` into path `to_tree` For each file in `from_tree` - check for library file extension (in `lib_exts` - if present, check if there is a file with matching relative path in `to_tree`, if so, use :func:`delocate.tools.lipo_fuse` to fuse the two libraries together and write into `to_tree`. If any of these conditions are not met, just copy the file from `from_tree` to `to_tree`. Parameters --------- to_tree : str path of tree to fuse into (update into) from_tree : str path of tree to fuse from (update from) lib_exts : sequence, optional filename extensions for libraries """ for from_dirpath, dirnames, filenames in os.walk(from_tree): to_dirpath = pjoin(to_tree, relpath(from_dirpath, from_tree)) # Copy any missing directories in to_path for dirname in tuple(dirnames): to_path = pjoin(to_dirpath, dirname) if not exists(to_path): from_path = pjoin(from_dirpath, dirname) shutil.copytree(from_path, to_path) # If copying, don't further analyze this directory dirnames.remove(dirname) for fname in filenames: root, ext = splitext(fname) from_path = pjoin(from_dirpath, fname) to_path = pjoin(to_dirpath, fname) if not exists(to_path): _copyfile(from_path, to_path) elif cmp_contents(from_path, to_path): pass elif ext in lib_exts: # existing lib that needs fuse lipo_fuse(from_path, to_path, to_path) else: # existing not-lib file not identical to source _copyfile(from_path, to_path)
Fuse path `from_tree` into path `to_tree` For each file in `from_tree` - check for library file extension (in `lib_exts` - if present, check if there is a file with matching relative path in `to_tree`, if so, use :func:`delocate.tools.lipo_fuse` to fuse the two libraries together and write into `to_tree`. If any of these conditions are not met, just copy the file from `from_tree` to `to_tree`. Parameters --------- to_tree : str path of tree to fuse into (update into) from_tree : str path of tree to fuse from (update from) lib_exts : sequence, optional filename extensions for libraries
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/fuse.py#L36-L77
matthew-brett/delocate
delocate/fuse.py
fuse_wheels
def fuse_wheels(to_wheel, from_wheel, out_wheel): """ Fuse `from_wheel` into `to_wheel`, write to `out_wheel` Parameters --------- to_wheel : str filename of wheel to fuse into from_wheel : str filename of wheel to fuse from out_wheel : str filename of new wheel from fusion of `to_wheel` and `from_wheel` """ to_wheel, from_wheel, out_wheel = [ abspath(w) for w in (to_wheel, from_wheel, out_wheel)] with InTemporaryDirectory(): zip2dir(to_wheel, 'to_wheel') zip2dir(from_wheel, 'from_wheel') fuse_trees('to_wheel', 'from_wheel') rewrite_record('to_wheel') dir2zip('to_wheel', out_wheel)
python
def fuse_wheels(to_wheel, from_wheel, out_wheel): """ Fuse `from_wheel` into `to_wheel`, write to `out_wheel` Parameters --------- to_wheel : str filename of wheel to fuse into from_wheel : str filename of wheel to fuse from out_wheel : str filename of new wheel from fusion of `to_wheel` and `from_wheel` """ to_wheel, from_wheel, out_wheel = [ abspath(w) for w in (to_wheel, from_wheel, out_wheel)] with InTemporaryDirectory(): zip2dir(to_wheel, 'to_wheel') zip2dir(from_wheel, 'from_wheel') fuse_trees('to_wheel', 'from_wheel') rewrite_record('to_wheel') dir2zip('to_wheel', out_wheel)
Fuse `from_wheel` into `to_wheel`, write to `out_wheel` Parameters --------- to_wheel : str filename of wheel to fuse into from_wheel : str filename of wheel to fuse from out_wheel : str filename of new wheel from fusion of `to_wheel` and `from_wheel`
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/fuse.py#L80-L99
matthew-brett/delocate
delocate/delocating.py
delocate_tree_libs
def delocate_tree_libs(lib_dict, lib_path, root_path): """ Move needed libraries in `lib_dict` into `lib_path` `lib_dict` has keys naming libraries required by the files in the corresponding value. Call the keys, "required libs". Call the values "requiring objects". Copy all the required libs to `lib_path`. Fix up the rpaths and install names in the requiring objects to point to these new copies. Exception: required libs within the directory tree pointed to by `root_path` stay where they are, but we modify requiring objects to use relative paths to these libraries. Parameters ---------- lib_dict : dict Dictionary with (key, value) pairs of (``depended_lib_path``, ``dependings_dict``) (see :func:`libsana.tree_libs`) lib_path : str Path in which to store copies of libs referred to in keys of `lib_dict`. Assumed to exist root_path : str, optional Root directory of tree analyzed in `lib_dict`. Any required library within the subtrees of `root_path` does not get copied, but libraries linking to it have links adjusted to use relative path to this library. Returns ------- copied_libs : dict Filtered `lib_dict` dict containing only the (key, value) pairs from `lib_dict` where the keys are the libraries copied to `lib_path``. """ copied_libs = {} delocated_libs = set() copied_basenames = set() rp_root_path = realpath(root_path) rp_lib_path = realpath(lib_path) # Test for errors first to avoid getting half-way through changing the tree for required, requirings in lib_dict.items(): if required.startswith('@'): # assume @rpath etc are correct # But warn, because likely they are not warnings.warn('Not processing required path {0} because it ' 'begins with @'.format(required)) continue r_ed_base = basename(required) if relpath(required, rp_root_path).startswith('..'): # Not local, plan to copy if r_ed_base in copied_basenames: raise DelocationError('Already planning to copy library with ' 'same basename as: ' + r_ed_base) if not exists(required): raise DelocationError('library "{0}" does not exist'.format( required)) copied_libs[required] = requirings copied_basenames.add(r_ed_base) else: # Is local, plan to set relative loader_path delocated_libs.add(required) # Modify in place now that we've checked for errors for required in copied_libs: shutil.copy(required, lib_path) # Set rpath and install names for this copied library for requiring, orig_install_name in lib_dict[required].items(): req_rel = relpath(rp_lib_path, dirname(requiring)) set_install_name(requiring, orig_install_name, '@loader_path/{0}/{1}'.format( req_rel, basename(required))) for required in delocated_libs: # Set relative path for local library for requiring, orig_install_name in lib_dict[required].items(): req_rel = relpath(required, dirname(requiring)) set_install_name(requiring, orig_install_name, '@loader_path/' + req_rel) return copied_libs
python
def delocate_tree_libs(lib_dict, lib_path, root_path): """ Move needed libraries in `lib_dict` into `lib_path` `lib_dict` has keys naming libraries required by the files in the corresponding value. Call the keys, "required libs". Call the values "requiring objects". Copy all the required libs to `lib_path`. Fix up the rpaths and install names in the requiring objects to point to these new copies. Exception: required libs within the directory tree pointed to by `root_path` stay where they are, but we modify requiring objects to use relative paths to these libraries. Parameters ---------- lib_dict : dict Dictionary with (key, value) pairs of (``depended_lib_path``, ``dependings_dict``) (see :func:`libsana.tree_libs`) lib_path : str Path in which to store copies of libs referred to in keys of `lib_dict`. Assumed to exist root_path : str, optional Root directory of tree analyzed in `lib_dict`. Any required library within the subtrees of `root_path` does not get copied, but libraries linking to it have links adjusted to use relative path to this library. Returns ------- copied_libs : dict Filtered `lib_dict` dict containing only the (key, value) pairs from `lib_dict` where the keys are the libraries copied to `lib_path``. """ copied_libs = {} delocated_libs = set() copied_basenames = set() rp_root_path = realpath(root_path) rp_lib_path = realpath(lib_path) # Test for errors first to avoid getting half-way through changing the tree for required, requirings in lib_dict.items(): if required.startswith('@'): # assume @rpath etc are correct # But warn, because likely they are not warnings.warn('Not processing required path {0} because it ' 'begins with @'.format(required)) continue r_ed_base = basename(required) if relpath(required, rp_root_path).startswith('..'): # Not local, plan to copy if r_ed_base in copied_basenames: raise DelocationError('Already planning to copy library with ' 'same basename as: ' + r_ed_base) if not exists(required): raise DelocationError('library "{0}" does not exist'.format( required)) copied_libs[required] = requirings copied_basenames.add(r_ed_base) else: # Is local, plan to set relative loader_path delocated_libs.add(required) # Modify in place now that we've checked for errors for required in copied_libs: shutil.copy(required, lib_path) # Set rpath and install names for this copied library for requiring, orig_install_name in lib_dict[required].items(): req_rel = relpath(rp_lib_path, dirname(requiring)) set_install_name(requiring, orig_install_name, '@loader_path/{0}/{1}'.format( req_rel, basename(required))) for required in delocated_libs: # Set relative path for local library for requiring, orig_install_name in lib_dict[required].items(): req_rel = relpath(required, dirname(requiring)) set_install_name(requiring, orig_install_name, '@loader_path/' + req_rel) return copied_libs
Move needed libraries in `lib_dict` into `lib_path` `lib_dict` has keys naming libraries required by the files in the corresponding value. Call the keys, "required libs". Call the values "requiring objects". Copy all the required libs to `lib_path`. Fix up the rpaths and install names in the requiring objects to point to these new copies. Exception: required libs within the directory tree pointed to by `root_path` stay where they are, but we modify requiring objects to use relative paths to these libraries. Parameters ---------- lib_dict : dict Dictionary with (key, value) pairs of (``depended_lib_path``, ``dependings_dict``) (see :func:`libsana.tree_libs`) lib_path : str Path in which to store copies of libs referred to in keys of `lib_dict`. Assumed to exist root_path : str, optional Root directory of tree analyzed in `lib_dict`. Any required library within the subtrees of `root_path` does not get copied, but libraries linking to it have links adjusted to use relative path to this library. Returns ------- copied_libs : dict Filtered `lib_dict` dict containing only the (key, value) pairs from `lib_dict` where the keys are the libraries copied to `lib_path``.
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/delocating.py#L27-L101
matthew-brett/delocate
delocate/delocating.py
copy_recurse
def copy_recurse(lib_path, copy_filt_func = None, copied_libs = None): """ Analyze `lib_path` for library dependencies and copy libraries `lib_path` is a directory containing libraries. The libraries might themselves have dependencies. This function analyzes the dependencies and copies library dependencies that match the filter `copy_filt_func`. It also adjusts the depending libraries to use the copy. It keeps iterating over `lib_path` until all matching dependencies (of dependencies of dependencies ...) have been copied. Parameters ---------- lib_path : str Directory containing libraries copy_filt_func : None or callable, optional If None, copy any library that found libraries depend on. If callable, called on each depended library name; copy where ``copy_filt_func(libname)`` is True, don't copy otherwise copied_libs : dict Dict with (key, value) pairs of (``copied_lib_path``, ``dependings_dict``) where ``copied_lib_path`` is the canonical path of a library that has been copied to `lib_path`, and ``dependings_dict`` is a dictionary with (key, value) pairs of (``depending_lib_path``, ``install_name``). ``depending_lib_path`` is the canonical path of the library depending on ``copied_lib_path``, ``install_name`` is the name that ``depending_lib_path`` uses to refer to ``copied_lib_path`` (in its install names). Returns ------- copied_libs : dict Input `copied_libs` dict with any extra libraries and / or dependencies added. """ if copied_libs is None: copied_libs = {} else: copied_libs = dict(copied_libs) done = False while not done: in_len = len(copied_libs) _copy_required(lib_path, copy_filt_func, copied_libs) done = len(copied_libs) == in_len return copied_libs
python
def copy_recurse(lib_path, copy_filt_func = None, copied_libs = None): """ Analyze `lib_path` for library dependencies and copy libraries `lib_path` is a directory containing libraries. The libraries might themselves have dependencies. This function analyzes the dependencies and copies library dependencies that match the filter `copy_filt_func`. It also adjusts the depending libraries to use the copy. It keeps iterating over `lib_path` until all matching dependencies (of dependencies of dependencies ...) have been copied. Parameters ---------- lib_path : str Directory containing libraries copy_filt_func : None or callable, optional If None, copy any library that found libraries depend on. If callable, called on each depended library name; copy where ``copy_filt_func(libname)`` is True, don't copy otherwise copied_libs : dict Dict with (key, value) pairs of (``copied_lib_path``, ``dependings_dict``) where ``copied_lib_path`` is the canonical path of a library that has been copied to `lib_path`, and ``dependings_dict`` is a dictionary with (key, value) pairs of (``depending_lib_path``, ``install_name``). ``depending_lib_path`` is the canonical path of the library depending on ``copied_lib_path``, ``install_name`` is the name that ``depending_lib_path`` uses to refer to ``copied_lib_path`` (in its install names). Returns ------- copied_libs : dict Input `copied_libs` dict with any extra libraries and / or dependencies added. """ if copied_libs is None: copied_libs = {} else: copied_libs = dict(copied_libs) done = False while not done: in_len = len(copied_libs) _copy_required(lib_path, copy_filt_func, copied_libs) done = len(copied_libs) == in_len return copied_libs
Analyze `lib_path` for library dependencies and copy libraries `lib_path` is a directory containing libraries. The libraries might themselves have dependencies. This function analyzes the dependencies and copies library dependencies that match the filter `copy_filt_func`. It also adjusts the depending libraries to use the copy. It keeps iterating over `lib_path` until all matching dependencies (of dependencies of dependencies ...) have been copied. Parameters ---------- lib_path : str Directory containing libraries copy_filt_func : None or callable, optional If None, copy any library that found libraries depend on. If callable, called on each depended library name; copy where ``copy_filt_func(libname)`` is True, don't copy otherwise copied_libs : dict Dict with (key, value) pairs of (``copied_lib_path``, ``dependings_dict``) where ``copied_lib_path`` is the canonical path of a library that has been copied to `lib_path`, and ``dependings_dict`` is a dictionary with (key, value) pairs of (``depending_lib_path``, ``install_name``). ``depending_lib_path`` is the canonical path of the library depending on ``copied_lib_path``, ``install_name`` is the name that ``depending_lib_path`` uses to refer to ``copied_lib_path`` (in its install names). Returns ------- copied_libs : dict Input `copied_libs` dict with any extra libraries and / or dependencies added.
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/delocating.py#L104-L147
matthew-brett/delocate
delocate/delocating.py
_copy_required
def _copy_required(lib_path, copy_filt_func, copied_libs): """ Copy libraries required for files in `lib_path` to `lib_path` Augment `copied_libs` dictionary with any newly copied libraries, modifying `copied_libs` in-place - see Notes. This is one pass of ``copy_recurse`` Parameters ---------- lib_path : str Directory containing libraries copy_filt_func : None or callable, optional If None, copy any library that found libraries depend on. If callable, called on each library name; copy where ``copy_filt_func(libname)`` is True, don't copy otherwise copied_libs : dict See :func:`copy_recurse` for definition. Notes ----- If we need to copy another library, add that (``depended_lib_path``, ``dependings_dict``) to `copied_libs`. ``dependings_dict`` has (key, value) pairs of (``depending_lib_path``, ``install_name``). ``depending_lib_path`` will be the original (canonical) library name, not the copy in ``lib_path``. Sometimes we copy a library, that further depends on a library we have already copied. In this case update ``copied_libs[depended_lib]`` with the extra dependency (as well as fixing up the install names for the depending library). For example, imagine we've start with a lib path like this:: my_lib_path/ libA.dylib libB.dylib Our input `copied_libs` has keys ``/sys/libA.dylib``, ``/sys/libB.lib`` telling us we previously copied those guys from the ``/sys`` folder. On a first pass, we discover that ``libA.dylib`` depends on ``/sys/libC.dylib``, so we copy that. On a second pass, we discover now that ``libC.dylib`` also depends on ``/sys/libB.dylib``. `copied_libs` tells us that we already have a copy of ``/sys/libB.dylib``, so we fix our copy of `libC.dylib`` to point to ``my_lib_path/libB.dylib`` and add ``/sys/libC.dylib`` as a ``dependings_dict`` entry for ``copied_libs['/sys/libB.dylib']`` """ # Paths will be prepended with `lib_path` lib_dict = tree_libs(lib_path) # Map library paths after copy ('copied') to path before copy ('orig') rp_lp = realpath(lib_path) copied2orig = dict((pjoin(rp_lp, basename(c)), c) for c in copied_libs) for required, requirings in lib_dict.items(): if not copy_filt_func is None and not copy_filt_func(required): continue if required.startswith('@'): # May have been processed by us, or have some rpath, loader_path of # its own. Either way, leave alone continue # Requiring names may well be the copies in lib_path. Replace the copy # names with the original names for entry into `copied_libs` procd_requirings = {} # Set requiring lib install names to point to local copy for requiring, orig_install_name in requirings.items(): set_install_name(requiring, orig_install_name, '@loader_path/' + basename(required)) # Make processed version of ``dependings_dict`` mapped_requiring = copied2orig.get(requiring, requiring) procd_requirings[mapped_requiring] = orig_install_name if required in copied_libs: # Have copied this already, add any new requirings copied_libs[required].update(procd_requirings) continue # Haven't see this one before, add entry to copied_libs out_path = pjoin(lib_path, basename(required)) if exists(out_path): raise DelocationError(out_path + ' already exists') shutil.copy(required, lib_path) copied2orig[out_path] = required copied_libs[required] = procd_requirings
python
def _copy_required(lib_path, copy_filt_func, copied_libs): """ Copy libraries required for files in `lib_path` to `lib_path` Augment `copied_libs` dictionary with any newly copied libraries, modifying `copied_libs` in-place - see Notes. This is one pass of ``copy_recurse`` Parameters ---------- lib_path : str Directory containing libraries copy_filt_func : None or callable, optional If None, copy any library that found libraries depend on. If callable, called on each library name; copy where ``copy_filt_func(libname)`` is True, don't copy otherwise copied_libs : dict See :func:`copy_recurse` for definition. Notes ----- If we need to copy another library, add that (``depended_lib_path``, ``dependings_dict``) to `copied_libs`. ``dependings_dict`` has (key, value) pairs of (``depending_lib_path``, ``install_name``). ``depending_lib_path`` will be the original (canonical) library name, not the copy in ``lib_path``. Sometimes we copy a library, that further depends on a library we have already copied. In this case update ``copied_libs[depended_lib]`` with the extra dependency (as well as fixing up the install names for the depending library). For example, imagine we've start with a lib path like this:: my_lib_path/ libA.dylib libB.dylib Our input `copied_libs` has keys ``/sys/libA.dylib``, ``/sys/libB.lib`` telling us we previously copied those guys from the ``/sys`` folder. On a first pass, we discover that ``libA.dylib`` depends on ``/sys/libC.dylib``, so we copy that. On a second pass, we discover now that ``libC.dylib`` also depends on ``/sys/libB.dylib``. `copied_libs` tells us that we already have a copy of ``/sys/libB.dylib``, so we fix our copy of `libC.dylib`` to point to ``my_lib_path/libB.dylib`` and add ``/sys/libC.dylib`` as a ``dependings_dict`` entry for ``copied_libs['/sys/libB.dylib']`` """ # Paths will be prepended with `lib_path` lib_dict = tree_libs(lib_path) # Map library paths after copy ('copied') to path before copy ('orig') rp_lp = realpath(lib_path) copied2orig = dict((pjoin(rp_lp, basename(c)), c) for c in copied_libs) for required, requirings in lib_dict.items(): if not copy_filt_func is None and not copy_filt_func(required): continue if required.startswith('@'): # May have been processed by us, or have some rpath, loader_path of # its own. Either way, leave alone continue # Requiring names may well be the copies in lib_path. Replace the copy # names with the original names for entry into `copied_libs` procd_requirings = {} # Set requiring lib install names to point to local copy for requiring, orig_install_name in requirings.items(): set_install_name(requiring, orig_install_name, '@loader_path/' + basename(required)) # Make processed version of ``dependings_dict`` mapped_requiring = copied2orig.get(requiring, requiring) procd_requirings[mapped_requiring] = orig_install_name if required in copied_libs: # Have copied this already, add any new requirings copied_libs[required].update(procd_requirings) continue # Haven't see this one before, add entry to copied_libs out_path = pjoin(lib_path, basename(required)) if exists(out_path): raise DelocationError(out_path + ' already exists') shutil.copy(required, lib_path) copied2orig[out_path] = required copied_libs[required] = procd_requirings
Copy libraries required for files in `lib_path` to `lib_path` Augment `copied_libs` dictionary with any newly copied libraries, modifying `copied_libs` in-place - see Notes. This is one pass of ``copy_recurse`` Parameters ---------- lib_path : str Directory containing libraries copy_filt_func : None or callable, optional If None, copy any library that found libraries depend on. If callable, called on each library name; copy where ``copy_filt_func(libname)`` is True, don't copy otherwise copied_libs : dict See :func:`copy_recurse` for definition. Notes ----- If we need to copy another library, add that (``depended_lib_path``, ``dependings_dict``) to `copied_libs`. ``dependings_dict`` has (key, value) pairs of (``depending_lib_path``, ``install_name``). ``depending_lib_path`` will be the original (canonical) library name, not the copy in ``lib_path``. Sometimes we copy a library, that further depends on a library we have already copied. In this case update ``copied_libs[depended_lib]`` with the extra dependency (as well as fixing up the install names for the depending library). For example, imagine we've start with a lib path like this:: my_lib_path/ libA.dylib libB.dylib Our input `copied_libs` has keys ``/sys/libA.dylib``, ``/sys/libB.lib`` telling us we previously copied those guys from the ``/sys`` folder. On a first pass, we discover that ``libA.dylib`` depends on ``/sys/libC.dylib``, so we copy that. On a second pass, we discover now that ``libC.dylib`` also depends on ``/sys/libB.dylib``. `copied_libs` tells us that we already have a copy of ``/sys/libB.dylib``, so we fix our copy of `libC.dylib`` to point to ``my_lib_path/libB.dylib`` and add ``/sys/libC.dylib`` as a ``dependings_dict`` entry for ``copied_libs['/sys/libB.dylib']``
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/delocating.py#L150-L233
matthew-brett/delocate
delocate/delocating.py
delocate_path
def delocate_path(tree_path, lib_path, lib_filt_func = None, copy_filt_func = filter_system_libs): """ Copy required libraries for files in `tree_path` into `lib_path` Parameters ---------- tree_path : str Root path of tree to search for required libraries lib_path : str Directory into which we copy required libraries lib_filt_func : None or str or callable, optional If None, inspect all files for dependencies on dynamic libraries. If callable, accepts filename as argument, returns True if we should inspect the file, False otherwise. If str == "dylibs-only" then inspect only files with known dynamic library extensions (``.dylib``, ``.so``). copy_filt_func : None or callable, optional If callable, called on each library name detected as a dependency; copy where ``copy_filt_func(libname)`` is True, don't copy otherwise. Default is callable rejecting only libraries beginning with ``/usr/lib`` or ``/System``. None means copy all libraries. This will usually end up copying large parts of the system run-time. Returns ------- copied_libs : dict dict containing the (key, value) pairs of (``copied_lib_path``, ``dependings_dict``), where ``copied_lib_path`` is a library real path that was copied into `lib_sdir` of the wheel packages, and ``dependings_dict`` is a dictionary with key, value pairs where the key is a file in the path depending on ``copied_lib_path``, and the value is the ``install_name`` of ``copied_lib_path`` in the depending library. """ if lib_filt_func == "dylibs-only": lib_filt_func = _dylibs_only if not exists(lib_path): os.makedirs(lib_path) lib_dict = tree_libs(tree_path, lib_filt_func) if not copy_filt_func is None: lib_dict = dict((key, value) for key, value in lib_dict.items() if copy_filt_func(key)) copied = delocate_tree_libs(lib_dict, lib_path, tree_path) return copy_recurse(lib_path, copy_filt_func, copied)
python
def delocate_path(tree_path, lib_path, lib_filt_func = None, copy_filt_func = filter_system_libs): """ Copy required libraries for files in `tree_path` into `lib_path` Parameters ---------- tree_path : str Root path of tree to search for required libraries lib_path : str Directory into which we copy required libraries lib_filt_func : None or str or callable, optional If None, inspect all files for dependencies on dynamic libraries. If callable, accepts filename as argument, returns True if we should inspect the file, False otherwise. If str == "dylibs-only" then inspect only files with known dynamic library extensions (``.dylib``, ``.so``). copy_filt_func : None or callable, optional If callable, called on each library name detected as a dependency; copy where ``copy_filt_func(libname)`` is True, don't copy otherwise. Default is callable rejecting only libraries beginning with ``/usr/lib`` or ``/System``. None means copy all libraries. This will usually end up copying large parts of the system run-time. Returns ------- copied_libs : dict dict containing the (key, value) pairs of (``copied_lib_path``, ``dependings_dict``), where ``copied_lib_path`` is a library real path that was copied into `lib_sdir` of the wheel packages, and ``dependings_dict`` is a dictionary with key, value pairs where the key is a file in the path depending on ``copied_lib_path``, and the value is the ``install_name`` of ``copied_lib_path`` in the depending library. """ if lib_filt_func == "dylibs-only": lib_filt_func = _dylibs_only if not exists(lib_path): os.makedirs(lib_path) lib_dict = tree_libs(tree_path, lib_filt_func) if not copy_filt_func is None: lib_dict = dict((key, value) for key, value in lib_dict.items() if copy_filt_func(key)) copied = delocate_tree_libs(lib_dict, lib_path, tree_path) return copy_recurse(lib_path, copy_filt_func, copied)
Copy required libraries for files in `tree_path` into `lib_path` Parameters ---------- tree_path : str Root path of tree to search for required libraries lib_path : str Directory into which we copy required libraries lib_filt_func : None or str or callable, optional If None, inspect all files for dependencies on dynamic libraries. If callable, accepts filename as argument, returns True if we should inspect the file, False otherwise. If str == "dylibs-only" then inspect only files with known dynamic library extensions (``.dylib``, ``.so``). copy_filt_func : None or callable, optional If callable, called on each library name detected as a dependency; copy where ``copy_filt_func(libname)`` is True, don't copy otherwise. Default is callable rejecting only libraries beginning with ``/usr/lib`` or ``/System``. None means copy all libraries. This will usually end up copying large parts of the system run-time. Returns ------- copied_libs : dict dict containing the (key, value) pairs of (``copied_lib_path``, ``dependings_dict``), where ``copied_lib_path`` is a library real path that was copied into `lib_sdir` of the wheel packages, and ``dependings_dict`` is a dictionary with key, value pairs where the key is a file in the path depending on ``copied_lib_path``, and the value is the ``install_name`` of ``copied_lib_path`` in the depending library.
