Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
webersni commited on
Commit
04341ba
1 Parent(s): 9f114c1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +137 -0
README.md CHANGED
@@ -1,5 +1,21 @@
1
  ---
 
 
 
 
 
 
2
  license: cc-by-nc-sa-4.0
 
 
 
 
 
 
 
 
 
 
3
  dataset_info:
4
  features:
5
  - name: text
@@ -20,3 +36,124 @@ dataset_info:
20
  download_size: 373454
21
  dataset_size: 666342
22
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - found
6
+ language:
7
+ - en
8
  license: cc-by-nc-sa-4.0
9
+ multilinguality:
10
+ - monolingual
11
+ size_categories:
12
+ - 1K<n<10K
13
+ source_datasets:
14
+ - original
15
+ task_categories:
16
+ - text-classification
17
+ task_ids: []
18
+ pretty_name: ClimateSpecificity
19
  dataset_info:
20
  features:
21
  - name: text
 
36
  download_size: 373454
37
  dataset_size: 666342
38
  ---
39
+
40
+ # Dataset Card for climate_specificity
41
+
42
+ ## Dataset Description
43
+
44
+ - **Homepage:** [climatebert.ai](https://climatebert.ai)
45
+ - **Repository:**
46
+ - **Paper:** [papers.ssrn.com/sol3/papers.cfm?abstract_id=3998435](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3998435)
47
+ - **Leaderboard:**
48
+ - **Point of Contact:** [Nicolas Webersinke](mailto:[email protected])
49
+
50
+ ### Dataset Summary
51
+
52
+ We introduce an expert-annotated dataset for classifying the climate-related specificity of climate-related paragraphs in corporate disclosures.
53
+
54
+ ### Supported Tasks and Leaderboards
55
+
56
+ The dataset supports a binary classification task of whether a given climate-related paragraph is specific or not.
57
+
58
+ ### Languages
59
+
60
+ The text in the dataset is in English.
61
+
62
+ ## Dataset Structure
63
+
64
+ ### Data Instances
65
+
66
+ ```
67
+ {
68
+ 'text': '− Scope 3: Optional scope that includes indirect emissions associated with the goods and services supply chain produced outside the organization. Included are emissions from the transport of products from our logistics centres to stores (downstream) performed by external logistics operators (air, land and sea transport) as well as the emissions associated with electricity consumption in franchise stores.',
69
+ 'label': 1
70
+ }
71
+ ```
72
+
73
+ ### Data Fields
74
+
75
+ - text: a climate-related paragraph extracted from corporate annual reports and sustainability reports
76
+ - label: the label (0 -> non-specific, 1 -> specific)
77
+
78
+ ### Data Splits
79
+
80
+ The dataset is split into:
81
+ - train: 1,000
82
+ - test: 320
83
+
84
+ ## Dataset Creation
85
+
86
+ ### Curation Rationale
87
+
88
+ [More Information Needed]
89
+
90
+ ### Source Data
91
+
92
+ #### Initial Data Collection and Normalization
93
+
94
+ Our dataset contains climate-related paragraphs extracted from financial disclosures by firms. We collect text from corporate annual reports and sustainability reports.
95
+
96
+ For more information regarding our sample selection, please refer to the Appendix of our paper (see [citation](#citation-information)).
97
+
98
+ #### Who are the source language producers?
99
+
100
+ Mainly large listed companies.
101
+
102
+ ### Annotations
103
+
104
+ #### Annotation process
105
+
106
+ For more information on our annotation process and annotation guidelines, please refer to the Appendix of our paper (see [citation](#citation-information)).
107
+
108
+ #### Who are the annotators?
109
+
110
+ The authors and students at Universität Zürich and Friedrich-Alexander-Universität Erlangen-Nürnberg with majors in finance and sustainable finance.
111
+
112
+ ### Personal and Sensitive Information
113
+
114
+ Since our text sources contain public information, no personal and sensitive information should be included.
115
+
116
+ ## Considerations for Using the Data
117
+
118
+ ### Social Impact of Dataset
119
+
120
+ [More Information Needed]
121
+
122
+ ### Discussion of Biases
123
+
124
+ [More Information Needed]
125
+
126
+ ### Other Known Limitations
127
+
128
+ [More Information Needed]
129
+
130
+ ## Additional Information
131
+
132
+ ### Dataset Curators
133
+
134
+ - Julia Anna Bingler
135
+ - Mathias Kraus
136
+ - Markus Leippold
137
+ - Nicolas Webersinke
138
+
139
+ ### Licensing Information
140
+
141
+ This dataset is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license (cc-by-nc-sa-4.0). To view a copy of this license, visit [creativecommons.org/licenses/by-nc-sa/4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/).
142
+
143
+ If you are interested in commercial use of the dataset, please contact [[email protected]](mailto:[email protected]).
144
+
145
+ ### Citation Information
146
+
147
+ ```bibtex
148
+ @techreport{bingler2023cheaptalk,
149
+ title={How Cheap Talk in Climate Disclosures Relates to Climate Initiatives, Corporate Emissions, and Reputation Risk},
150
+ author={Bingler, Julia and Kraus, Mathias and Leippold, Markus and Webersinke, Nicolas},
151
+ type={Working paper},
152
+ institution={Available at SSRN 3998435},
153
+ year={2023}
154
+ }
155
+ ```
156
+
157
+ ### Contributions
158
+
159
+ Thanks to [@webersni](https://github.com/webersni) for adding this dataset.