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/delocating.py#L246-L289
matthew-brett/delocate
delocate/delocating.py
_merge_lib_dict
def _merge_lib_dict(d1, d2): """ Merges lib_dict `d2` into lib_dict `d1` """ for required, requirings in d2.items(): if required in d1: d1[required].update(requirings) else: d1[required] = requirings return None
python
def _merge_lib_dict(d1, d2): """ Merges lib_dict `d2` into lib_dict `d1` """ for required, requirings in d2.items(): if required in d1: d1[required].update(requirings) else: d1[required] = requirings return None
Merges lib_dict `d2` into lib_dict `d1`
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/delocating.py#L292-L300
matthew-brett/delocate
delocate/delocating.py
delocate_wheel
def delocate_wheel(in_wheel, out_wheel = None, lib_sdir = '.dylibs', lib_filt_func = None, copy_filt_func = filter_system_libs, require_archs = None, check_verbose = False, ): """ Update wheel by copying required libraries to `lib_sdir` in wheel Create `lib_sdir` in wheel tree only if we are copying one or more libraries. If `out_wheel` is None (the default), overwrite the wheel `in_wheel` in-place. Parameters ---------- in_wheel : str Filename of wheel to process out_wheel : None or str Filename of processed wheel to write. If None, overwrite `in_wheel` lib_sdir : str, optional Subdirectory name in wheel package directory (or directories) to store needed libraries. lib_filt_func : None or str or callable, optional If None, inspect all files for dependencies on dynamic libraries. If callable, accepts filename as argument, returns True if we should inspect the file, False otherwise. If str == "dylibs-only" then inspect only files with known dynamic library extensions (``.dylib``, ``.so``). copy_filt_func : None or callable, optional If callable, called on each library name detected as a dependency; copy where ``copy_filt_func(libname)`` is True, don't copy otherwise. Default is callable rejecting only libraries beginning with ``/usr/lib`` or ``/System``. None means copy all libraries. This will usually end up copying large parts of the system run-time. require_archs : None or str or sequence, optional If None, do no checks of architectures in libraries. If sequence, sequence of architectures (output from ``lipo -info``) that every library in the wheels should have (e.g. ``['x86_64, 'i386']``). An empty sequence results in checks that depended libraries have the same archs as depending libraries. If string, either "intel" (corresponds to sequence ``['x86_64, 'i386']``) or name of required architecture (e.g "i386" or "x86_64"). check_verbose : bool, optional If True, print warning messages about missing required architectures Returns ------- copied_libs : dict dict containing the (key, value) pairs of (``copied_lib_path``, ``dependings_dict``), where ``copied_lib_path`` is a library real path that was copied into `lib_sdir` of the wheel packages, and ``dependings_dict`` is a dictionary with key, value pairs where the key is a path in the wheel depending on ``copied_lib_path``, and the value is the ``install_name`` of ``copied_lib_path`` in the depending library. The filenames in the keys are relative to the wheel root path. """ if lib_filt_func == "dylibs-only": lib_filt_func = _dylibs_only in_wheel = abspath(in_wheel) if out_wheel is None: out_wheel = in_wheel else: out_wheel = abspath(out_wheel) in_place = in_wheel == out_wheel with TemporaryDirectory() as tmpdir: all_copied = {} wheel_dir = realpath(pjoin(tmpdir, 'wheel')) zip2dir(in_wheel, wheel_dir) for package_path in find_package_dirs(wheel_dir): lib_path = pjoin(package_path, lib_sdir) lib_path_exists = exists(lib_path) copied_libs = delocate_path(package_path, lib_path, lib_filt_func, copy_filt_func) if copied_libs and lib_path_exists: raise DelocationError( '{0} already exists in wheel but need to copy ' '{1}'.format(lib_path, '; '.join(copied_libs))) if len(os.listdir(lib_path)) == 0: shutil.rmtree(lib_path) # Check architectures if not require_archs is None: stop_fast = not check_verbose bads = check_archs(copied_libs, require_archs, stop_fast) if len(bads) != 0: if check_verbose: print(bads_report(bads, pjoin(tmpdir, 'wheel'))) raise DelocationError( "Some missing architectures in wheel") # Change install ids to be unique within Python space install_id_root = (DLC_PREFIX + relpath(package_path, wheel_dir) + '/') for lib in copied_libs: lib_base = basename(lib) copied_path = pjoin(lib_path, lib_base) set_install_id(copied_path, install_id_root + lib_base) validate_signature(copied_path) _merge_lib_dict(all_copied, copied_libs) if len(all_copied): rewrite_record(wheel_dir) if len(all_copied) or not in_place: dir2zip(wheel_dir, out_wheel) return stripped_lib_dict(all_copied, wheel_dir + os.path.sep)
python
def delocate_wheel(in_wheel, out_wheel = None, lib_sdir = '.dylibs', lib_filt_func = None, copy_filt_func = filter_system_libs, require_archs = None, check_verbose = False, ): """ Update wheel by copying required libraries to `lib_sdir` in wheel Create `lib_sdir` in wheel tree only if we are copying one or more libraries. If `out_wheel` is None (the default), overwrite the wheel `in_wheel` in-place. Parameters ---------- in_wheel : str Filename of wheel to process out_wheel : None or str Filename of processed wheel to write. If None, overwrite `in_wheel` lib_sdir : str, optional Subdirectory name in wheel package directory (or directories) to store needed libraries. lib_filt_func : None or str or callable, optional If None, inspect all files for dependencies on dynamic libraries. If callable, accepts filename as argument, returns True if we should inspect the file, False otherwise. If str == "dylibs-only" then inspect only files with known dynamic library extensions (``.dylib``, ``.so``). copy_filt_func : None or callable, optional If callable, called on each library name detected as a dependency; copy where ``copy_filt_func(libname)`` is True, don't copy otherwise. Default is callable rejecting only libraries beginning with ``/usr/lib`` or ``/System``. None means copy all libraries. This will usually end up copying large parts of the system run-time. require_archs : None or str or sequence, optional If None, do no checks of architectures in libraries. If sequence, sequence of architectures (output from ``lipo -info``) that every library in the wheels should have (e.g. ``['x86_64, 'i386']``). An empty sequence results in checks that depended libraries have the same archs as depending libraries. If string, either "intel" (corresponds to sequence ``['x86_64, 'i386']``) or name of required architecture (e.g "i386" or "x86_64"). check_verbose : bool, optional If True, print warning messages about missing required architectures Returns ------- copied_libs : dict dict containing the (key, value) pairs of (``copied_lib_path``, ``dependings_dict``), where ``copied_lib_path`` is a library real path that was copied into `lib_sdir` of the wheel packages, and ``dependings_dict`` is a dictionary with key, value pairs where the key is a path in the wheel depending on ``copied_lib_path``, and the value is the ``install_name`` of ``copied_lib_path`` in the depending library. The filenames in the keys are relative to the wheel root path. """ if lib_filt_func == "dylibs-only": lib_filt_func = _dylibs_only in_wheel = abspath(in_wheel) if out_wheel is None: out_wheel = in_wheel else: out_wheel = abspath(out_wheel) in_place = in_wheel == out_wheel with TemporaryDirectory() as tmpdir: all_copied = {} wheel_dir = realpath(pjoin(tmpdir, 'wheel')) zip2dir(in_wheel, wheel_dir) for package_path in find_package_dirs(wheel_dir): lib_path = pjoin(package_path, lib_sdir) lib_path_exists = exists(lib_path) copied_libs = delocate_path(package_path, lib_path, lib_filt_func, copy_filt_func) if copied_libs and lib_path_exists: raise DelocationError( '{0} already exists in wheel but need to copy ' '{1}'.format(lib_path, '; '.join(copied_libs))) if len(os.listdir(lib_path)) == 0: shutil.rmtree(lib_path) # Check architectures if not require_archs is None: stop_fast = not check_verbose bads = check_archs(copied_libs, require_archs, stop_fast) if len(bads) != 0: if check_verbose: print(bads_report(bads, pjoin(tmpdir, 'wheel'))) raise DelocationError( "Some missing architectures in wheel") # Change install ids to be unique within Python space install_id_root = (DLC_PREFIX + relpath(package_path, wheel_dir) + '/') for lib in copied_libs: lib_base = basename(lib) copied_path = pjoin(lib_path, lib_base) set_install_id(copied_path, install_id_root + lib_base) validate_signature(copied_path) _merge_lib_dict(all_copied, copied_libs) if len(all_copied): rewrite_record(wheel_dir) if len(all_copied) or not in_place: dir2zip(wheel_dir, out_wheel) return stripped_lib_dict(all_copied, wheel_dir + os.path.sep)
Update wheel by copying required libraries to `lib_sdir` in wheel Create `lib_sdir` in wheel tree only if we are copying one or more libraries. If `out_wheel` is None (the default), overwrite the wheel `in_wheel` in-place. Parameters ---------- in_wheel : str Filename of wheel to process out_wheel : None or str Filename of processed wheel to write. If None, overwrite `in_wheel` lib_sdir : str, optional Subdirectory name in wheel package directory (or directories) to store needed libraries. lib_filt_func : None or str or callable, optional If None, inspect all files for dependencies on dynamic libraries. If callable, accepts filename as argument, returns True if we should inspect the file, False otherwise. If str == "dylibs-only" then inspect only files with known dynamic library extensions (``.dylib``, ``.so``). copy_filt_func : None or callable, optional If callable, called on each library name detected as a dependency; copy where ``copy_filt_func(libname)`` is True, don't copy otherwise. Default is callable rejecting only libraries beginning with ``/usr/lib`` or ``/System``. None means copy all libraries. This will usually end up copying large parts of the system run-time. require_archs : None or str or sequence, optional If None, do no checks of architectures in libraries. If sequence, sequence of architectures (output from ``lipo -info``) that every library in the wheels should have (e.g. ``['x86_64, 'i386']``). An empty sequence results in checks that depended libraries have the same archs as depending libraries. If string, either "intel" (corresponds to sequence ``['x86_64, 'i386']``) or name of required architecture (e.g "i386" or "x86_64"). check_verbose : bool, optional If True, print warning messages about missing required architectures Returns ------- copied_libs : dict dict containing the (key, value) pairs of (``copied_lib_path``, ``dependings_dict``), where ``copied_lib_path`` is a library real path that was copied into `lib_sdir` of the wheel packages, and ``dependings_dict`` is a dictionary with key, value pairs where the key is a path in the wheel depending on ``copied_lib_path``, and the value is the ``install_name`` of ``copied_lib_path`` in the depending library. The filenames in the keys are relative to the wheel root path.
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/delocating.py#L303-L407
matthew-brett/delocate
delocate/delocating.py
patch_wheel
def patch_wheel(in_wheel, patch_fname, out_wheel=None): """ Apply ``-p1`` style patch in `patch_fname` to contents of `in_wheel` If `out_wheel` is None (the default), overwrite the wheel `in_wheel` in-place. Parameters ---------- in_wheel : str Filename of wheel to process patch_fname : str Filename of patch file. Will be applied with ``patch -p1 < patch_fname`` out_wheel : None or str Filename of patched wheel to write. If None, overwrite `in_wheel` """ in_wheel = abspath(in_wheel) patch_fname = abspath(patch_fname) if out_wheel is None: out_wheel = in_wheel else: out_wheel = abspath(out_wheel) if not exists(patch_fname): raise ValueError("patch file {0} does not exist".format(patch_fname)) with InWheel(in_wheel, out_wheel): with open(patch_fname, 'rb') as fobj: patch_proc = Popen(['patch', '-p1'], stdin = fobj, stdout = PIPE, stderr = PIPE) stdout, stderr = patch_proc.communicate() if patch_proc.returncode != 0: raise RuntimeError("Patch failed with stdout:\n" + stdout.decode('latin1'))
python
def patch_wheel(in_wheel, patch_fname, out_wheel=None): """ Apply ``-p1`` style patch in `patch_fname` to contents of `in_wheel` If `out_wheel` is None (the default), overwrite the wheel `in_wheel` in-place. Parameters ---------- in_wheel : str Filename of wheel to process patch_fname : str Filename of patch file. Will be applied with ``patch -p1 < patch_fname`` out_wheel : None or str Filename of patched wheel to write. If None, overwrite `in_wheel` """ in_wheel = abspath(in_wheel) patch_fname = abspath(patch_fname) if out_wheel is None: out_wheel = in_wheel else: out_wheel = abspath(out_wheel) if not exists(patch_fname): raise ValueError("patch file {0} does not exist".format(patch_fname)) with InWheel(in_wheel, out_wheel): with open(patch_fname, 'rb') as fobj: patch_proc = Popen(['patch', '-p1'], stdin = fobj, stdout = PIPE, stderr = PIPE) stdout, stderr = patch_proc.communicate() if patch_proc.returncode != 0: raise RuntimeError("Patch failed with stdout:\n" + stdout.decode('latin1'))
Apply ``-p1`` style patch in `patch_fname` to contents of `in_wheel` If `out_wheel` is None (the default), overwrite the wheel `in_wheel` in-place. Parameters ---------- in_wheel : str Filename of wheel to process patch_fname : str Filename of patch file. Will be applied with ``patch -p1 < patch_fname`` out_wheel : None or str Filename of patched wheel to write. If None, overwrite `in_wheel`
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/delocating.py#L410-L443
matthew-brett/delocate
delocate/delocating.py
check_archs
def check_archs(copied_libs, require_archs=(), stop_fast=False): """ Check compatibility of archs in `copied_libs` dict Parameters ---------- copied_libs : dict dict containing the (key, value) pairs of (``copied_lib_path``, ``dependings_dict``), where ``copied_lib_path`` is a library real path that has been copied during delocation, and ``dependings_dict`` is a dictionary with key, value pairs where the key is a path in the target being delocated (a wheel or path) depending on ``copied_lib_path``, and the value is the ``install_name`` of ``copied_lib_path`` in the depending library. require_archs : str or sequence, optional Architectures we require to be present in all library files in wheel. If an empty sequence, just check that depended libraries do have the architectures of the depending libraries, with no constraints on what these architectures are. If a sequence, then a set of required architectures e.g. ``['i386', 'x86_64']`` to specify dual Intel architectures. If a string, then a standard architecture name as returned by ``lipo -info`` or the string "intel", corresponding to the sequence ``['i386', 'x86_64']`` stop_fast : bool, optional Whether to give up collecting errors after the first Returns ------- bads : set set of length 2 or 3 tuples. A length 2 tuple is of form ``(depending_lib, missing_archs)`` meaning that an arch in `require_archs` was missing from ``depending_lib``. A length 3 tuple is of form ``(depended_lib, depending_lib, missing_archs)`` where ``depended_lib`` is the filename of the library depended on, ``depending_lib`` is the library depending on ``depending_lib`` and ``missing_archs`` is a set of missing architecture strings giving architectures present in ``depending_lib`` and missing in ``depended_lib``. An empty set means all architectures were present as required. """ if isinstance(require_archs, string_types): require_archs = (['i386', 'x86_64'] if require_archs == 'intel' else [require_archs]) require_archs = frozenset(require_archs) bads = [] for depended_lib, dep_dict in copied_libs.items(): depended_archs = get_archs(depended_lib) for depending_lib, install_name in dep_dict.items(): depending_archs = get_archs(depending_lib) all_required = depending_archs | require_archs all_missing = all_required.difference(depended_archs) if len(all_missing) == 0: continue required_missing = require_archs.difference(depended_archs) if len(required_missing): bads.append((depending_lib, required_missing)) else: bads.append((depended_lib, depending_lib, all_missing)) if stop_fast: return set(bads) return set(bads)
python
def check_archs(copied_libs, require_archs=(), stop_fast=False): """ Check compatibility of archs in `copied_libs` dict Parameters ---------- copied_libs : dict dict containing the (key, value) pairs of (``copied_lib_path``, ``dependings_dict``), where ``copied_lib_path`` is a library real path that has been copied during delocation, and ``dependings_dict`` is a dictionary with key, value pairs where the key is a path in the target being delocated (a wheel or path) depending on ``copied_lib_path``, and the value is the ``install_name`` of ``copied_lib_path`` in the depending library. require_archs : str or sequence, optional Architectures we require to be present in all library files in wheel. If an empty sequence, just check that depended libraries do have the architectures of the depending libraries, with no constraints on what these architectures are. If a sequence, then a set of required architectures e.g. ``['i386', 'x86_64']`` to specify dual Intel architectures. If a string, then a standard architecture name as returned by ``lipo -info`` or the string "intel", corresponding to the sequence ``['i386', 'x86_64']`` stop_fast : bool, optional Whether to give up collecting errors after the first Returns ------- bads : set set of length 2 or 3 tuples. A length 2 tuple is of form ``(depending_lib, missing_archs)`` meaning that an arch in `require_archs` was missing from ``depending_lib``. A length 3 tuple is of form ``(depended_lib, depending_lib, missing_archs)`` where ``depended_lib`` is the filename of the library depended on, ``depending_lib`` is the library depending on ``depending_lib`` and ``missing_archs`` is a set of missing architecture strings giving architectures present in ``depending_lib`` and missing in ``depended_lib``. An empty set means all architectures were present as required. """ if isinstance(require_archs, string_types): require_archs = (['i386', 'x86_64'] if require_archs == 'intel' else [require_archs]) require_archs = frozenset(require_archs) bads = [] for depended_lib, dep_dict in copied_libs.items(): depended_archs = get_archs(depended_lib) for depending_lib, install_name in dep_dict.items(): depending_archs = get_archs(depending_lib) all_required = depending_archs | require_archs all_missing = all_required.difference(depended_archs) if len(all_missing) == 0: continue required_missing = require_archs.difference(depended_archs) if len(required_missing): bads.append((depending_lib, required_missing)) else: bads.append((depended_lib, depending_lib, all_missing)) if stop_fast: return set(bads) return set(bads)
Check compatibility of archs in `copied_libs` dict Parameters ---------- copied_libs : dict dict containing the (key, value) pairs of (``copied_lib_path``, ``dependings_dict``), where ``copied_lib_path`` is a library real path that has been copied during delocation, and ``dependings_dict`` is a dictionary with key, value pairs where the key is a path in the target being delocated (a wheel or path) depending on ``copied_lib_path``, and the value is the ``install_name`` of ``copied_lib_path`` in the depending library. require_archs : str or sequence, optional Architectures we require to be present in all library files in wheel. If an empty sequence, just check that depended libraries do have the architectures of the depending libraries, with no constraints on what these architectures are. If a sequence, then a set of required architectures e.g. ``['i386', 'x86_64']`` to specify dual Intel architectures. If a string, then a standard architecture name as returned by ``lipo -info`` or the string "intel", corresponding to the sequence ``['i386', 'x86_64']`` stop_fast : bool, optional Whether to give up collecting errors after the first Returns ------- bads : set set of length 2 or 3 tuples. A length 2 tuple is of form ``(depending_lib, missing_archs)`` meaning that an arch in `require_archs` was missing from ``depending_lib``. A length 3 tuple is of form ``(depended_lib, depending_lib, missing_archs)`` where ``depended_lib`` is the filename of the library depended on, ``depending_lib`` is the library depending on ``depending_lib`` and ``missing_archs`` is a set of missing architecture strings giving architectures present in ``depending_lib`` and missing in ``depended_lib``. An empty set means all architectures were present as required.
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/delocating.py#L446-L505
matthew-brett/delocate
delocate/delocating.py
bads_report
def bads_report(bads, path_prefix=None): """ Return a nice report of bad architectures in `bads` Parameters ---------- bads : set set of length 2 or 3 tuples. A length 2 tuple is of form ``(depending_lib, missing_archs)`` meaning that an arch in `require_archs` was missing from ``depending_lib``. A length 3 tuple is of form ``(depended_lib, depending_lib, missing_archs)`` where ``depended_lib`` is the filename of the library depended on, ``depending_lib`` is the library depending on ``depending_lib`` and ``missing_archs`` is a set of missing architecture strings giving architectures present in ``depending_lib`` and missing in ``depended_lib``. An empty set means all architectures were present as required. path_prefix : None or str, optional Path prefix to strip from ``depended_lib`` and ``depending_lib``. None means do not strip anything. Returns ------- report : str A nice report for printing """ path_processor = ((lambda x : x) if path_prefix is None else get_rp_stripper(path_prefix)) reports = [] for result in bads: if len(result) == 3: depended_lib, depending_lib, missing_archs = result reports.append("{0} needs {1} {2} missing from {3}".format( path_processor(depending_lib), 'archs' if len(missing_archs) > 1 else 'arch', ', '.join(sorted(missing_archs)), path_processor(depended_lib))) elif len(result) == 2: depending_lib, missing_archs = result reports.append("Required {0} {1} missing from {2}".format( 'archs' if len(missing_archs) > 1 else 'arch', ', '.join(sorted(missing_archs)), path_processor(depending_lib))) else: raise ValueError('Report tuple should be length 2 or 3') return '\n'.join(sorted(reports))
python
def bads_report(bads, path_prefix=None): """ Return a nice report of bad architectures in `bads` Parameters ---------- bads : set set of length 2 or 3 tuples. A length 2 tuple is of form ``(depending_lib, missing_archs)`` meaning that an arch in `require_archs` was missing from ``depending_lib``. A length 3 tuple is of form ``(depended_lib, depending_lib, missing_archs)`` where ``depended_lib`` is the filename of the library depended on, ``depending_lib`` is the library depending on ``depending_lib`` and ``missing_archs`` is a set of missing architecture strings giving architectures present in ``depending_lib`` and missing in ``depended_lib``. An empty set means all architectures were present as required. path_prefix : None or str, optional Path prefix to strip from ``depended_lib`` and ``depending_lib``. None means do not strip anything. Returns ------- report : str A nice report for printing """ path_processor = ((lambda x : x) if path_prefix is None else get_rp_stripper(path_prefix)) reports = [] for result in bads: if len(result) == 3: depended_lib, depending_lib, missing_archs = result reports.append("{0} needs {1} {2} missing from {3}".format( path_processor(depending_lib), 'archs' if len(missing_archs) > 1 else 'arch', ', '.join(sorted(missing_archs)), path_processor(depended_lib))) elif len(result) == 2: depending_lib, missing_archs = result reports.append("Required {0} {1} missing from {2}".format( 'archs' if len(missing_archs) > 1 else 'arch', ', '.join(sorted(missing_archs)), path_processor(depending_lib))) else: raise ValueError('Report tuple should be length 2 or 3') return '\n'.join(sorted(reports))
Return a nice report of bad architectures in `bads` Parameters ---------- bads : set set of length 2 or 3 tuples. A length 2 tuple is of form ``(depending_lib, missing_archs)`` meaning that an arch in `require_archs` was missing from ``depending_lib``. A length 3 tuple is of form ``(depended_lib, depending_lib, missing_archs)`` where ``depended_lib`` is the filename of the library depended on, ``depending_lib`` is the library depending on ``depending_lib`` and ``missing_archs`` is a set of missing architecture strings giving architectures present in ``depending_lib`` and missing in ``depended_lib``. An empty set means all architectures were present as required. path_prefix : None or str, optional Path prefix to strip from ``depended_lib`` and ``depending_lib``. None means do not strip anything. Returns ------- report : str A nice report for printing
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/delocating.py#L508-L552
matthew-brett/delocate
delocate/libsana.py
tree_libs
def tree_libs(start_path, filt_func=None): """ Return analysis of library dependencies within `start_path` Parameters ---------- start_path : str root path of tree to search for libraries depending on other libraries. filt_func : None or callable, optional If None, inspect all files for library dependencies. If callable, accepts filename as argument, returns True if we should inspect the file, False otherwise. Returns ------- lib_dict : dict dictionary with (key, value) pairs of (``libpath``, ``dependings_dict``). ``libpath`` is canonical (``os.path.realpath``) filename of library, or library name starting with {'@rpath', '@loader_path', '@executable_path'}. ``dependings_dict`` is a dict with (key, value) pairs of (``depending_libpath``, ``install_name``), where ``dependings_libpath`` is the canonical (``os.path.realpath``) filename of the library depending on ``libpath``, and ``install_name`` is the "install_name" by which ``depending_libpath`` refers to ``libpath``. Notes ----- See: * https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/dyld.1.html * http://matthew-brett.github.io/pydagogue/mac_runtime_link.html """ lib_dict = {} for dirpath, dirnames, basenames in os.walk(start_path): for base in basenames: depending_libpath = realpath(pjoin(dirpath, base)) if not filt_func is None and not filt_func(depending_libpath): continue rpaths = get_rpaths(depending_libpath) for install_name in get_install_names(depending_libpath): lib_path = (install_name if install_name.startswith('@') else realpath(install_name)) lib_path = resolve_rpath(lib_path, rpaths) if lib_path in lib_dict: lib_dict[lib_path][depending_libpath] = install_name else: lib_dict[lib_path] = {depending_libpath: install_name} return lib_dict
python
def tree_libs(start_path, filt_func=None): """ Return analysis of library dependencies within `start_path` Parameters ---------- start_path : str root path of tree to search for libraries depending on other libraries. filt_func : None or callable, optional If None, inspect all files for library dependencies. If callable, accepts filename as argument, returns True if we should inspect the file, False otherwise. Returns ------- lib_dict : dict dictionary with (key, value) pairs of (``libpath``, ``dependings_dict``). ``libpath`` is canonical (``os.path.realpath``) filename of library, or library name starting with {'@rpath', '@loader_path', '@executable_path'}. ``dependings_dict`` is a dict with (key, value) pairs of (``depending_libpath``, ``install_name``), where ``dependings_libpath`` is the canonical (``os.path.realpath``) filename of the library depending on ``libpath``, and ``install_name`` is the "install_name" by which ``depending_libpath`` refers to ``libpath``. Notes ----- See: * https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/dyld.1.html * http://matthew-brett.github.io/pydagogue/mac_runtime_link.html """ lib_dict = {} for dirpath, dirnames, basenames in os.walk(start_path): for base in basenames: depending_libpath = realpath(pjoin(dirpath, base)) if not filt_func is None and not filt_func(depending_libpath): continue rpaths = get_rpaths(depending_libpath) for install_name in get_install_names(depending_libpath): lib_path = (install_name if install_name.startswith('@') else realpath(install_name)) lib_path = resolve_rpath(lib_path, rpaths) if lib_path in lib_dict: lib_dict[lib_path][depending_libpath] = install_name else: lib_dict[lib_path] = {depending_libpath: install_name} return lib_dict
Return analysis of library dependencies within `start_path` Parameters ---------- start_path : str root path of tree to search for libraries depending on other libraries. filt_func : None or callable, optional If None, inspect all files for library dependencies. If callable, accepts filename as argument, returns True if we should inspect the file, False otherwise. Returns ------- lib_dict : dict dictionary with (key, value) pairs of (``libpath``, ``dependings_dict``). ``libpath`` is canonical (``os.path.realpath``) filename of library, or library name starting with {'@rpath', '@loader_path', '@executable_path'}. ``dependings_dict`` is a dict with (key, value) pairs of (``depending_libpath``, ``install_name``), where ``dependings_libpath`` is the canonical (``os.path.realpath``) filename of the library depending on ``libpath``, and ``install_name`` is the "install_name" by which ``depending_libpath`` refers to ``libpath``. Notes ----- See: * https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/dyld.1.html * http://matthew-brett.github.io/pydagogue/mac_runtime_link.html
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/libsana.py#L14-L65
matthew-brett/delocate
delocate/libsana.py
resolve_rpath
def resolve_rpath(lib_path, rpaths): """ Return `lib_path` with its `@rpath` resolved If the `lib_path` doesn't have `@rpath` then it's returned as is. If `lib_path` has `@rpath` then returns the first `rpaths`/`lib_path` combination found. If the library can't be found in `rpaths` then a detailed warning is printed and `lib_path` is returned as is. Parameters ---------- lib_path : str The path to a library file, which may or may not start with `@rpath`. rpaths : sequence of str A sequence of search paths, usually gotten from a call to `get_rpaths`. Returns ------- lib_path : str A str with the resolved libraries realpath. """ if not lib_path.startswith('@rpath/'): return lib_path lib_rpath = lib_path.split('/', 1)[1] for rpath in rpaths: rpath_lib = realpath(pjoin(rpath, lib_rpath)) if os.path.exists(rpath_lib): return rpath_lib warnings.warn( "Couldn't find {0} on paths:\n\t{1}".format( lib_path, '\n\t'.join(realpath(path) for path in rpaths), ) ) return lib_path
python
def resolve_rpath(lib_path, rpaths): """ Return `lib_path` with its `@rpath` resolved If the `lib_path` doesn't have `@rpath` then it's returned as is. If `lib_path` has `@rpath` then returns the first `rpaths`/`lib_path` combination found. If the library can't be found in `rpaths` then a detailed warning is printed and `lib_path` is returned as is. Parameters ---------- lib_path : str The path to a library file, which may or may not start with `@rpath`. rpaths : sequence of str A sequence of search paths, usually gotten from a call to `get_rpaths`. Returns ------- lib_path : str A str with the resolved libraries realpath. """ if not lib_path.startswith('@rpath/'): return lib_path lib_rpath = lib_path.split('/', 1)[1] for rpath in rpaths: rpath_lib = realpath(pjoin(rpath, lib_rpath)) if os.path.exists(rpath_lib): return rpath_lib warnings.warn( "Couldn't find {0} on paths:\n\t{1}".format( lib_path, '\n\t'.join(realpath(path) for path in rpaths), ) ) return lib_path
Return `lib_path` with its `@rpath` resolved If the `lib_path` doesn't have `@rpath` then it's returned as is. If `lib_path` has `@rpath` then returns the first `rpaths`/`lib_path` combination found. If the library can't be found in `rpaths` then a detailed warning is printed and `lib_path` is returned as is. Parameters ---------- lib_path : str The path to a library file, which may or may not start with `@rpath`. rpaths : sequence of str A sequence of search paths, usually gotten from a call to `get_rpaths`. Returns ------- lib_path : str A str with the resolved libraries realpath.
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/libsana.py#L68-L104
matthew-brett/delocate
delocate/libsana.py
get_prefix_stripper
def get_prefix_stripper(strip_prefix): """ Return function to strip `strip_prefix` prefix from string if present Parameters ---------- prefix : str Prefix to strip from the beginning of string if present Returns ------- stripper : func function such that ``stripper(a_string)`` will strip `prefix` from ``a_string`` if present, otherwise pass ``a_string`` unmodified """ n = len(strip_prefix) def stripper(path): return path if not path.startswith(strip_prefix) else path[n:] return stripper
python
def get_prefix_stripper(strip_prefix): """ Return function to strip `strip_prefix` prefix from string if present Parameters ---------- prefix : str Prefix to strip from the beginning of string if present Returns ------- stripper : func function such that ``stripper(a_string)`` will strip `prefix` from ``a_string`` if present, otherwise pass ``a_string`` unmodified """ n = len(strip_prefix) def stripper(path): return path if not path.startswith(strip_prefix) else path[n:] return stripper
Return function to strip `strip_prefix` prefix from string if present Parameters ---------- prefix : str Prefix to strip from the beginning of string if present Returns ------- stripper : func function such that ``stripper(a_string)`` will strip `prefix` from ``a_string`` if present, otherwise pass ``a_string`` unmodified
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/libsana.py#L107-L124
matthew-brett/delocate
delocate/libsana.py
stripped_lib_dict
def stripped_lib_dict(lib_dict, strip_prefix): """ Return `lib_dict` with `strip_prefix` removed from start of paths Use to give form of `lib_dict` that appears relative to some base path given by `strip_prefix`. Particularly useful for analyzing wheels where we unpack to a temporary path before analyzing. Parameters ---------- lib_dict : dict See :func:`tree_libs` for definition. All depending and depended paths are canonical (therefore absolute) strip_prefix : str Prefix to remove (if present) from all depended and depending library paths in `lib_dict` Returns ------- relative_dict : dict `lib_dict` with `strip_prefix` removed from beginning of all depended and depending library paths. """ relative_dict = {} stripper = get_prefix_stripper(strip_prefix) for lib_path, dependings_dict in lib_dict.items(): ding_dict = {} for depending_libpath, install_name in dependings_dict.items(): ding_dict[stripper(depending_libpath)] = install_name relative_dict[stripper(lib_path)] = ding_dict return relative_dict
python
def stripped_lib_dict(lib_dict, strip_prefix): """ Return `lib_dict` with `strip_prefix` removed from start of paths Use to give form of `lib_dict` that appears relative to some base path given by `strip_prefix`. Particularly useful for analyzing wheels where we unpack to a temporary path before analyzing. Parameters ---------- lib_dict : dict See :func:`tree_libs` for definition. All depending and depended paths are canonical (therefore absolute) strip_prefix : str Prefix to remove (if present) from all depended and depending library paths in `lib_dict` Returns ------- relative_dict : dict `lib_dict` with `strip_prefix` removed from beginning of all depended and depending library paths. """ relative_dict = {} stripper = get_prefix_stripper(strip_prefix) for lib_path, dependings_dict in lib_dict.items(): ding_dict = {} for depending_libpath, install_name in dependings_dict.items(): ding_dict[stripper(depending_libpath)] = install_name relative_dict[stripper(lib_path)] = ding_dict return relative_dict
Return `lib_dict` with `strip_prefix` removed from start of paths Use to give form of `lib_dict` that appears relative to some base path given by `strip_prefix`. Particularly useful for analyzing wheels where we unpack to a temporary path before analyzing. Parameters ---------- lib_dict : dict See :func:`tree_libs` for definition. All depending and depended paths are canonical (therefore absolute) strip_prefix : str Prefix to remove (if present) from all depended and depending library paths in `lib_dict` Returns ------- relative_dict : dict `lib_dict` with `strip_prefix` removed from beginning of all depended and depending library paths.
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/libsana.py#L145-L175
matthew-brett/delocate
delocate/libsana.py
wheel_libs
def wheel_libs(wheel_fname, filt_func = None): """ Return analysis of library dependencies with a Python wheel Use this routine for a dump of the dependency tree. Parameters ---------- wheel_fname : str Filename of wheel filt_func : None or callable, optional If None, inspect all files for library dependencies. If callable, accepts filename as argument, returns True if we should inspect the file, False otherwise. Returns ------- lib_dict : dict dictionary with (key, value) pairs of (``libpath``, ``dependings_dict``). ``libpath`` is library being depended on, relative to wheel root path if within wheel tree. ``dependings_dict`` is (key, value) of (``depending_lib_path``, ``install_name``). Again, ``depending_lib_path`` is library relative to wheel root path, if within wheel tree. """ with TemporaryDirectory() as tmpdir: zip2dir(wheel_fname, tmpdir) lib_dict = tree_libs(tmpdir, filt_func) return stripped_lib_dict(lib_dict, realpath(tmpdir) + os.path.sep)
python
def wheel_libs(wheel_fname, filt_func = None): """ Return analysis of library dependencies with a Python wheel Use this routine for a dump of the dependency tree. Parameters ---------- wheel_fname : str Filename of wheel filt_func : None or callable, optional If None, inspect all files for library dependencies. If callable, accepts filename as argument, returns True if we should inspect the file, False otherwise. Returns ------- lib_dict : dict dictionary with (key, value) pairs of (``libpath``, ``dependings_dict``). ``libpath`` is library being depended on, relative to wheel root path if within wheel tree. ``dependings_dict`` is (key, value) of (``depending_lib_path``, ``install_name``). Again, ``depending_lib_path`` is library relative to wheel root path, if within wheel tree. """ with TemporaryDirectory() as tmpdir: zip2dir(wheel_fname, tmpdir) lib_dict = tree_libs(tmpdir, filt_func) return stripped_lib_dict(lib_dict, realpath(tmpdir) + os.path.sep)
Return analysis of library dependencies with a Python wheel Use this routine for a dump of the dependency tree. Parameters ---------- wheel_fname : str Filename of wheel filt_func : None or callable, optional If None, inspect all files for library dependencies. If callable, accepts filename as argument, returns True if we should inspect the file, False otherwise. Returns ------- lib_dict : dict dictionary with (key, value) pairs of (``libpath``, ``dependings_dict``). ``libpath`` is library being depended on, relative to wheel root path if within wheel tree. ``dependings_dict`` is (key, value) of (``depending_lib_path``, ``install_name``). Again, ``depending_lib_path`` is library relative to wheel root path, if within wheel tree.
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/libsana.py#L178-L205
matthew-brett/delocate
delocate/wheeltools.py
_open_for_csv
def _open_for_csv(name, mode): """ Deal with Python 2/3 open API differences """ if sys.version_info[0] < 3: return open_rw(name, mode + 'b') return open_rw(name, mode, newline='', encoding='utf-8')
python
def _open_for_csv(name, mode): """ Deal with Python 2/3 open API differences """ if sys.version_info[0] < 3: return open_rw(name, mode + 'b') return open_rw(name, mode, newline='', encoding='utf-8')
Deal with Python 2/3 open API differences
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/wheeltools.py#L28-L32
matthew-brett/delocate
delocate/wheeltools.py
rewrite_record
def rewrite_record(bdist_dir): """ Rewrite RECORD file with hashes for all files in `wheel_sdir` Copied from :method:`wheel.bdist_wheel.bdist_wheel.write_record` Will also unsign wheel Parameters ---------- bdist_dir : str Path of unpacked wheel file """ info_dirs = glob.glob(pjoin(bdist_dir, '*.dist-info')) if len(info_dirs) != 1: raise WheelToolsError("Should be exactly one `*.dist_info` directory") record_path = pjoin(info_dirs[0], 'RECORD') record_relpath = relpath(record_path, bdist_dir) # Unsign wheel - because we're invalidating the record hash sig_path = pjoin(info_dirs[0], 'RECORD.jws') if exists(sig_path): os.unlink(sig_path) def walk(): for dir, dirs, files in os.walk(bdist_dir): for f in files: yield pjoin(dir, f) def skip(path): """Wheel hashes every possible file.""" return (path == record_relpath) with _open_for_csv(record_path, 'w+') as record_file: writer = csv.writer(record_file) for path in walk(): relative_path = relpath(path, bdist_dir) if skip(relative_path): hash = '' size = '' else: with open(path, 'rb') as f: data = f.read() digest = hashlib.sha256(data).digest() hash = 'sha256=' + native(urlsafe_b64encode(digest)) size = len(data) path_for_record = relpath( path, bdist_dir).replace(psep, '/') writer.writerow((path_for_record, hash, size))
python
def rewrite_record(bdist_dir): """ Rewrite RECORD file with hashes for all files in `wheel_sdir` Copied from :method:`wheel.bdist_wheel.bdist_wheel.write_record` Will also unsign wheel Parameters ---------- bdist_dir : str Path of unpacked wheel file """ info_dirs = glob.glob(pjoin(bdist_dir, '*.dist-info')) if len(info_dirs) != 1: raise WheelToolsError("Should be exactly one `*.dist_info` directory") record_path = pjoin(info_dirs[0], 'RECORD') record_relpath = relpath(record_path, bdist_dir) # Unsign wheel - because we're invalidating the record hash sig_path = pjoin(info_dirs[0], 'RECORD.jws') if exists(sig_path): os.unlink(sig_path) def walk(): for dir, dirs, files in os.walk(bdist_dir): for f in files: yield pjoin(dir, f) def skip(path): """Wheel hashes every possible file.""" return (path == record_relpath) with _open_for_csv(record_path, 'w+') as record_file: writer = csv.writer(record_file) for path in walk(): relative_path = relpath(path, bdist_dir) if skip(relative_path): hash = '' size = '' else: with open(path, 'rb') as f: data = f.read() digest = hashlib.sha256(data).digest() hash = 'sha256=' + native(urlsafe_b64encode(digest)) size = len(data) path_for_record = relpath( path, bdist_dir).replace(psep, '/') writer.writerow((path_for_record, hash, size))
Rewrite RECORD file with hashes for all files in `wheel_sdir` Copied from :method:`wheel.bdist_wheel.bdist_wheel.write_record` Will also unsign wheel Parameters ---------- bdist_dir : str Path of unpacked wheel file
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/wheeltools.py#L35-L81
matthew-brett/delocate
delocate/wheeltools.py
add_platforms
def add_platforms(in_wheel, platforms, out_path=None, clobber=False): """ Add platform tags `platforms` to `in_wheel` filename and WHEEL tags Add any platform tags in `platforms` that are missing from `in_wheel` filename. Add any platform tags in `platforms` that are missing from `in_wheel` ``WHEEL`` file. Parameters ---------- in_wheel : str Filename of wheel to which to add platform tags platforms : iterable platform tags to add to wheel filename and WHEEL tags - e.g. ``('macosx_10_9_intel', 'macosx_10_9_x86_64') out_path : None or str, optional Directory to which to write new wheel. Default is directory containing `in_wheel` clobber : bool, optional If True, overwrite existing output filename, otherwise raise error Returns ------- out_wheel : None or str Absolute path of wheel file written, or None if no wheel file written. """ in_wheel = abspath(in_wheel) out_path = dirname(in_wheel) if out_path is None else abspath(out_path) wf = WheelFile(in_wheel) info_fname = _get_wheelinfo_name(wf) # Check what tags we have in_fname_tags = wf.parsed_filename.groupdict()['plat'].split('.') extra_fname_tags = [tag for tag in platforms if tag not in in_fname_tags] in_wheel_base, ext = splitext(basename(in_wheel)) out_wheel_base = '.'.join([in_wheel_base] + list(extra_fname_tags)) out_wheel = pjoin(out_path, out_wheel_base + ext) if exists(out_wheel) and not clobber: raise WheelToolsError('Not overwriting {0}; set clobber=True ' 'to overwrite'.format(out_wheel)) with InWheelCtx(in_wheel) as ctx: info = read_pkg_info(info_fname) if info['Root-Is-Purelib'] == 'true': raise WheelToolsError('Cannot add platforms to pure wheel') in_info_tags = [tag for name, tag in info.items() if name == 'Tag'] # Python version, C-API version combinations pyc_apis = ['-'.join(tag.split('-')[:2]) for tag in in_info_tags] # unique Python version, C-API version combinations pyc_apis = unique_by_index(pyc_apis) # Add new platform tags for each Python version, C-API combination required_tags = ['-'.join(tup) for tup in product(pyc_apis, platforms)] needs_write = False for req_tag in required_tags: if req_tag in in_info_tags: continue needs_write = True info.add_header('Tag', req_tag) if needs_write: write_pkg_info(info_fname, info) # Tell context manager to write wheel on exit by setting filename ctx.out_wheel = out_wheel return ctx.out_wheel
python
def add_platforms(in_wheel, platforms, out_path=None, clobber=False): """ Add platform tags `platforms` to `in_wheel` filename and WHEEL tags Add any platform tags in `platforms` that are missing from `in_wheel` filename. Add any platform tags in `platforms` that are missing from `in_wheel` ``WHEEL`` file. Parameters ---------- in_wheel : str Filename of wheel to which to add platform tags platforms : iterable platform tags to add to wheel filename and WHEEL tags - e.g. ``('macosx_10_9_intel', 'macosx_10_9_x86_64') out_path : None or str, optional Directory to which to write new wheel. Default is directory containing `in_wheel` clobber : bool, optional If True, overwrite existing output filename, otherwise raise error Returns ------- out_wheel : None or str Absolute path of wheel file written, or None if no wheel file written. """ in_wheel = abspath(in_wheel) out_path = dirname(in_wheel) if out_path is None else abspath(out_path) wf = WheelFile(in_wheel) info_fname = _get_wheelinfo_name(wf) # Check what tags we have in_fname_tags = wf.parsed_filename.groupdict()['plat'].split('.') extra_fname_tags = [tag for tag in platforms if tag not in in_fname_tags] in_wheel_base, ext = splitext(basename(in_wheel)) out_wheel_base = '.'.join([in_wheel_base] + list(extra_fname_tags)) out_wheel = pjoin(out_path, out_wheel_base + ext) if exists(out_wheel) and not clobber: raise WheelToolsError('Not overwriting {0}; set clobber=True ' 'to overwrite'.format(out_wheel)) with InWheelCtx(in_wheel) as ctx: info = read_pkg_info(info_fname) if info['Root-Is-Purelib'] == 'true': raise WheelToolsError('Cannot add platforms to pure wheel') in_info_tags = [tag for name, tag in info.items() if name == 'Tag'] # Python version, C-API version combinations pyc_apis = ['-'.join(tag.split('-')[:2]) for tag in in_info_tags] # unique Python version, C-API version combinations pyc_apis = unique_by_index(pyc_apis) # Add new platform tags for each Python version, C-API combination required_tags = ['-'.join(tup) for tup in product(pyc_apis, platforms)] needs_write = False for req_tag in required_tags: if req_tag in in_info_tags: continue needs_write = True info.add_header('Tag', req_tag) if needs_write: write_pkg_info(info_fname, info) # Tell context manager to write wheel on exit by setting filename ctx.out_wheel = out_wheel return ctx.out_wheel
Add platform tags `platforms` to `in_wheel` filename and WHEEL tags Add any platform tags in `platforms` that are missing from `in_wheel` filename. Add any platform tags in `platforms` that are missing from `in_wheel` ``WHEEL`` file. Parameters ---------- in_wheel : str Filename of wheel to which to add platform tags platforms : iterable platform tags to add to wheel filename and WHEEL tags - e.g. ``('macosx_10_9_intel', 'macosx_10_9_x86_64') out_path : None or str, optional Directory to which to write new wheel. Default is directory containing `in_wheel` clobber : bool, optional If True, overwrite existing output filename, otherwise raise error Returns ------- out_wheel : None or str Absolute path of wheel file written, or None if no wheel file written.
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/wheeltools.py#L162-L222
wiheto/teneto
teneto/networkmeasures/temporal_betweenness_centrality.py
temporal_betweenness_centrality
def temporal_betweenness_centrality(tnet=None, paths=None, calc='time'): ''' Returns temporal betweenness centrality per node. Parameters ----------- Input should be *either* tnet or paths. data : array or dict Temporal network input (graphlet or contact). nettype: 'bu', 'bd'. calc : str either 'global' or 'time' paths : pandas dataframe Output of TenetoBIDS.networkmeasure.shortest_temporal_paths Returns -------- :close: array normalized temporal betweenness centrality. If calc = 'time', returns (node,time) If calc = 'global', returns (node) ''' if tnet is not None and paths is not None: raise ValueError('Only network or path input allowed.') if tnet is None and paths is None: raise ValueError('No input.') # if shortest paths are not calculated, calculate them if tnet is not None: paths = shortest_temporal_path(tnet) bet = np.zeros([paths[['from', 'to']].max().max() + 1, paths['t_start'].max()+1]) for row in paths.iterrows(): if (np.isnan(row[1]['path includes'])).all(): pass else: nodes_in_path = np.unique(np.concatenate( row[1]['path includes'])).astype(int).tolist() nodes_in_path.remove(row[1]['from']) nodes_in_path.remove(row[1]['to']) if len(nodes_in_path) > 0: bet[nodes_in_path, row[1]['t_start']] += 1 # Normalise bet bet = (1/((bet.shape[0]-1)*(bet.shape[0]-2))) * bet if calc == 'global': bet = np.mean(bet, axis=1) return bet
python
def temporal_betweenness_centrality(tnet=None, paths=None, calc='time'): ''' Returns temporal betweenness centrality per node. Parameters ----------- Input should be *either* tnet or paths. data : array or dict Temporal network input (graphlet or contact). nettype: 'bu', 'bd'. calc : str either 'global' or 'time' paths : pandas dataframe Output of TenetoBIDS.networkmeasure.shortest_temporal_paths Returns -------- :close: array normalized temporal betweenness centrality. If calc = 'time', returns (node,time) If calc = 'global', returns (node) ''' if tnet is not None and paths is not None: raise ValueError('Only network or path input allowed.') if tnet is None and paths is None: raise ValueError('No input.') # if shortest paths are not calculated, calculate them if tnet is not None: paths = shortest_temporal_path(tnet) bet = np.zeros([paths[['from', 'to']].max().max() + 1, paths['t_start'].max()+1]) for row in paths.iterrows(): if (np.isnan(row[1]['path includes'])).all(): pass else: nodes_in_path = np.unique(np.concatenate( row[1]['path includes'])).astype(int).tolist() nodes_in_path.remove(row[1]['from']) nodes_in_path.remove(row[1]['to']) if len(nodes_in_path) > 0: bet[nodes_in_path, row[1]['t_start']] += 1 # Normalise bet bet = (1/((bet.shape[0]-1)*(bet.shape[0]-2))) * bet if calc == 'global': bet = np.mean(bet, axis=1) return bet
Returns temporal betweenness centrality per node. Parameters ----------- Input should be *either* tnet or paths. data : array or dict Temporal network input (graphlet or contact). nettype: 'bu', 'bd'. calc : str either 'global' or 'time' paths : pandas dataframe Output of TenetoBIDS.networkmeasure.shortest_temporal_paths Returns -------- :close: array normalized temporal betweenness centrality. If calc = 'time', returns (node,time) If calc = 'global', returns (node)
https://github.com/wiheto/teneto/blob/80d7a83a9adc1714589b020627c45bd5b66248ab/teneto/networkmeasures/temporal_betweenness_centrality.py#L9-L72
wiheto/teneto
teneto/networkmeasures/volatility.py
volatility
def volatility(tnet, distance_func_name='default', calc='global', communities=None, event_displacement=None): r""" Volatility of temporal networks. Volatility is the average distance between consecutive time points of graphlets (difference is caclualted either globally or per edge). Parameters ---------- tnet : array or dict temporal network input (graphlet or contact). Nettype: 'bu','bd','wu','wd' D : str Distance function. Following options available: 'default', 'hamming', 'euclidean'. (Default implies hamming for binary networks, euclidean for weighted). calc : str Version of volaitility to caclulate. Possibilities include: 'global' - (default): the average distance of all nodes for each consecutive time point). 'edge' - average distance between consecutive time points for each edge). Takes considerably longer 'node' - (i.e. returns the average per node output when calculating volatility per 'edge'). 'time' - returns volatility per time point 'communities' - returns volatility per communitieswork id (see communities). Also is returned per time-point and this may be changed in the future (with additional options) 'event_displacement' - calculates the volatility from a specified point. Returns time-series. communities : array Array of indicies for community (eiter (node) or (node,time) dimensions). event_displacement : int if calc = event_displacement specify the temporal index where all other time-points are calculated in relation too. Notes ----- Volatility calculates the difference between network snapshots. .. math:: V_t = D(G_t,G_{t+1}) Where D is some distance function (e.g. Hamming distance for binary matrices). V can be calculated for the entire network (global), but can also be calculated for individual edges, nodes or given a community vector. Index of communities are returned "as is" with a shape of [max(communities)+1,max(communities)+1]. So if the indexes used are [1,2,3,5], V.shape==(6,6). The returning V[1,2] will correspond indexes 1 and 2. And missing index (e.g. here 0 and 4 will be NANs in rows and columns). If this behaviour is unwanted, call clean_communitiesdexes first. This will probably change. Examples -------- Import everything needed. >>> import teneto >>> import numpy >>> np.random.seed(1) >>> tnet = teneto.TemporalNetwork(nettype='bu') Here we generate a binary network where edges have a 0.5 change of going "on", and once on a 0.2 change to go "off" >>> tnet.generatenetwork('rand_binomial', size=(3,10), prob=(0.5,0.2)) Calculate the volatility >>> tnet.calc_networkmeasure('volatility', distance_func_name='hamming') 0.5555555555555556 If we change the probabilities to instead be certain edges disapeared the time-point after the appeared: >>> tnet.generatenetwork('rand_binomial', size=(3,10), prob=(0.5,1)) This will make a more volatile network >>> tnet.calc_networkmeasure('volatility', distance_func_name='hamming') 0.1111111111111111 We can calculate the volatility per time instead >>> vol_time = tnet.calc_networkmeasure('volatility', calc='time', distance_func_name='hamming') >>> len(vol_time) 9 >>> vol_time[0] 0.3333333333333333 Or per node: >>> vol_node = tnet.calc_networkmeasure('volatility', calc='node', distance_func_name='hamming') >>> vol_node array([0.07407407, 0.07407407, 0.07407407]) Here we see the volatility for each node was the same. It is also possible to pass a community vector and the function will return volatility both within and between each community. So the following has two communities: >>> vol_com = tnet.calc_networkmeasure('volatility', calc='communities', communities=[0,1,1], distance_func_name='hamming') >>> vol_com.shape (2, 2, 9) >>> vol_com[:,:,0] array([[nan, 0.5], [0.5, 0. ]]) And we see that, at time-point 0, there is some volatility between community 0 and 1 but no volatility within community 1. The reason for nan appearing is due to there only being 1 node in community 0. Output ------ vol : array """ # Get input (C or G) tnet, netinfo = process_input(tnet, ['C', 'G', 'TN']) distance_func_name = check_distance_funciton_input( distance_func_name, netinfo) if not isinstance(distance_func_name, str): raise ValueError('Distance metric must be a string') # If not directional, only calc on the uppertriangle if netinfo['nettype'][1] == 'd': ind = np.triu_indices(tnet.shape[0], k=-tnet.shape[0]) elif netinfo['nettype'][1] == 'u': ind = np.triu_indices(tnet.shape[0], k=1) if calc == 'communities': # Make sure communities is np array for indexing later on. communities = np.array(communities) if len(communities) != netinfo['netshape'][0]: raise ValueError( 'When processing per network, communities vector must equal the number of nodes') if communities.min() < 0: raise ValueError( 'Communitiy assignments must be positive integers') # Get chosen distance metric fucntion distance_func = getDistanceFunction(distance_func_name) if calc == 'global': vol = np.mean([distance_func(tnet[ind[0], ind[1], t], tnet[ind[0], ind[1], t + 1]) for t in range(0, tnet.shape[-1] - 1)]) elif calc == 'time': vol = [distance_func(tnet[ind[0], ind[1], t], tnet[ind[0], ind[1], t + 1]) for t in range(0, tnet.shape[-1] - 1)] elif calc == 'event_displacement': vol = [distance_func(tnet[ind[0], ind[1], event_displacement], tnet[ind[0], ind[1], t]) for t in range(0, tnet.shape[-1])] # This takes quite a bit of time to loop through. When calculating per edge/node. elif calc == 'edge' or calc == 'node': vol = np.zeros([tnet.shape[0], tnet.shape[1]]) for i in ind[0]: for j in ind[1]: vol[i, j] = np.mean([distance_func( tnet[i, j, t], tnet[i, j, t + 1]) for t in range(0, tnet.shape[-1] - 1)]) if netinfo['nettype'][1] == 'u': vol = vol + np.transpose(vol) if calc == 'node': vol = np.mean(vol, axis=1) elif calc == 'communities': net_id = set(communities) vol = np.zeros([max(net_id) + 1, max(net_id) + 1, netinfo['netshape'][-1] - 1]) for net1 in net_id: for net2 in net_id: if net1 != net2: vol[net1, net2, :] = [distance_func(tnet[communities == net1][:, communities == net2, t].flatten(), tnet[communities == net1][:, communities == net2, t + 1].flatten()) for t in range(0, tnet.shape[-1] - 1)] else: nettmp = tnet[communities == net1][:, communities == net2, :] triu = np.triu_indices(nettmp.shape[0], k=1) nettmp = nettmp[triu[0], triu[1], :] vol[net1, net2, :] = [distance_func(nettmp[:, t].flatten( ), nettmp[:, t + 1].flatten()) for t in range(0, tnet.shape[-1] - 1)] elif calc == 'withincommunities': withi = np.array([[ind[0][n], ind[1][n]] for n in range( 0, len(ind[0])) if communities[ind[0][n]] == communities[ind[1][n]]]) vol = [distance_func(tnet[withi[:, 0], withi[:, 1], t], tnet[withi[:, 0], withi[:, 1], t + 1]) for t in range(0, tnet.shape[-1] - 1)] elif calc == 'betweencommunities': beti = np.array([[ind[0][n], ind[1][n]] for n in range( 0, len(ind[0])) if communities[ind[0][n]] != communities[ind[1][n]]]) vol = [distance_func(tnet[beti[:, 0], beti[:, 1], t], tnet[beti[:, 0], beti[:, 1], t + 1]) for t in range(0, tnet.shape[-1] - 1)] return vol
python
def volatility(tnet, distance_func_name='default', calc='global', communities=None, event_displacement=None): r""" Volatility of temporal networks. Volatility is the average distance between consecutive time points of graphlets (difference is caclualted either globally or per edge). Parameters ---------- tnet : array or dict temporal network input (graphlet or contact). Nettype: 'bu','bd','wu','wd' D : str Distance function. Following options available: 'default', 'hamming', 'euclidean'. (Default implies hamming for binary networks, euclidean for weighted). calc : str Version of volaitility to caclulate. Possibilities include: 'global' - (default): the average distance of all nodes for each consecutive time point). 'edge' - average distance between consecutive time points for each edge). Takes considerably longer 'node' - (i.e. returns the average per node output when calculating volatility per 'edge'). 'time' - returns volatility per time point 'communities' - returns volatility per communitieswork id (see communities). Also is returned per time-point and this may be changed in the future (with additional options) 'event_displacement' - calculates the volatility from a specified point. Returns time-series. communities : array Array of indicies for community (eiter (node) or (node,time) dimensions). event_displacement : int if calc = event_displacement specify the temporal index where all other time-points are calculated in relation too. Notes ----- Volatility calculates the difference between network snapshots. .. math:: V_t = D(G_t,G_{t+1}) Where D is some distance function (e.g. Hamming distance for binary matrices). V can be calculated for the entire network (global), but can also be calculated for individual edges, nodes or given a community vector. Index of communities are returned "as is" with a shape of [max(communities)+1,max(communities)+1]. So if the indexes used are [1,2,3,5], V.shape==(6,6). The returning V[1,2] will correspond indexes 1 and 2. And missing index (e.g. here 0 and 4 will be NANs in rows and columns). If this behaviour is unwanted, call clean_communitiesdexes first. This will probably change. Examples -------- Import everything needed. >>> import teneto >>> import numpy >>> np.random.seed(1) >>> tnet = teneto.TemporalNetwork(nettype='bu') Here we generate a binary network where edges have a 0.5 change of going "on", and once on a 0.2 change to go "off" >>> tnet.generatenetwork('rand_binomial', size=(3,10), prob=(0.5,0.2)) Calculate the volatility >>> tnet.calc_networkmeasure('volatility', distance_func_name='hamming') 0.5555555555555556 If we change the probabilities to instead be certain edges disapeared the time-point after the appeared: >>> tnet.generatenetwork('rand_binomial', size=(3,10), prob=(0.5,1)) This will make a more volatile network >>> tnet.calc_networkmeasure('volatility', distance_func_name='hamming') 0.1111111111111111 We can calculate the volatility per time instead >>> vol_time = tnet.calc_networkmeasure('volatility', calc='time', distance_func_name='hamming') >>> len(vol_time) 9 >>> vol_time[0] 0.3333333333333333 Or per node: >>> vol_node = tnet.calc_networkmeasure('volatility', calc='node', distance_func_name='hamming') >>> vol_node array([0.07407407, 0.07407407, 0.07407407]) Here we see the volatility for each node was the same. It is also possible to pass a community vector and the function will return volatility both within and between each community. So the following has two communities: >>> vol_com = tnet.calc_networkmeasure('volatility', calc='communities', communities=[0,1,1], distance_func_name='hamming') >>> vol_com.shape (2, 2, 9) >>> vol_com[:,:,0] array([[nan, 0.5], [0.5, 0. ]]) And we see that, at time-point 0, there is some volatility between community 0 and 1 but no volatility within community 1. The reason for nan appearing is due to there only being 1 node in community 0. Output ------ vol : array """ # Get input (C or G) tnet, netinfo = process_input(tnet, ['C', 'G', 'TN']) distance_func_name = check_distance_funciton_input( distance_func_name, netinfo) if not isinstance(distance_func_name, str): raise ValueError('Distance metric must be a string') # If not directional, only calc on the uppertriangle if netinfo['nettype'][1] == 'd': ind = np.triu_indices(tnet.shape[0], k=-tnet.shape[0]) elif netinfo['nettype'][1] == 'u': ind = np.triu_indices(tnet.shape[0], k=1) if calc == 'communities': # Make sure communities is np array for indexing later on. communities = np.array(communities) if len(communities) != netinfo['netshape'][0]: raise ValueError( 'When processing per network, communities vector must equal the number of nodes') if communities.min() < 0: raise ValueError( 'Communitiy assignments must be positive integers') # Get chosen distance metric fucntion distance_func = getDistanceFunction(distance_func_name) if calc == 'global': vol = np.mean([distance_func(tnet[ind[0], ind[1], t], tnet[ind[0], ind[1], t + 1]) for t in range(0, tnet.shape[-1] - 1)]) elif calc == 'time': vol = [distance_func(tnet[ind[0], ind[1], t], tnet[ind[0], ind[1], t + 1]) for t in range(0, tnet.shape[-1] - 1)] elif calc == 'event_displacement': vol = [distance_func(tnet[ind[0], ind[1], event_displacement], tnet[ind[0], ind[1], t]) for t in range(0, tnet.shape[-1])] # This takes quite a bit of time to loop through. When calculating per edge/node. elif calc == 'edge' or calc == 'node': vol = np.zeros([tnet.shape[0], tnet.shape[1]]) for i in ind[0]: for j in ind[1]: vol[i, j] = np.mean([distance_func( tnet[i, j, t], tnet[i, j, t + 1]) for t in range(0, tnet.shape[-1] - 1)]) if netinfo['nettype'][1] == 'u': vol = vol + np.transpose(vol) if calc == 'node': vol = np.mean(vol, axis=1) elif calc == 'communities': net_id = set(communities) vol = np.zeros([max(net_id) + 1, max(net_id) + 1, netinfo['netshape'][-1] - 1]) for net1 in net_id: for net2 in net_id: if net1 != net2: vol[net1, net2, :] = [distance_func(tnet[communities == net1][:, communities == net2, t].flatten(), tnet[communities == net1][:, communities == net2, t + 1].flatten()) for t in range(0, tnet.shape[-1] - 1)] else: nettmp = tnet[communities == net1][:, communities == net2, :] triu = np.triu_indices(nettmp.shape[0], k=1) nettmp = nettmp[triu[0], triu[1], :] vol[net1, net2, :] = [distance_func(nettmp[:, t].flatten( ), nettmp[:, t + 1].flatten()) for t in range(0, tnet.shape[-1] - 1)] elif calc == 'withincommunities': withi = np.array([[ind[0][n], ind[1][n]] for n in range( 0, len(ind[0])) if communities[ind[0][n]] == communities[ind[1][n]]]) vol = [distance_func(tnet[withi[:, 0], withi[:, 1], t], tnet[withi[:, 0], withi[:, 1], t + 1]) for t in range(0, tnet.shape[-1] - 1)] elif calc == 'betweencommunities': beti = np.array([[ind[0][n], ind[1][n]] for n in range( 0, len(ind[0])) if communities[ind[0][n]] != communities[ind[1][n]]]) vol = [distance_func(tnet[beti[:, 0], beti[:, 1], t], tnet[beti[:, 0], beti[:, 1], t + 1]) for t in range(0, tnet.shape[-1] - 1)] return vol
r""" Volatility of temporal networks. Volatility is the average distance between consecutive time points of graphlets (difference is caclualted either globally or per edge). Parameters ---------- tnet : array or dict temporal network input (graphlet or contact). Nettype: 'bu','bd','wu','wd' D : str Distance function. Following options available: 'default', 'hamming', 'euclidean'. (Default implies hamming for binary networks, euclidean for weighted). calc : str Version of volaitility to caclulate. Possibilities include: 'global' - (default): the average distance of all nodes for each consecutive time point). 'edge' - average distance between consecutive time points for each edge). Takes considerably longer 'node' - (i.e. returns the average per node output when calculating volatility per 'edge'). 'time' - returns volatility per time point 'communities' - returns volatility per communitieswork id (see communities). Also is returned per time-point and this may be changed in the future (with additional options) 'event_displacement' - calculates the volatility from a specified point. Returns time-series. communities : array Array of indicies for community (eiter (node) or (node,time) dimensions). event_displacement : int if calc = event_displacement specify the temporal index where all other time-points are calculated in relation too. Notes ----- Volatility calculates the difference between network snapshots. .. math:: V_t = D(G_t,G_{t+1}) Where D is some distance function (e.g. Hamming distance for binary matrices). V can be calculated for the entire network (global), but can also be calculated for individual edges, nodes or given a community vector. Index of communities are returned "as is" with a shape of [max(communities)+1,max(communities)+1]. So if the indexes used are [1,2,3,5], V.shape==(6,6). The returning V[1,2] will correspond indexes 1 and 2. And missing index (e.g. here 0 and 4 will be NANs in rows and columns). If this behaviour is unwanted, call clean_communitiesdexes first. This will probably change. Examples -------- Import everything needed. >>> import teneto >>> import numpy >>> np.random.seed(1) >>> tnet = teneto.TemporalNetwork(nettype='bu') Here we generate a binary network where edges have a 0.5 change of going "on", and once on a 0.2 change to go "off" >>> tnet.generatenetwork('rand_binomial', size=(3,10), prob=(0.5,0.2)) Calculate the volatility >>> tnet.calc_networkmeasure('volatility', distance_func_name='hamming') 0.5555555555555556 If we change the probabilities to instead be certain edges disapeared the time-point after the appeared: >>> tnet.generatenetwork('rand_binomial', size=(3,10), prob=(0.5,1)) This will make a more volatile network >>> tnet.calc_networkmeasure('volatility', distance_func_name='hamming') 0.1111111111111111 We can calculate the volatility per time instead >>> vol_time = tnet.calc_networkmeasure('volatility', calc='time', distance_func_name='hamming') >>> len(vol_time) 9 >>> vol_time[0] 0.3333333333333333 Or per node: >>> vol_node = tnet.calc_networkmeasure('volatility', calc='node', distance_func_name='hamming') >>> vol_node array([0.07407407, 0.07407407, 0.07407407]) Here we see the volatility for each node was the same. It is also possible to pass a community vector and the function will return volatility both within and between each community. So the following has two communities: >>> vol_com = tnet.calc_networkmeasure('volatility', calc='communities', communities=[0,1,1], distance_func_name='hamming') >>> vol_com.shape (2, 2, 9) >>> vol_com[:,:,0] array([[nan, 0.5], [0.5, 0. ]]) And we see that, at time-point 0, there is some volatility between community 0 and 1 but no volatility within community 1. The reason for nan appearing is due to there only being 1 node in community 0. Output ------ vol : array
https://github.com/wiheto/teneto/blob/80d7a83a9adc1714589b020627c45bd5b66248ab/teneto/networkmeasures/volatility.py#L5-L188
wiheto/teneto
teneto/temporalcommunity/allegiance.py
allegiance
def allegiance(community): """ Computes the allegiance matrix with values representing the probability that nodes i and j were assigned to the same community by time-varying clustering methods. parameters ---------- community : array array of community assignment of size node,time returns ------- P : array module allegiance matrix, with P_ij probability that area i and j are in the same community Reference: ---------- Bassett, et al. (2013) “Robust detection of dynamic community structure in networks”, Chaos, 23, 1 """ N = community.shape[0] C = community.shape[1] T = P = np.zeros([N, N]) for t in range(len(community[0, :])): for i in range(len(community[:, 0])): for j in range(len(community[:, 0])): if i == j: continue # T_ij indicates the number of times that i and j are assigned to the same community across time if community[i][t] == community[j][t]: T[i, j] += 1 # module allegiance matrix, probability that ij were assigned to the same community P = (1/C)*T return P
python
def allegiance(community): """ Computes the allegiance matrix with values representing the probability that nodes i and j were assigned to the same community by time-varying clustering methods. parameters ---------- community : array array of community assignment of size node,time returns ------- P : array module allegiance matrix, with P_ij probability that area i and j are in the same community Reference: ---------- Bassett, et al. (2013) “Robust detection of dynamic community structure in networks”, Chaos, 23, 1 """ N = community.shape[0] C = community.shape[1] T = P = np.zeros([N, N]) for t in range(len(community[0, :])): for i in range(len(community[:, 0])): for j in range(len(community[:, 0])): if i == j: continue # T_ij indicates the number of times that i and j are assigned to the same community across time if community[i][t] == community[j][t]: T[i, j] += 1 # module allegiance matrix, probability that ij were assigned to the same community P = (1/C)*T return P
Computes the allegiance matrix with values representing the probability that nodes i and j were assigned to the same community by time-varying clustering methods. parameters ---------- community : array array of community assignment of size node,time returns ------- P : array module allegiance matrix, with P_ij probability that area i and j are in the same community Reference: ---------- Bassett, et al. (2013) “Robust detection of dynamic community structure in networks”, Chaos, 23, 1
https://github.com/wiheto/teneto/blob/80d7a83a9adc1714589b020627c45bd5b66248ab/teneto/temporalcommunity/allegiance.py#L3-L39
wiheto/teneto
teneto/generatenetwork/rand_poisson.py
rand_poisson
def rand_poisson(nnodes, ncontacts, lam=1, nettype='bu', netinfo=None, netrep='graphlet'): """ Generate a random network where intervals between contacts are distributed by a poisson distribution Parameters ---------- nnodes : int Number of nodes in networks ncontacts : int or list Number of expected contacts (i.e. edges). If list, number of contacts for each node. Any zeros drawn are ignored so returned degree of network can be smaller than ncontacts. lam : int or list Expectation of interval. nettype : str 'bu' or 'bd' netinfo : dict Dictionary of additional information netrep : str How the output should be. If ncontacts is a list, so should lam. Returns ------- net : array or dict Random network with intervals between active edges being Poisson distributed. """ if isinstance(ncontacts, list): if len(ncontacts) != nnodes: raise ValueError( 'Number of contacts, if a list, should be one per node') if isinstance(lam, list): if len(lam) != nnodes: raise ValueError( 'Lambda value of Poisson distribution, if a list, should be one per node') if isinstance(lam, list) and not isinstance(ncontacts, list) or not isinstance(lam, list) and isinstance(ncontacts, list): raise ValueError( 'When one of lambda or ncontacts is given as a list, the other argument must also be a list.') if nettype == 'bu': edgen = int((nnodes*(nnodes-1))/2) elif nettype == 'bd': edgen = int(nnodes*nnodes) if not isinstance(lam, list) and not isinstance(ncontacts, list): icts = np.random.poisson(lam, size=(edgen, ncontacts)) net = np.zeros([edgen, icts.sum(axis=1).max()+1]) for n in range(edgen): net[n, np.unique(np.cumsum(icts[n]))] = 1 else: icts = [] ict_max = 0 for n in range(edgen): icts.append(np.random.poisson(lam[n], size=ncontacts[n])) if sum(icts[-1]) > ict_max: ict_max = sum(icts[-1]) net = np.zeros([nnodes, ict_max+1]) for n in range(nnodes): net[n, np.unique(np.cumsum(icts[n]))] = 1 if nettype == 'bu': nettmp = np.zeros([nnodes, nnodes, net.shape[-1]]) ind = np.triu_indices(nnodes, k=1) nettmp[ind[0], ind[1], :] = net net = nettmp + nettmp.transpose([1, 0, 2]) elif nettype == 'bd': net = net.reshape([nnodes, nnodes, net.shape[-1]], order='F') net = set_diagonal(net, 0) if netrep == 'contact': if not netinfo: netinfo = {} netinfo['nettype'] = 'b' + nettype[-1] net = graphlet2contact(net, netinfo) return net
python
def rand_poisson(nnodes, ncontacts, lam=1, nettype='bu', netinfo=None, netrep='graphlet'): """ Generate a random network where intervals between contacts are distributed by a poisson distribution Parameters ---------- nnodes : int Number of nodes in networks ncontacts : int or list Number of expected contacts (i.e. edges). If list, number of contacts for each node. Any zeros drawn are ignored so returned degree of network can be smaller than ncontacts. lam : int or list Expectation of interval. nettype : str 'bu' or 'bd' netinfo : dict Dictionary of additional information netrep : str How the output should be. If ncontacts is a list, so should lam. Returns ------- net : array or dict Random network with intervals between active edges being Poisson distributed. """ if isinstance(ncontacts, list): if len(ncontacts) != nnodes: raise ValueError( 'Number of contacts, if a list, should be one per node') if isinstance(lam, list): if len(lam) != nnodes: raise ValueError( 'Lambda value of Poisson distribution, if a list, should be one per node') if isinstance(lam, list) and not isinstance(ncontacts, list) or not isinstance(lam, list) and isinstance(ncontacts, list): raise ValueError( 'When one of lambda or ncontacts is given as a list, the other argument must also be a list.') if nettype == 'bu': edgen = int((nnodes*(nnodes-1))/2) elif nettype == 'bd': edgen = int(nnodes*nnodes) if not isinstance(lam, list) and not isinstance(ncontacts, list): icts = np.random.poisson(lam, size=(edgen, ncontacts)) net = np.zeros([edgen, icts.sum(axis=1).max()+1]) for n in range(edgen): net[n, np.unique(np.cumsum(icts[n]))] = 1 else: icts = [] ict_max = 0 for n in range(edgen): icts.append(np.random.poisson(lam[n], size=ncontacts[n])) if sum(icts[-1]) > ict_max: ict_max = sum(icts[-1]) net = np.zeros([nnodes, ict_max+1]) for n in range(nnodes): net[n, np.unique(np.cumsum(icts[n]))] = 1 if nettype == 'bu': nettmp = np.zeros([nnodes, nnodes, net.shape[-1]]) ind = np.triu_indices(nnodes, k=1) nettmp[ind[0], ind[1], :] = net net = nettmp + nettmp.transpose([1, 0, 2]) elif nettype == 'bd': net = net.reshape([nnodes, nnodes, net.shape[-1]], order='F') net = set_diagonal(net, 0) if netrep == 'contact': if not netinfo: netinfo = {} netinfo['nettype'] = 'b' + nettype[-1] net = graphlet2contact(net, netinfo) return net
Generate a random network where intervals between contacts are distributed by a poisson distribution Parameters ---------- nnodes : int Number of nodes in networks ncontacts : int or list Number of expected contacts (i.e. edges). If list, number of contacts for each node. Any zeros drawn are ignored so returned degree of network can be smaller than ncontacts. lam : int or list Expectation of interval. nettype : str 'bu' or 'bd' netinfo : dict Dictionary of additional information netrep : str How the output should be. If ncontacts is a list, so should lam. Returns ------- net : array or dict Random network with intervals between active edges being Poisson distributed.
https://github.com/wiheto/teneto/blob/80d7a83a9adc1714589b020627c45bd5b66248ab/teneto/generatenetwork/rand_poisson.py#L9-L92
wiheto/teneto
teneto/networkmeasures/temporal_participation_coeff.py
temporal_participation_coeff
def temporal_participation_coeff(tnet, communities=None, decay=None, removeneg=False): r''' Temporal participation coefficient is a measure of diversity of connections across communities for individual nodes. Parameters ---------- tnet : array, dict graphlet or contact sequence input. Only positive matrices considered. communities : array community vector. Either 1D (node) community index or 2D (node,time). removeneg : bool (default false) If true, all values < 0 are made to be 0. Returns ------- P : array participation coefficient Notes ----- Static participatoin coefficient is: .. math:: P_i = 1 - \sum_s^{N_M}({{k_{is}}\over{k_i}})^2 Where s is the index of each community (:math:`N_M`). :math:`k_i` is total degree of node. And :math:`k_{is}` is degree of connections within community.[part-1]_ This "temporal" version only loops through temporal snapshots and calculates :math:`P_i` for each t. If directed, function sums axis=1, so tnet may need to be transposed before hand depending on what type of directed part_coef you are interested in. References ---------- .. [part-1] Guimera et al (2005) Functional cartography of complex metabolic networks. Nature. 433: 7028, p895-900. [`Link <http://doi.org/10.1038/nature03288>`_] ''' if communities is None: if isinstance(tnet, dict): if 'communities' in tnet.keys(): communities = tnet['communities'] else: raise ValueError('Community index not found') else: raise ValueError('Community must be provided for graphlet input') # Get input in right format tnet = process_input(tnet, ['C', 'G', 'TN'], 'TN') if tnet.nettype[0] == 'w': # TODO add contingency when hdf5 data has negative edges if tnet.hdf5 == False: if sum(tnet.network['weight'] < 0) > 0 and not removeneg: print( 'TENETO WARNING: negative edges exist when calculating participation coefficient.') else: tnet.network['weight'][tnet.network['weight'] < 0] = 0 part = np.zeros([tnet.netshape[0], tnet.netshape[1]]) if len(communities.shape) == 1: for t in np.arange(0, tnet.netshape[1]): C = communities snapshot = tnet.get_network_when(t=t) if tnet.nettype[1] == 'd': i_at_t = snapshot['i'].values else: i_at_t = np.concatenate( [snapshot['i'].values, snapshot['j'].values]) i_at_t = np.unique(i_at_t).tolist() i_at_t = list(map(int, i_at_t)) for i in i_at_t: # Calculate degree of node if tnet.nettype[1] == 'd': df = tnet.get_network_when(i=i, t=t) j_at_t = df['j'].values if tnet.nettype == 'wd': k_i = df['weight'].sum() elif tnet.nettype == 'bd': k_i = len(df) elif tnet.nettype[1] == 'u': df = tnet.get_network_when(ij=i, t=t) j_at_t = np.concatenate([df['i'].values, df['j'].values]) if tnet.nettype == 'wu': k_i = df['weight'].sum() elif tnet.nettype == 'bu': k_i = len(df) j_at_t = list(map(int, j_at_t)) for c in np.unique(C[j_at_t]): ci = np.where(C == c)[0].tolist() k_is = tnet.get_network_when(i=i, j=ci, t=t) if tnet.nettype[1] == 'u': k_is2 = tnet.get_network_when(j=i, i=ci, t=t) k_is = pd.concat([k_is, k_is2]) if len(k_is) > 0: if tnet.nettype[0] == 'b': k_is = len(k_is) else: k_is = k_is['weight'].sum() part[i, t] += np.square(k_is/k_i) part[i_at_t, t] = 1 - part[i_at_t, t] if decay is not None and t > 0: part[i_at_t, t] += decay*part[i_at_t, t-1] else: for t in np.arange(0, tnet.netshape[1]): snapshot = tnet.get_network_when(t=t) if tnet.nettype[1] == 'd': i_at_t = snapshot['i'].values else: i_at_t = np.concatenate( [snapshot['i'].values, snapshot['j'].values]) i_at_t = np.unique(i_at_t).tolist() i_at_t = list(map(int, i_at_t)) for i in i_at_t: for tc in np.arange(0, tnet.netshape[1]): C = communities[:, tc] # Calculate degree of node if tnet.nettype[1] == 'd': df = tnet.get_network_when(i=i, t=t) j_at_t = df['j'].values if tnet.nettype == 'wd': k_i = df['weight'].sum() elif tnet.nettype == 'bd': k_i = len(df) elif tnet.nettype[1] == 'u': df = tnet.get_network_when(ij=i, t=t) j_at_t = np.concatenate( [df['i'].values, df['j'].values]) if tnet.nettype == 'wu': k_i = df['weight'].sum() elif tnet.nettype == 'bu': k_i = len(df) j_at_t = list(map(int, j_at_t)) for c in np.unique(C[j_at_t]): ci = np.where(C == c)[0].tolist() k_is = tnet.get_network_when(i=i, j=ci, t=t) if tnet.nettype[1] == 'u': k_is2 = tnet.get_network_when(j=i, i=ci, t=t) k_is = pd.concat([k_is, k_is2]) if tnet.nettype[0] == 'b': k_is = len(k_is) else: k_is = k_is['weight'].sum() part[i, t] += np.square(k_is/k_i) part[i, t] = part[i, t] / tnet.netshape[1] part[i_at_t, t] = 1 - part[i_at_t, t] if decay is not None and t > 0: part[i_at_t, t] += decay*part[i_at_t, t-1] # Set any division by 0 to 0 part[np.isnan(part) == 1] = 0 return part
python
def temporal_participation_coeff(tnet, communities=None, decay=None, removeneg=False): r''' Temporal participation coefficient is a measure of diversity of connections across communities for individual nodes. Parameters ---------- tnet : array, dict graphlet or contact sequence input. Only positive matrices considered. communities : array community vector. Either 1D (node) community index or 2D (node,time). removeneg : bool (default false) If true, all values < 0 are made to be 0. Returns ------- P : array participation coefficient Notes ----- Static participatoin coefficient is: .. math:: P_i = 1 - \sum_s^{N_M}({{k_{is}}\over{k_i}})^2 Where s is the index of each community (:math:`N_M`). :math:`k_i` is total degree of node. And :math:`k_{is}` is degree of connections within community.[part-1]_ This "temporal" version only loops through temporal snapshots and calculates :math:`P_i` for each t. If directed, function sums axis=1, so tnet may need to be transposed before hand depending on what type of directed part_coef you are interested in. References ---------- .. [part-1] Guimera et al (2005) Functional cartography of complex metabolic networks. Nature. 433: 7028, p895-900. [`Link <http://doi.org/10.1038/nature03288>`_] ''' if communities is None: if isinstance(tnet, dict): if 'communities' in tnet.keys(): communities = tnet['communities'] else: raise ValueError('Community index not found') else: raise ValueError('Community must be provided for graphlet input') # Get input in right format tnet = process_input(tnet, ['C', 'G', 'TN'], 'TN') if tnet.nettype[0] == 'w': # TODO add contingency when hdf5 data has negative edges if tnet.hdf5 == False: if sum(tnet.network['weight'] < 0) > 0 and not removeneg: print( 'TENETO WARNING: negative edges exist when calculating participation coefficient.') else: tnet.network['weight'][tnet.network['weight'] < 0] = 0 part = np.zeros([tnet.netshape[0], tnet.netshape[1]]) if len(communities.shape) == 1: for t in np.arange(0, tnet.netshape[1]): C = communities snapshot = tnet.get_network_when(t=t) if tnet.nettype[1] == 'd': i_at_t = snapshot['i'].values else: i_at_t = np.concatenate( [snapshot['i'].values, snapshot['j'].values]) i_at_t = np.unique(i_at_t).tolist() i_at_t = list(map(int, i_at_t)) for i in i_at_t: # Calculate degree of node if tnet.nettype[1] == 'd': df = tnet.get_network_when(i=i, t=t) j_at_t = df['j'].values if tnet.nettype == 'wd': k_i = df['weight'].sum() elif tnet.nettype == 'bd': k_i = len(df) elif tnet.nettype[1] == 'u': df = tnet.get_network_when(ij=i, t=t) j_at_t = np.concatenate([df['i'].values, df['j'].values]) if tnet.nettype == 'wu': k_i = df['weight'].sum() elif tnet.nettype == 'bu': k_i = len(df) j_at_t = list(map(int, j_at_t)) for c in np.unique(C[j_at_t]): ci = np.where(C == c)[0].tolist() k_is = tnet.get_network_when(i=i, j=ci, t=t) if tnet.nettype[1] == 'u': k_is2 = tnet.get_network_when(j=i, i=ci, t=t) k_is = pd.concat([k_is, k_is2]) if len(k_is) > 0: if tnet.nettype[0] == 'b': k_is = len(k_is) else: k_is = k_is['weight'].sum() part[i, t] += np.square(k_is/k_i) part[i_at_t, t] = 1 - part[i_at_t, t] if decay is not None and t > 0: part[i_at_t, t] += decay*part[i_at_t, t-1] else: for t in np.arange(0, tnet.netshape[1]): snapshot = tnet.get_network_when(t=t) if tnet.nettype[1] == 'd': i_at_t = snapshot['i'].values else: i_at_t = np.concatenate( [snapshot['i'].values, snapshot['j'].values]) i_at_t = np.unique(i_at_t).tolist() i_at_t = list(map(int, i_at_t)) for i in i_at_t: for tc in np.arange(0, tnet.netshape[1]): C = communities[:, tc] # Calculate degree of node if tnet.nettype[1] == 'd': df = tnet.get_network_when(i=i, t=t) j_at_t = df['j'].values if tnet.nettype == 'wd': k_i = df['weight'].sum() elif tnet.nettype == 'bd': k_i = len(df) elif tnet.nettype[1] == 'u': df = tnet.get_network_when(ij=i, t=t) j_at_t = np.concatenate( [df['i'].values, df['j'].values]) if tnet.nettype == 'wu': k_i = df['weight'].sum() elif tnet.nettype == 'bu': k_i = len(df) j_at_t = list(map(int, j_at_t)) for c in np.unique(C[j_at_t]): ci = np.where(C == c)[0].tolist() k_is = tnet.get_network_when(i=i, j=ci, t=t) if tnet.nettype[1] == 'u': k_is2 = tnet.get_network_when(j=i, i=ci, t=t) k_is = pd.concat([k_is, k_is2]) if tnet.nettype[0] == 'b': k_is = len(k_is) else: k_is = k_is['weight'].sum() part[i, t] += np.square(k_is/k_i) part[i, t] = part[i, t] / tnet.netshape[1] part[i_at_t, t] = 1 - part[i_at_t, t] if decay is not None and t > 0: part[i_at_t, t] += decay*part[i_at_t, t-1] # Set any division by 0 to 0 part[np.isnan(part) == 1] = 0 return part
r''' Temporal participation coefficient is a measure of diversity of connections across communities for individual nodes. Parameters ---------- tnet : array, dict graphlet or contact sequence input. Only positive matrices considered. communities : array community vector. Either 1D (node) community index or 2D (node,time). removeneg : bool (default false) If true, all values < 0 are made to be 0. Returns ------- P : array participation coefficient Notes ----- Static participatoin coefficient is: .. math:: P_i = 1 - \sum_s^{N_M}({{k_{is}}\over{k_i}})^2 Where s is the index of each community (:math:`N_M`). :math:`k_i` is total degree of node. And :math:`k_{is}` is degree of connections within community.[part-1]_ This "temporal" version only loops through temporal snapshots and calculates :math:`P_i` for each t. If directed, function sums axis=1, so tnet may need to be transposed before hand depending on what type of directed part_coef you are interested in. References ---------- .. [part-1] Guimera et al (2005) Functional cartography of complex metabolic networks. Nature. 433: 7028, p895-900. [`Link <http://doi.org/10.1038/nature03288>`_]
https://github.com/wiheto/teneto/blob/80d7a83a9adc1714589b020627c45bd5b66248ab/teneto/networkmeasures/temporal_participation_coeff.py#L7-L162
wiheto/teneto
teneto/plot/graphlet_stack_plot.py
graphlet_stack_plot
def graphlet_stack_plot(netin, ax, q=10, cmap='Reds', gridcolor='k', borderwidth=2, bordercolor=None, Fs=1, timeunit='', t0=1, sharpen='yes', vminmax='minmax'): r''' Returns matplotlib axis handle for graphlet_stack_plot. This is a row of transformed connectivity matrices to look like a 3D stack. Parameters ---------- netin : array, dict network input (graphlet or contact) ax : matplotlib ax handles. q : int Quality. Increaseing this will lead to smoother axis but take up more memory. cmap : str Colormap (matplotlib) of graphlets Fs : int Sampling rate. Same as contact-representation (if netin is contact, and input is unset, contact dictionary is used) timeunit : str Unit of time for xlabel. Same as contact-representation (if netin is contact, and input is unset, contact dictionary is used) t0 : int What should the first time point be called. Should be integer. Default 1. gridcolor : str The color of the grid section of the graphlets. Set to 'none' if not wanted. borderwidth : int Scales the size of border. (at the moment it cannot be set to 0.) bordorcolor : color of the border (at the moment it must be in RGB values between 0 and 1 -> this will be changed sometime in the future). Default: black. vminmax : str 'maxabs', 'minmax' (default), or list/array with length of 2. Specifies the min and max colormap value of graphlets. Maxabs entails [-max(abs(G)),max(abs(G))], minmax entails [min(G), max(G)]. Returns -------- ax : matplotlib ax handle Note ------ This function can require a lot of RAM with larger networks. Note ------ At the momenet bordercolor cannot be set to zero. To remove border, set bordorwidth=1 and bordercolor=[1,1,1] for temporay workaround. Examples ------- Create a network with some metadata >>> import numpy as np >>> import teneto >>> import matplotlib.pyplot as plt >>> np.random.seed(2017) # For reproduceability >>> N = 5 # Number of nodes >>> T = 10 # Number of timepoints >>> # Probability of edge activation >>> birth_rate = 0.2 >>> death_rate = .9 >>> # Add node names into the network and say time units are years, go 1 year per graphlet and startyear is 2007 >>> cfg={} >>> cfg['Fs'] = 1 >>> cfg['timeunit'] = 'Years' >>> cfg['t0'] = 2007 #First year in network >>> #Generate network >>> C = teneto.generatenetwork.rand_binomial([N,T],[birth_rate, death_rate],'contact','bu',netinfo=cfg) Now this network can be plotted >>> fig,ax = plt.subplots(figsize=(10,3)) >>> ax = teneto.plot.graphlet_stack_plot(C,ax,q=10,cmap='Greys') >>> fig.show() .. plot:: import numpy as np import teneto import matplotlib.pyplot as plt np.random.seed(2017) # For reproduceability N = 5 # Number of nodes T = 10 # Number of timepoints # Probability of edge activation birth_rate = 0.2 death_rate = .9 # Add node names into the network and say time units are years, go 1 year per graphlet and startyear is 2007 cfg={} cfg['Fs'] = 1 cfg['timeunit'] = 'Years' cfg['t0'] = 2007 #First year in network #Generate network C = teneto.generatenetwork.rand_binomial([N,T],[birth_rate, death_rate],'contact','bu',netinfo=cfg) fig,ax = plt.subplots(figsize=(10,3)) cmap = 'Greys' ax = teneto.plot.graphlet_stack_plot(C,ax,q=10,cmap=cmap) fig.show() ''' # Get input type (C, G, TO) inputType = checkInput(netin) # Convert TO to C representation if inputType == 'TO': netin = netin.contact inputType = 'C' # Convert C representation to G if inputType == 'C': if timeunit == '': timeunit = netin['timeunit'] if t0 == 1: t0 = netin['t0'] if Fs == 1: Fs = netin['Fs'] netin = contact2graphlet(netin) if timeunit != '': timeunit = ' (' + timeunit + ')' if bordercolor == None: bordercolor = [0, 0, 0] if not isinstance(borderwidth, int): borderwidth = int(borderwidth) print('Warning: borderwidth should be an integer. Converting to integer.') # x and y ranges for each of the graphlet plots v = np.arange(0, netin.shape[0] + 1) vr = np.arange(netin.shape[0], -1, -1) # Preallocatie matrix if vminmax == '' or vminmax == 'absmax' or vminmax == 'maxabs': vminmax = [-np.nanmax(np.abs(netin)), np.nanmax(np.abs(netin))] elif vminmax == 'minmax': vminmax = [np.nanmin(netin), np.nanmax(netin)] qb = q * borderwidth figmat = np.zeros([80 * q + (qb * 2), int(((netin.shape[-1]) * (80 * q) + (qb * 2)) - ((netin.shape[-1] - 1) * q * 80) / 2), 4]) for n in range(0, netin.shape[-1]): # Create graphlet figtmp, axtmp = plt.subplots( 1, facecolor='white', figsize=(q, q), dpi=80) axtmp.pcolormesh(v, vr, netin[:, :, n], cmap=cmap, edgecolor=gridcolor, linewidth=q * 2, vmin=vminmax[0], vmax=vminmax[1]) axtmp.set_xticklabels('') axtmp.set_yticklabels('') axtmp.set_xticks([]) axtmp.set_yticks([]) x0, x1 = axtmp.get_xlim() y0, y1 = axtmp.get_ylim() axtmp.set_aspect((x1 - x0) / (y1 - y0)) axtmp.spines['left'].set_visible(False) axtmp.spines['right'].set_visible(False) axtmp.spines['top'].set_visible(False) axtmp.spines['bottom'].set_visible(False) plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0) # Convert graphlet to RGB values figtmp.canvas.draw() figmattmp = np.fromstring( figtmp.canvas.tostring_rgb(), dtype=np.uint8, sep='') figmattmp = figmattmp.reshape( figtmp.canvas.get_width_height()[::-1] + (3,)) # Close figure for memory plt.close(figtmp) # Manually add a border figmattmp_withborder = np.zeros( [figmattmp.shape[0] + (qb * 2), figmattmp.shape[1] + (qb * 2), 3]) + (np.array(bordercolor) * 255) figmattmp_withborder[qb:-qb, qb:-qb, :] = figmattmp # Make corners rounded. First make a circle and then take the relevant quarter for each corner. y, x = np.ogrid[-qb: qb + 1, -qb: qb + 1] mask = x * x + y * y <= qb * qb # A little clumsy. Should improve Mq1 = np.vstack([[mask[:qb, :qb] == 0], [mask[:qb, :qb] == 0], [ mask[:qb, :qb] == 0]]).transpose([1, 2, 0]) figmattmp_withborder[:qb, :qb, :][Mq1] = 255 Mq1 = np.vstack([[mask[:qb, -qb:] == 0], [mask[:qb, -qb:] == 0], [mask[:qb, -qb:] == 0]]).transpose([1, 2, 0]) figmattmp_withborder[:qb, -qb:, :][Mq1] = 255 Mq1 = np.vstack([[mask[-qb:, :qb] == 0], [mask[-qb:, :qb] == 0], [mask[-qb:, :qb] == 0]]).transpose([1, 2, 0]) figmattmp_withborder[-qb:, :qb, :][Mq1] = 255 Mq1 = np.vstack([[mask[-qb:, -qb:] == 0], [mask[-qb:, -qb:] == 0], [mask[-qb:, -qb:] == 0]]).transpose([1, 2, 0]) figmattmp_withborder[-qb:, -qb:, :][Mq1] = 255 #scale and sheer scale = np.matrix([[1.5, 0, 0], [0, 3, 0], [0, 0, 1]]) sheer = np.matrix([[1, np.tan(np.pi / 12), 0], [0, 1, 0], [0, 0, 1]]) # apply affine transformation figmattmp = ndimage.affine_transform( figmattmp_withborder, sheer * (scale), offset=[-35 * q, 0, 0], cval=255) # At the moment the alpha part does not work if the background colour is anything but white. # Also used for detecting where the graphlets are in the image. trans = np.where(np.sum(figmattmp, axis=2) == 255 * 3) alphamat = np.ones([figmattmp.shape[0], figmattmp.shape[0]]) alphamat[trans[0], trans[1]] = 0 figmattmp = np.dstack([figmattmp, alphamat]) # Add graphlet to matrix if n == 0: figmat[:, n * (80 * q):((n + 1) * (80 * q) + (qb * 2))] = figmattmp else: figmat[:, n * (80 * q) - int((n * q * 80) / 2):int(((n + 1) * (80 * q) + (qb * 2)) - (n * q * 80) / 2)] = figmattmp # Fix colours - due to imshows weirdness when taking nxnx3 figmat[:, :, 0:3] = figmat[:, :, 0:3] / 255 # Cut end of matrix off that isn't need figmat = figmat[:, :-int((q / 2) * 80), :] fid = np.where(figmat[:, :, -1] > 0) fargmin = np.argmin(fid[0]) ymax = np.max(fid[0]) yright = np.max(np.where(figmat[:, fid[1][fargmin], -1] > 0)) xtickloc = np.where(figmat[ymax, :, -1] > 0)[0] # In case there are multiple cases of xtickloc in same graphlet (i.e. they all have the same lowest value) xtickloc = np.delete(xtickloc, np.where(np.diff(xtickloc) == 1)[0] + 1) fid = np.where(figmat[:, :, -1] > 0) ymin = np.min(fid[0]) topfig = np.where(figmat[ymin, :, -1] > 0)[0] topfig = topfig[0:len(topfig):int(len(topfig) / netin.shape[-1])] # Make squares of non transparency around each figure (this fixes transparency issues when white is in the colormap) # for n in range(0,len(topfig)): # fid=np.where(figmat[ymin:ymax,xtickloc[n]:topfig[n],-1]==0) # figmat[ymin:ymax,xtickloc[n]:topfig[n],:3][fid[0],fid[1]]=1 # figmat[ymin+q:ymax-q,xtickloc[n]+q:topfig[n]-q,-1]=1 # Create figure # Sharped edges of figure with median filter if sharpen == 'yes': figmat[:, :, :-1] = ndimage.median_filter(figmat[:, :, :-1], 3) ax.imshow(figmat[:, :, :-1], zorder=1) ax.spines['left'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.set_xticklabels('') ax.set_yticklabels('') ax.set_xticks([]) ax.set_yticks([]) L = int((((netin.shape[-1] - 3) + 1) * (80 * q) + (qb * 2)) - ((netin.shape[-1] - 3) * q * 80) / 2 - q) _ = [ax.plot(range(topfig[i], xt), np.zeros(len(range(topfig[i], xt))) + yright, color='k', linestyle=':', zorder=2) for i, xt in enumerate(xtickloc[1:])] ax.plot(range(0, L), np.zeros(L) + ymax, color='k', linestyle=':', zorder=2) _ = [ax.plot(np.zeros(q * 10) + xt, np.arange(ymax, ymax + q * 10), color='k', linestyle=':', zorder=2) for xt in xtickloc] _ = [ax.text(xt, ymax + q * 20, str(round((i + t0) * Fs, 5)), horizontalalignment='center',) for i, xt in enumerate(xtickloc)] ylim = ax.axes.get_ylim() xlim = ax.axes.get_xlim() ax.set_ylim(ylim[0] + q * 15, 0) ax.set_xlim(xlim[0] - q * 20, xlim[1]) ax.set_xlabel('Time' + timeunit) return ax
python
def graphlet_stack_plot(netin, ax, q=10, cmap='Reds', gridcolor='k', borderwidth=2, bordercolor=None, Fs=1, timeunit='', t0=1, sharpen='yes', vminmax='minmax'): r''' Returns matplotlib axis handle for graphlet_stack_plot. This is a row of transformed connectivity matrices to look like a 3D stack. Parameters ---------- netin : array, dict network input (graphlet or contact) ax : matplotlib ax handles. q : int Quality. Increaseing this will lead to smoother axis but take up more memory. cmap : str Colormap (matplotlib) of graphlets Fs : int Sampling rate. Same as contact-representation (if netin is contact, and input is unset, contact dictionary is used) timeunit : str Unit of time for xlabel. Same as contact-representation (if netin is contact, and input is unset, contact dictionary is used) t0 : int What should the first time point be called. Should be integer. Default 1. gridcolor : str The color of the grid section of the graphlets. Set to 'none' if not wanted. borderwidth : int Scales the size of border. (at the moment it cannot be set to 0.) bordorcolor : color of the border (at the moment it must be in RGB values between 0 and 1 -> this will be changed sometime in the future). Default: black. vminmax : str 'maxabs', 'minmax' (default), or list/array with length of 2. Specifies the min and max colormap value of graphlets. Maxabs entails [-max(abs(G)),max(abs(G))], minmax entails [min(G), max(G)]. Returns -------- ax : matplotlib ax handle Note ------ This function can require a lot of RAM with larger networks. Note ------ At the momenet bordercolor cannot be set to zero. To remove border, set bordorwidth=1 and bordercolor=[1,1,1] for temporay workaround. Examples ------- Create a network with some metadata >>> import numpy as np >>> import teneto >>> import matplotlib.pyplot as plt >>> np.random.seed(2017) # For reproduceability >>> N = 5 # Number of nodes >>> T = 10 # Number of timepoints >>> # Probability of edge activation >>> birth_rate = 0.2 >>> death_rate = .9 >>> # Add node names into the network and say time units are years, go 1 year per graphlet and startyear is 2007 >>> cfg={} >>> cfg['Fs'] = 1 >>> cfg['timeunit'] = 'Years' >>> cfg['t0'] = 2007 #First year in network >>> #Generate network >>> C = teneto.generatenetwork.rand_binomial([N,T],[birth_rate, death_rate],'contact','bu',netinfo=cfg) Now this network can be plotted >>> fig,ax = plt.subplots(figsize=(10,3)) >>> ax = teneto.plot.graphlet_stack_plot(C,ax,q=10,cmap='Greys') >>> fig.show() .. plot:: import numpy as np import teneto import matplotlib.pyplot as plt np.random.seed(2017) # For reproduceability N = 5 # Number of nodes T = 10 # Number of timepoints # Probability of edge activation birth_rate = 0.2 death_rate = .9 # Add node names into the network and say time units are years, go 1 year per graphlet and startyear is 2007 cfg={} cfg['Fs'] = 1 cfg['timeunit'] = 'Years' cfg['t0'] = 2007 #First year in network #Generate network C = teneto.generatenetwork.rand_binomial([N,T],[birth_rate, death_rate],'contact','bu',netinfo=cfg) fig,ax = plt.subplots(figsize=(10,3)) cmap = 'Greys' ax = teneto.plot.graphlet_stack_plot(C,ax,q=10,cmap=cmap) fig.show() ''' # Get input type (C, G, TO) inputType = checkInput(netin) # Convert TO to C representation if inputType == 'TO': netin = netin.contact inputType = 'C' # Convert C representation to G if inputType == 'C': if timeunit == '': timeunit = netin['timeunit'] if t0 == 1: t0 = netin['t0'] if Fs == 1: Fs = netin['Fs'] netin = contact2graphlet(netin) if timeunit != '': timeunit = ' (' + timeunit + ')' if bordercolor == None: bordercolor = [0, 0, 0] if not isinstance(borderwidth, int): borderwidth = int(borderwidth) print('Warning: borderwidth should be an integer. Converting to integer.') # x and y ranges for each of the graphlet plots v = np.arange(0, netin.shape[0] + 1) vr = np.arange(netin.shape[0], -1, -1) # Preallocatie matrix if vminmax == '' or vminmax == 'absmax' or vminmax == 'maxabs': vminmax = [-np.nanmax(np.abs(netin)), np.nanmax(np.abs(netin))] elif vminmax == 'minmax': vminmax = [np.nanmin(netin), np.nanmax(netin)] qb = q * borderwidth figmat = np.zeros([80 * q + (qb * 2), int(((netin.shape[-1]) * (80 * q) + (qb * 2)) - ((netin.shape[-1] - 1) * q * 80) / 2), 4]) for n in range(0, netin.shape[-1]): # Create graphlet figtmp, axtmp = plt.subplots( 1, facecolor='white', figsize=(q, q), dpi=80) axtmp.pcolormesh(v, vr, netin[:, :, n], cmap=cmap, edgecolor=gridcolor, linewidth=q * 2, vmin=vminmax[0], vmax=vminmax[1]) axtmp.set_xticklabels('') axtmp.set_yticklabels('') axtmp.set_xticks([]) axtmp.set_yticks([]) x0, x1 = axtmp.get_xlim() y0, y1 = axtmp.get_ylim() axtmp.set_aspect((x1 - x0) / (y1 - y0)) axtmp.spines['left'].set_visible(False) axtmp.spines['right'].set_visible(False) axtmp.spines['top'].set_visible(False) axtmp.spines['bottom'].set_visible(False) plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0) # Convert graphlet to RGB values figtmp.canvas.draw() figmattmp = np.fromstring( figtmp.canvas.tostring_rgb(), dtype=np.uint8, sep='') figmattmp = figmattmp.reshape( figtmp.canvas.get_width_height()[::-1] + (3,)) # Close figure for memory plt.close(figtmp) # Manually add a border figmattmp_withborder = np.zeros( [figmattmp.shape[0] + (qb * 2), figmattmp.shape[1] + (qb * 2), 3]) + (np.array(bordercolor) * 255) figmattmp_withborder[qb:-qb, qb:-qb, :] = figmattmp # Make corners rounded. First make a circle and then take the relevant quarter for each corner. y, x = np.ogrid[-qb: qb + 1, -qb: qb + 1] mask = x * x + y * y <= qb * qb # A little clumsy. Should improve Mq1 = np.vstack([[mask[:qb, :qb] == 0], [mask[:qb, :qb] == 0], [ mask[:qb, :qb] == 0]]).transpose([1, 2, 0]) figmattmp_withborder[:qb, :qb, :][Mq1] = 255 Mq1 = np.vstack([[mask[:qb, -qb:] == 0], [mask[:qb, -qb:] == 0], [mask[:qb, -qb:] == 0]]).transpose([1, 2, 0]) figmattmp_withborder[:qb, -qb:, :][Mq1] = 255 Mq1 = np.vstack([[mask[-qb:, :qb] == 0], [mask[-qb:, :qb] == 0], [mask[-qb:, :qb] == 0]]).transpose([1, 2, 0]) figmattmp_withborder[-qb:, :qb, :][Mq1] = 255 Mq1 = np.vstack([[mask[-qb:, -qb:] == 0], [mask[-qb:, -qb:] == 0], [mask[-qb:, -qb:] == 0]]).transpose([1, 2, 0]) figmattmp_withborder[-qb:, -qb:, :][Mq1] = 255 #scale and sheer scale = np.matrix([[1.5, 0, 0], [0, 3, 0], [0, 0, 1]]) sheer = np.matrix([[1, np.tan(np.pi / 12), 0], [0, 1, 0], [0, 0, 1]]) # apply affine transformation figmattmp = ndimage.affine_transform( figmattmp_withborder, sheer * (scale), offset=[-35 * q, 0, 0], cval=255) # At the moment the alpha part does not work if the background colour is anything but white. # Also used for detecting where the graphlets are in the image. trans = np.where(np.sum(figmattmp, axis=2) == 255 * 3) alphamat = np.ones([figmattmp.shape[0], figmattmp.shape[0]]) alphamat[trans[0], trans[1]] = 0 figmattmp = np.dstack([figmattmp, alphamat]) # Add graphlet to matrix if n == 0: figmat[:, n * (80 * q):((n + 1) * (80 * q) + (qb * 2))] = figmattmp else: figmat[:, n * (80 * q) - int((n * q * 80) / 2):int(((n + 1) * (80 * q) + (qb * 2)) - (n * q * 80) / 2)] = figmattmp # Fix colours - due to imshows weirdness when taking nxnx3 figmat[:, :, 0:3] = figmat[:, :, 0:3] / 255 # Cut end of matrix off that isn't need figmat = figmat[:, :-int((q / 2) * 80), :] fid = np.where(figmat[:, :, -1] > 0) fargmin = np.argmin(fid[0]) ymax = np.max(fid[0]) yright = np.max(np.where(figmat[:, fid[1][fargmin], -1] > 0)) xtickloc = np.where(figmat[ymax, :, -1] > 0)[0] # In case there are multiple cases of xtickloc in same graphlet (i.e. they all have the same lowest value) xtickloc = np.delete(xtickloc, np.where(np.diff(xtickloc) == 1)[0] + 1) fid = np.where(figmat[:, :, -1] > 0) ymin = np.min(fid[0]) topfig = np.where(figmat[ymin, :, -1] > 0)[0] topfig = topfig[0:len(topfig):int(len(topfig) / netin.shape[-1])] # Make squares of non transparency around each figure (this fixes transparency issues when white is in the colormap) # for n in range(0,len(topfig)): # fid=np.where(figmat[ymin:ymax,xtickloc[n]:topfig[n],-1]==0) # figmat[ymin:ymax,xtickloc[n]:topfig[n],:3][fid[0],fid[1]]=1 # figmat[ymin+q:ymax-q,xtickloc[n]+q:topfig[n]-q,-1]=1 # Create figure # Sharped edges of figure with median filter if sharpen == 'yes': figmat[:, :, :-1] = ndimage.median_filter(figmat[:, :, :-1], 3) ax.imshow(figmat[:, :, :-1], zorder=1) ax.spines['left'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.set_xticklabels('') ax.set_yticklabels('') ax.set_xticks([]) ax.set_yticks([]) L = int((((netin.shape[-1] - 3) + 1) * (80 * q) + (qb * 2)) - ((netin.shape[-1] - 3) * q * 80) / 2 - q) _ = [ax.plot(range(topfig[i], xt), np.zeros(len(range(topfig[i], xt))) + yright, color='k', linestyle=':', zorder=2) for i, xt in enumerate(xtickloc[1:])] ax.plot(range(0, L), np.zeros(L) + ymax, color='k', linestyle=':', zorder=2) _ = [ax.plot(np.zeros(q * 10) + xt, np.arange(ymax, ymax + q * 10), color='k', linestyle=':', zorder=2) for xt in xtickloc] _ = [ax.text(xt, ymax + q * 20, str(round((i + t0) * Fs, 5)), horizontalalignment='center',) for i, xt in enumerate(xtickloc)] ylim = ax.axes.get_ylim() xlim = ax.axes.get_xlim() ax.set_ylim(ylim[0] + q * 15, 0) ax.set_xlim(xlim[0] - q * 20, xlim[1]) ax.set_xlabel('Time' + timeunit) return ax
r''' Returns matplotlib axis handle for graphlet_stack_plot. This is a row of transformed connectivity matrices to look like a 3D stack. Parameters ---------- netin : array, dict network input (graphlet or contact) ax : matplotlib ax handles. q : int Quality. Increaseing this will lead to smoother axis but take up more memory. cmap : str Colormap (matplotlib) of graphlets Fs : int Sampling rate. Same as contact-representation (if netin is contact, and input is unset, contact dictionary is used) timeunit : str Unit of time for xlabel. Same as contact-representation (if netin is contact, and input is unset, contact dictionary is used) t0 : int What should the first time point be called. Should be integer. Default 1. gridcolor : str The color of the grid section of the graphlets. Set to 'none' if not wanted. borderwidth : int Scales the size of border. (at the moment it cannot be set to 0.) bordorcolor : color of the border (at the moment it must be in RGB values between 0 and 1 -> this will be changed sometime in the future). Default: black. vminmax : str 'maxabs', 'minmax' (default), or list/array with length of 2. Specifies the min and max colormap value of graphlets. Maxabs entails [-max(abs(G)),max(abs(G))], minmax entails [min(G), max(G)]. Returns -------- ax : matplotlib ax handle Note ------ This function can require a lot of RAM with larger networks. Note ------ At the momenet bordercolor cannot be set to zero. To remove border, set bordorwidth=1 and bordercolor=[1,1,1] for temporay workaround. Examples ------- Create a network with some metadata >>> import numpy as np >>> import teneto >>> import matplotlib.pyplot as plt >>> np.random.seed(2017) # For reproduceability >>> N = 5 # Number of nodes >>> T = 10 # Number of timepoints >>> # Probability of edge activation >>> birth_rate = 0.2 >>> death_rate = .9 >>> # Add node names into the network and say time units are years, go 1 year per graphlet and startyear is 2007 >>> cfg={} >>> cfg['Fs'] = 1 >>> cfg['timeunit'] = 'Years' >>> cfg['t0'] = 2007 #First year in network >>> #Generate network >>> C = teneto.generatenetwork.rand_binomial([N,T],[birth_rate, death_rate],'contact','bu',netinfo=cfg) Now this network can be plotted >>> fig,ax = plt.subplots(figsize=(10,3)) >>> ax = teneto.plot.graphlet_stack_plot(C,ax,q=10,cmap='Greys') >>> fig.show() .. plot:: import numpy as np import teneto import matplotlib.pyplot as plt np.random.seed(2017) # For reproduceability N = 5 # Number of nodes T = 10 # Number of timepoints # Probability of edge activation birth_rate = 0.2 death_rate = .9 # Add node names into the network and say time units are years, go 1 year per graphlet and startyear is 2007 cfg={} cfg['Fs'] = 1 cfg['timeunit'] = 'Years' cfg['t0'] = 2007 #First year in network #Generate network C = teneto.generatenetwork.rand_binomial([N,T],[birth_rate, death_rate],'contact','bu',netinfo=cfg) fig,ax = plt.subplots(figsize=(10,3)) cmap = 'Greys' ax = teneto.plot.graphlet_stack_plot(C,ax,q=10,cmap=cmap) fig.show()
https://github.com/wiheto/teneto/blob/80d7a83a9adc1714589b020627c45bd5b66248ab/teneto/plot/graphlet_stack_plot.py#L9-L271
wiheto/teneto
teneto/communitydetection/tctc.py
partition_inference
def partition_inference(tctc_mat, comp, tau, sigma, kappa): r""" Takes tctc trajectory matrix and returns dataframe where all multi-label communities are listed Can take a little bit of time with large datasets and optimizaiton could remove some for loops. """ communityinfo = {} communityinfo['community'] = [] communityinfo['start'] = np.empty(0) communityinfo['end'] = np.empty(0) communityinfo['size'] = np.empty(0) for i, tcomp in enumerate(comp): # This can go in parallel loop if len(tcomp) > 0: for traj in tcomp: # Check it does not already exist. ignore = 0 preexisting = 0 if i != 0: cutoff = i-1-kappa if cutoff < 0: cutoff = 0 if np.any(np.sum(np.sum(tctc_mat[traj, :, cutoff:i][:, traj], axis=0), axis=0) == np.power(len(traj), 2)): # Make sure that a small trajectory could exist for checknode in np.where(communityinfo['end']>=cutoff)[0]: if traj == communityinfo['community'][checknode]: ignore = 1 if ignore == 0: for checknode in np.where(communityinfo['end']>=cutoff)[0]: if set(communityinfo['community'][checknode]).issuperset(traj): preexisting = 1 if ignore == 0: # Check how long it continues # For efficiency, increase in blocks approxmaxlength = tau*2 a = np.sum( np.sum(tctc_mat[traj, :, i:i+approxmaxlength][:, traj], axis=0), axis=0) if len(traj)*len(traj)*approxmaxlength == a.sum(): ok = 0 ii = 1 while ok == 0: b = np.sum(np.sum( tctc_mat[traj, :, i+(approxmaxlength*ii):i+(approxmaxlength*(ii+1))][:, traj], axis=0), axis=0) a = np.append(a, b) if len(traj)*len(traj)*approxmaxlength != b.sum(): ok = 1 if i+(approxmaxlength*(ii+1)) > tctc_mat.shape[-1]: ok = 1 ii += 1 a = np.where(a == np.power(len(traj), 2))[0] # Add an additional value that is false in case end of time series if len(a) == 1: stopind = i + 1 else: a = np.append(a, a.max()+kappa+2) # Find the stop index (if stopind = 4 and start = 0, then tctc_mat[:,:,start:stopind]==1) stopind = i + np.split(a, np.where( np.diff(a) > kappa+1)[0]+1)[0][-1] + 1 # Add trajectory to dictionary if ((stopind - i) >= tau or preexisting == 1) and len(traj) >= sigma: communityinfo['community'].append(sorted(traj)) communityinfo['start'] = np.append(communityinfo['start'], int(i)) communityinfo['end'] = np.append( communityinfo['end'], int(stopind)) communityinfo['size'] = np.append(communityinfo['size'], len(traj)) communityinfo = pd.DataFrame(communityinfo) communityinfo['start'] = communityinfo['start'].astype(int) communityinfo['end'] = communityinfo['end'].astype(int) # First check that there is not already a trajectory that is ongoing badrows = [] for v in communityinfo.iterrows(): skipselrule = (communityinfo['end'] == v[1]['end']) for u in communityinfo[skipselrule].iterrows(): a = 1 if u[1]['start'] > v[1]['start'] and sorted(u[1]['community']) == sorted(v[1]['community']): badrows.append(u[0]) communityinfo = communityinfo.drop(badrows) # Then see if any subset trajectory can be placed earlier in time. for v in communityinfo.iterrows(): skipselrule = (communityinfo['end'] <= v[1]['start']) & ( communityinfo['end']+kappa >= v[1]['start']) for u in communityinfo[skipselrule].iterrows(): a = 1 if set(u[1]['community']).issuperset(v[1]['community']): communityinfo.loc[v[0], 'start'] = u[1]['start'] # It is possible to make the condition below effective_length communityinfo['length'] = np.array(communityinfo['end']) - np.array(communityinfo['start']) communityinfo = communityinfo[communityinfo['length'] >= tau] communityinfo = communityinfo[communityinfo['size'] >= sigma] # Make sure that the traj is not completely enguled by another badrows = [] if kappa > 0: for v in communityinfo.iterrows(): skipselrule = (communityinfo['end'] == v[1]['end']) & ( communityinfo['start'] < v[1]['start']) for u in communityinfo[skipselrule].iterrows(): if set(v[1]['community']).issubset(u[1]['community']): badrows.append(v[0]) communityinfo = communityinfo.drop(badrows) return communityinfo
python
def partition_inference(tctc_mat, comp, tau, sigma, kappa): r""" Takes tctc trajectory matrix and returns dataframe where all multi-label communities are listed Can take a little bit of time with large datasets and optimizaiton could remove some for loops. """ communityinfo = {} communityinfo['community'] = [] communityinfo['start'] = np.empty(0) communityinfo['end'] = np.empty(0) communityinfo['size'] = np.empty(0) for i, tcomp in enumerate(comp): # This can go in parallel loop if len(tcomp) > 0: for traj in tcomp: # Check it does not already exist. ignore = 0 preexisting = 0 if i != 0: cutoff = i-1-kappa if cutoff < 0: cutoff = 0 if np.any(np.sum(np.sum(tctc_mat[traj, :, cutoff:i][:, traj], axis=0), axis=0) == np.power(len(traj), 2)): # Make sure that a small trajectory could exist for checknode in np.where(communityinfo['end']>=cutoff)[0]: if traj == communityinfo['community'][checknode]: ignore = 1 if ignore == 0: for checknode in np.where(communityinfo['end']>=cutoff)[0]: if set(communityinfo['community'][checknode]).issuperset(traj): preexisting = 1 if ignore == 0: # Check how long it continues # For efficiency, increase in blocks approxmaxlength = tau*2 a = np.sum( np.sum(tctc_mat[traj, :, i:i+approxmaxlength][:, traj], axis=0), axis=0) if len(traj)*len(traj)*approxmaxlength == a.sum(): ok = 0 ii = 1 while ok == 0: b = np.sum(np.sum( tctc_mat[traj, :, i+(approxmaxlength*ii):i+(approxmaxlength*(ii+1))][:, traj], axis=0), axis=0) a = np.append(a, b) if len(traj)*len(traj)*approxmaxlength != b.sum(): ok = 1 if i+(approxmaxlength*(ii+1)) > tctc_mat.shape[-1]: ok = 1 ii += 1 a = np.where(a == np.power(len(traj), 2))[0] # Add an additional value that is false in case end of time series if len(a) == 1: stopind = i + 1 else: a = np.append(a, a.max()+kappa+2) # Find the stop index (if stopind = 4 and start = 0, then tctc_mat[:,:,start:stopind]==1) stopind = i + np.split(a, np.where( np.diff(a) > kappa+1)[0]+1)[0][-1] + 1 # Add trajectory to dictionary if ((stopind - i) >= tau or preexisting == 1) and len(traj) >= sigma: communityinfo['community'].append(sorted(traj)) communityinfo['start'] = np.append(communityinfo['start'], int(i)) communityinfo['end'] = np.append( communityinfo['end'], int(stopind)) communityinfo['size'] = np.append(communityinfo['size'], len(traj)) communityinfo = pd.DataFrame(communityinfo) communityinfo['start'] = communityinfo['start'].astype(int) communityinfo['end'] = communityinfo['end'].astype(int) # First check that there is not already a trajectory that is ongoing badrows = [] for v in communityinfo.iterrows(): skipselrule = (communityinfo['end'] == v[1]['end']) for u in communityinfo[skipselrule].iterrows(): a = 1 if u[1]['start'] > v[1]['start'] and sorted(u[1]['community']) == sorted(v[1]['community']): badrows.append(u[0]) communityinfo = communityinfo.drop(badrows) # Then see if any subset trajectory can be placed earlier in time. for v in communityinfo.iterrows(): skipselrule = (communityinfo['end'] <= v[1]['start']) & ( communityinfo['end']+kappa >= v[1]['start']) for u in communityinfo[skipselrule].iterrows(): a = 1 if set(u[1]['community']).issuperset(v[1]['community']): communityinfo.loc[v[0], 'start'] = u[1]['start'] # It is possible to make the condition below effective_length communityinfo['length'] = np.array(communityinfo['end']) - np.array(communityinfo['start']) communityinfo = communityinfo[communityinfo['length'] >= tau] communityinfo = communityinfo[communityinfo['size'] >= sigma] # Make sure that the traj is not completely enguled by another badrows = [] if kappa > 0: for v in communityinfo.iterrows(): skipselrule = (communityinfo['end'] == v[1]['end']) & ( communityinfo['start'] < v[1]['start']) for u in communityinfo[skipselrule].iterrows(): if set(v[1]['community']).issubset(u[1]['community']): badrows.append(v[0]) communityinfo = communityinfo.drop(badrows) return communityinfo
r""" Takes tctc trajectory matrix and returns dataframe where all multi-label communities are listed Can take a little bit of time with large datasets and optimizaiton could remove some for loops.
https://github.com/wiheto/teneto/blob/80d7a83a9adc1714589b020627c45bd5b66248ab/teneto/communitydetection/tctc.py#L8-L114
wiheto/teneto
teneto/communitydetection/tctc.py
tctc
def tctc(data, tau, epsilon, sigma, kappa=0, largedataset=False, rule='flock', noise=None, raw_signal='amplitude', output='array', tempdir=None, njobs=1, largestonly=False): r""" Runs TCTC community detection Parameters ---------- data : array Multiariate series with dimensions: "time, node" that belong to a network. tau : int tau specifies the minimum number of time-points of each temporal community must last. epsilon : float epsilon specifies the distance points in a community can be away from each other. sigma : int sigma specifies the minimum number of nodes that must be in a community. kappa : int kappa specifies the number of consecutive time-points that can break the distance or size rules. largedataset : bool If true, runs with HDF5 (beta) rule : str Can be 'convoy' or 'flock'. - flock entials all nodes are max epsilon apart in a communiy. - convoy entails that there is at least one node that is epsilon apart. noise : array (defauly None) Timeseries of dimensions "time, N" where N is the number of noise time series added. Any community that contains this time series is excluded. raw_signal : str Can be amplitude or phase output : str Can be array or df or None tempdir : str Specify where the temporary directory is if largedataset is True njobs : int number of jobs (not implemented yet) largestonly : bool (default False) If True only considers largest communities in rule application (should generally be false) Returns ----------- tctc : array, df """ # Get distance matrix if largedataset: raise NotImplementedError( 'HDF5 implementation for large datasets is not available yet') else: N_data = data.shape[1] if noise is not None: if len(noise.shape) == 1: noise = np.array(noise, ndmin=2).transpose() N_data = data.shape[1] data = np.hstack([data, noise]) N = data.shape[1] #T = data.shape[0] if raw_signal == 'amplitude': d = np.array([np.abs(data[:, n]-data[:, m]) for n in range(data.shape[-1]) for m in range(data.shape[-1])]) d = np.reshape(d, [data.shape[-1], data.shape[-1], data.shape[0]]) elif raw_signal == 'phase': analytic_signal = hilbert(data.transpose()) instantaneous_phase = np.angle(analytic_signal) d = np.zeros([data.shape[1], data.shape[1], data.shape[0]]) for n in range(data.shape[1]): for m in range(data.shape[1]): d[n, m, :] = np.remainder( np.abs(instantaneous_phase[n, :] - instantaneous_phase[m, :]), np.pi) # Shape of datin (with any addiitonal 0s or noise added to nodes) dat_shape = [int(d.shape[-1]), int(d.shape[0])] # Make trajectory matrix 1 where distance critera is kept tctc_mat = np.zeros([dat_shape[1], dat_shape[1], dat_shape[0]]) tctc_mat[:, :, :][d <= epsilon] = 1 t1 = 1 t2 = 2 # The next two rules have to be run iteratively until it converges. i.e. when applying the sigma and tau parameters, if nothing more is pruned, then this is complete # There may be a case where running it in this order could through some value that is unwanted due to the skipping mechanic. # Doing it in the other order does create possible bad values. while t1 != t2: t1 = tctc_mat.sum() cliques = [] if tctc_mat.sum() > 0: # Run the trajectory clustering rule if rule == 'flock': cliques = [list(filter(lambda x: (len(x) >= sigma) and (len(set(x).intersection(np.arange(N_data, N+1))) == 0), nx.find_cliques( nx.Graph(tctc_mat[:, :, t])))) for t in range(tctc_mat.shape[-1])] #cliques = [] # with ProcessPoolExecutor(max_workers=njobs) as executor: # job = {executor.submit(_cluster_flocks,tctc_mat[:,:,t],sigma) for t in range(tctc_mat.shape[-1])} # for j in as_completed(job): # cliques.append(j.result()[0]) elif rule == 'convoy': cliques = [list(map(list, filter(lambda x: (len(x) >= sigma) and (len(set(x).intersection(np.arange(N_data, N+1))) == 0), nx.connected_components( nx.Graph(tctc_mat[:, :, t]))))) for t in range(tctc_mat.shape[-1])] # Reset the trajectory matrix (since info is now in "cliques"). # Add the infomation from clique into tctc_mat (i.e sigma is now implemented) tctc_mat = np.zeros([dat_shape[1], dat_shape[1], dat_shape[0]]) # Due to advanced index copy, I've done this with too many forloops for t in range(dat_shape[0]): for c in cliques[t]: # Make one of index communitytors a list. cv = [[i] for i in c] tctc_mat[cv, c, t] = 1 if tctc_mat.sum() > 0: # Now impose tau criteria. This is done by flattening and (since tau has been added to the final dimension) # Add some padding as this is going to be needed when flattening (ie different lines must have at least tau+kappa spacing between them) tctc_mat = np.dstack([np.zeros([dat_shape[1], dat_shape[1], 1]), tctc_mat, np.zeros( [dat_shape[1], dat_shape[1], tau+kappa])]) # Make to singular communitytor tctc_mat_community = np.array(tctc_mat.flatten()) # Add an extra 0 tctc_mat_dif = np.append(tctc_mat_community, 0) # Use diff. Where there is a 1 trajectory starts, where -1 trajectory ends tctc_mat_dif = np.diff(tctc_mat_dif) start_ones = np.where(tctc_mat_dif == 1)[0] end_ones = np.where(tctc_mat_dif == -1)[0] skip_ind = np.where(start_ones[1:]-end_ones[:-1] <= kappa)[0] start_ones = np.delete(start_ones, skip_ind+1) end_ones = np.delete(end_ones, skip_ind) traj_len = end_ones - start_ones # whereever traj_len is not long enough, loop through ind+t and make these 0 ind = start_ones[traj_len >= tau] + 1 l2 = traj_len[traj_len >= tau] # for t in range(tau-1): # this didn't work (but was quicker) because of tau bug # tctc_mat[ind+t] = 0 # Looping over each valid trajectory instance is slower but the safest was to impose tau restrain and reinserting it. tctc_mat = np.zeros(tctc_mat_community.shape) for i in range(len(ind)): tctc_mat[ind[i]:ind[i]+l2[i]] = 1 tctc_mat = tctc_mat.reshape( dat_shape[1], dat_shape[1], dat_shape[0]+kappa+tau+1) # remove padding tctc_mat = tctc_mat[:, :, 1:dat_shape[0]+1] t2 = tctc_mat.sum() # remove noise tctc_mat = tctc_mat[:N_data, :N_data] if output == 'array': return tctc_mat elif output == 'df': if np.sum(tctc_mat) != 0: df = partition_inference( tctc_mat, cliques, tau, sigma, kappa) return df else: return []
python
def tctc(data, tau, epsilon, sigma, kappa=0, largedataset=False, rule='flock', noise=None, raw_signal='amplitude', output='array', tempdir=None, njobs=1, largestonly=False): r""" Runs TCTC community detection Parameters ---------- data : array Multiariate series with dimensions: "time, node" that belong to a network. tau : int tau specifies the minimum number of time-points of each temporal community must last. epsilon : float epsilon specifies the distance points in a community can be away from each other. sigma : int sigma specifies the minimum number of nodes that must be in a community. kappa : int kappa specifies the number of consecutive time-points that can break the distance or size rules. largedataset : bool If true, runs with HDF5 (beta) rule : str Can be 'convoy' or 'flock'. - flock entials all nodes are max epsilon apart in a communiy. - convoy entails that there is at least one node that is epsilon apart. noise : array (defauly None) Timeseries of dimensions "time, N" where N is the number of noise time series added. Any community that contains this time series is excluded. raw_signal : str Can be amplitude or phase output : str Can be array or df or None tempdir : str Specify where the temporary directory is if largedataset is True njobs : int number of jobs (not implemented yet) largestonly : bool (default False) If True only considers largest communities in rule application (should generally be false) Returns ----------- tctc : array, df """ # Get distance matrix if largedataset: raise NotImplementedError( 'HDF5 implementation for large datasets is not available yet') else: N_data = data.shape[1] if noise is not None: if len(noise.shape) == 1: noise = np.array(noise, ndmin=2).transpose() N_data = data.shape[1] data = np.hstack([data, noise]) N = data.shape[1] #T = data.shape[0] if raw_signal == 'amplitude': d = np.array([np.abs(data[:, n]-data[:, m]) for n in range(data.shape[-1]) for m in range(data.shape[-1])]) d = np.reshape(d, [data.shape[-1], data.shape[-1], data.shape[0]]) elif raw_signal == 'phase': analytic_signal = hilbert(data.transpose()) instantaneous_phase = np.angle(analytic_signal) d = np.zeros([data.shape[1], data.shape[1], data.shape[0]]) for n in range(data.shape[1]): for m in range(data.shape[1]): d[n, m, :] = np.remainder( np.abs(instantaneous_phase[n, :] - instantaneous_phase[m, :]), np.pi) # Shape of datin (with any addiitonal 0s or noise added to nodes) dat_shape = [int(d.shape[-1]), int(d.shape[0])] # Make trajectory matrix 1 where distance critera is kept tctc_mat = np.zeros([dat_shape[1], dat_shape[1], dat_shape[0]]) tctc_mat[:, :, :][d <= epsilon] = 1 t1 = 1 t2 = 2 # The next two rules have to be run iteratively until it converges. i.e. when applying the sigma and tau parameters, if nothing more is pruned, then this is complete # There may be a case where running it in this order could through some value that is unwanted due to the skipping mechanic. # Doing it in the other order does create possible bad values. while t1 != t2: t1 = tctc_mat.sum() cliques = [] if tctc_mat.sum() > 0: # Run the trajectory clustering rule if rule == 'flock': cliques = [list(filter(lambda x: (len(x) >= sigma) and (len(set(x).intersection(np.arange(N_data, N+1))) == 0), nx.find_cliques( nx.Graph(tctc_mat[:, :, t])))) for t in range(tctc_mat.shape[-1])] #cliques = [] # with ProcessPoolExecutor(max_workers=njobs) as executor: # job = {executor.submit(_cluster_flocks,tctc_mat[:,:,t],sigma) for t in range(tctc_mat.shape[-1])} # for j in as_completed(job): # cliques.append(j.result()[0]) elif rule == 'convoy': cliques = [list(map(list, filter(lambda x: (len(x) >= sigma) and (len(set(x).intersection(np.arange(N_data, N+1))) == 0), nx.connected_components( nx.Graph(tctc_mat[:, :, t]))))) for t in range(tctc_mat.shape[-1])] # Reset the trajectory matrix (since info is now in "cliques"). # Add the infomation from clique into tctc_mat (i.e sigma is now implemented) tctc_mat = np.zeros([dat_shape[1], dat_shape[1], dat_shape[0]]) # Due to advanced index copy, I've done this with too many forloops for t in range(dat_shape[0]): for c in cliques[t]: # Make one of index communitytors a list. cv = [[i] for i in c] tctc_mat[cv, c, t] = 1 if tctc_mat.sum() > 0: # Now impose tau criteria. This is done by flattening and (since tau has been added to the final dimension) # Add some padding as this is going to be needed when flattening (ie different lines must have at least tau+kappa spacing between them) tctc_mat = np.dstack([np.zeros([dat_shape[1], dat_shape[1], 1]), tctc_mat, np.zeros( [dat_shape[1], dat_shape[1], tau+kappa])]) # Make to singular communitytor tctc_mat_community = np.array(tctc_mat.flatten()) # Add an extra 0 tctc_mat_dif = np.append(tctc_mat_community, 0) # Use diff. Where there is a 1 trajectory starts, where -1 trajectory ends tctc_mat_dif = np.diff(tctc_mat_dif) start_ones = np.where(tctc_mat_dif == 1)[0] end_ones = np.where(tctc_mat_dif == -1)[0] skip_ind = np.where(start_ones[1:]-end_ones[:-1] <= kappa)[0] start_ones = np.delete(start_ones, skip_ind+1) end_ones = np.delete(end_ones, skip_ind) traj_len = end_ones - start_ones # whereever traj_len is not long enough, loop through ind+t and make these 0 ind = start_ones[traj_len >= tau] + 1 l2 = traj_len[traj_len >= tau] # for t in range(tau-1): # this didn't work (but was quicker) because of tau bug # tctc_mat[ind+t] = 0 # Looping over each valid trajectory instance is slower but the safest was to impose tau restrain and reinserting it. tctc_mat = np.zeros(tctc_mat_community.shape) for i in range(len(ind)): tctc_mat[ind[i]:ind[i]+l2[i]] = 1 tctc_mat = tctc_mat.reshape( dat_shape[1], dat_shape[1], dat_shape[0]+kappa+tau+1) # remove padding tctc_mat = tctc_mat[:, :, 1:dat_shape[0]+1] t2 = tctc_mat.sum() # remove noise tctc_mat = tctc_mat[:N_data, :N_data] if output == 'array': return tctc_mat elif output == 'df': if np.sum(tctc_mat) != 0: df = partition_inference( tctc_mat, cliques, tau, sigma, kappa) return df else: return []
r""" Runs TCTC community detection Parameters ---------- data : array Multiariate series with dimensions: "time, node" that belong to a network. tau : int tau specifies the minimum number of time-points of each temporal community must last. epsilon : float epsilon specifies the distance points in a community can be away from each other. sigma : int sigma specifies the minimum number of nodes that must be in a community. kappa : int kappa specifies the number of consecutive time-points that can break the distance or size rules. largedataset : bool If true, runs with HDF5 (beta) rule : str Can be 'convoy' or 'flock'. - flock entials all nodes are max epsilon apart in a communiy. - convoy entails that there is at least one node that is epsilon apart. noise : array (defauly None) Timeseries of dimensions "time, N" where N is the number of noise time series added. Any community that contains this time series is excluded. raw_signal : str Can be amplitude or phase output : str Can be array or df or None tempdir : str Specify where the temporary directory is if largedataset is True njobs : int number of jobs (not implemented yet) largestonly : bool (default False) If True only considers largest communities in rule application (should generally be false) Returns ----------- tctc : array, df
https://github.com/wiheto/teneto/blob/80d7a83a9adc1714589b020627c45bd5b66248ab/teneto/communitydetection/tctc.py#L117-L271
wiheto/teneto
teneto/networkmeasures/temporal_efficiency.py
temporal_efficiency
def temporal_efficiency(tnet=None, paths=None, calc='global'): r""" Returns temporal efficiency estimate. BU networks only. Parameters ---------- Input should be *either* tnet or paths. data : array or dict Temporal network input (graphlet or contact). nettype: 'bu', 'bd'. paths : pandas dataframe Output of TenetoBIDS.networkmeasure.shortest_temporal_paths calc : str Options: 'global' (default) - measure averages over time and nodes; 'node' or 'node_from' average over nodes (i) and time. Giving average efficiency for i to j; 'node_to' measure average over nodes j and time; Giving average efficiency using paths to j from i; Returns ------- E : array Global temporal efficiency """ if tnet is not None and paths is not None: raise ValueError('Only network or path input allowed.') if tnet is None and paths is None: raise ValueError('No input.') # if shortest paths are not calculated, calculate them if tnet is not None: paths = shortest_temporal_path(tnet) pathmat = np.zeros([paths[['from', 'to']].max().max( )+1, paths[['from', 'to']].max().max()+1, paths[['t_start']].max().max()+1]) * np.nan pathmat[paths['from'].values, paths['to'].values, paths['t_start'].values] = paths['temporal-distance'] # Calculate efficiency which is 1 over the mean path. if calc == 'global': eff = 1 / np.nanmean(pathmat) elif calc == 'node' or calc == 'node_from': eff = 1 / np.nanmean(np.nanmean(pathmat, axis=2), axis=1) elif calc == 'node_to': eff = 1 / np.nanmean(np.nanmean(pathmat, axis=2), axis=0) return eff
python
def temporal_efficiency(tnet=None, paths=None, calc='global'): r""" Returns temporal efficiency estimate. BU networks only. Parameters ---------- Input should be *either* tnet or paths. data : array or dict Temporal network input (graphlet or contact). nettype: 'bu', 'bd'. paths : pandas dataframe Output of TenetoBIDS.networkmeasure.shortest_temporal_paths calc : str Options: 'global' (default) - measure averages over time and nodes; 'node' or 'node_from' average over nodes (i) and time. Giving average efficiency for i to j; 'node_to' measure average over nodes j and time; Giving average efficiency using paths to j from i; Returns ------- E : array Global temporal efficiency """ if tnet is not None and paths is not None: raise ValueError('Only network or path input allowed.') if tnet is None and paths is None: raise ValueError('No input.') # if shortest paths are not calculated, calculate them if tnet is not None: paths = shortest_temporal_path(tnet) pathmat = np.zeros([paths[['from', 'to']].max().max( )+1, paths[['from', 'to']].max().max()+1, paths[['t_start']].max().max()+1]) * np.nan pathmat[paths['from'].values, paths['to'].values, paths['t_start'].values] = paths['temporal-distance'] # Calculate efficiency which is 1 over the mean path. if calc == 'global': eff = 1 / np.nanmean(pathmat) elif calc == 'node' or calc == 'node_from': eff = 1 / np.nanmean(np.nanmean(pathmat, axis=2), axis=1) elif calc == 'node_to': eff = 1 / np.nanmean(np.nanmean(pathmat, axis=2), axis=0) return eff
r""" Returns temporal efficiency estimate. BU networks only. Parameters ---------- Input should be *either* tnet or paths. data : array or dict Temporal network input (graphlet or contact). nettype: 'bu', 'bd'. paths : pandas dataframe Output of TenetoBIDS.networkmeasure.shortest_temporal_paths calc : str Options: 'global' (default) - measure averages over time and nodes; 'node' or 'node_from' average over nodes (i) and time. Giving average efficiency for i to j; 'node_to' measure average over nodes j and time; Giving average efficiency using paths to j from i; Returns ------- E : array Global temporal efficiency
https://github.com/wiheto/teneto/blob/80d7a83a9adc1714589b020627c45bd5b66248ab/teneto/networkmeasures/temporal_efficiency.py#L9-L60
wiheto/teneto
teneto/classes/network.py
TemporalNetwork.network_from_array
def network_from_array(self, array): """impo Defines a network from an array. Parameters ---------- array : array 3D numpy array. """ if len(array.shape) == 2: array = np.array(array, ndmin=3).transpose([1, 2, 0]) teneto.utils.check_TemporalNetwork_input(array, 'array') uvals = np.unique(array) if len(uvals) == 2 and 1 in uvals and 0 in uvals: i, j, t = np.where(array == 1) self.network = pd.DataFrame(data={'i': i, 'j': j, 't': t}) else: i, j, t = np.where(array != 0) w = array[array != 0] self.network = pd.DataFrame( data={'i': i, 'j': j, 't': t, 'weight': w}) self.N = int(array.shape[0]) self.T = int(array.shape[-1]) self._update_network()
python
def network_from_array(self, array): """impo Defines a network from an array. Parameters ---------- array : array 3D numpy array. """ if len(array.shape) == 2: array = np.array(array, ndmin=3).transpose([1, 2, 0]) teneto.utils.check_TemporalNetwork_input(array, 'array') uvals = np.unique(array) if len(uvals) == 2 and 1 in uvals and 0 in uvals: i, j, t = np.where(array == 1) self.network = pd.DataFrame(data={'i': i, 'j': j, 't': t}) else: i, j, t = np.where(array != 0) w = array[array != 0] self.network = pd.DataFrame( data={'i': i, 'j': j, 't': t, 'weight': w}) self.N = int(array.shape[0]) self.T = int(array.shape[-1]) self._update_network()
impo Defines a network from an array. Parameters ---------- array : array 3D numpy array.
https://github.com/wiheto/teneto/blob/80d7a83a9adc1714589b020627c45bd5b66248ab/teneto/classes/network.py#L179-L202
wiheto/teneto
teneto/classes/network.py
TemporalNetwork.network_from_df
def network_from_df(self, df): """ Defines a network from an array. Parameters ---------- array : array Pandas dataframe. Should have columns: \'i\', \'j\', \'t\' where i and j are node indicies and t is the temporal index. If weighted, should also include \'weight\'. Each row is an edge. """ teneto.utils.check_TemporalNetwork_input(df, 'df') self.network = df self._update_network()
python
def network_from_df(self, df): """ Defines a network from an array. Parameters ---------- array : array Pandas dataframe. Should have columns: \'i\', \'j\', \'t\' where i and j are node indicies and t is the temporal index. If weighted, should also include \'weight\'. Each row is an edge. """ teneto.utils.check_TemporalNetwork_input(df, 'df') self.network = df self._update_network()
Defines a network from an array. Parameters ---------- array : array Pandas dataframe. Should have columns: \'i\', \'j\', \'t\' where i and j are node indicies and t is the temporal index. If weighted, should also include \'weight\'. Each row is an edge.
https://github.com/wiheto/teneto/blob/80d7a83a9adc1714589b020627c45bd5b66248ab/teneto/classes/network.py#L213-L225