kiddothe2b
commited on
Commit
•
23b4df8
1
Parent(s):
2ae174e
Create eu_debates.py
Browse files- eu_debates.py +112 -0
eu_debates.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""EU Debates"""
|
2 |
+
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import textwrap
|
6 |
+
|
7 |
+
import datasets
|
8 |
+
|
9 |
+
|
10 |
+
MAIN_CITATION = """
|
11 |
+
@inproceedings{chalkidis-and-brandl-eu-llama-2024,
|
12 |
+
title = "Llama meets EU: Investigating the European political spectrum through the lens of LLMs",
|
13 |
+
author = "Chalkidis, Ilias and
|
14 |
+
Stephanie Brandl",
|
15 |
+
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics",
|
16 |
+
month = jun,
|
17 |
+
year = "2021",
|
18 |
+
address = "Mexico City, Mexico",
|
19 |
+
publisher = "Association for Computational Linguistics",
|
20 |
+
}
|
21 |
+
"""
|
22 |
+
|
23 |
+
_DESCRIPTION = """
|
24 |
+
EU Debates is a corpus of parliamentary proceedings (debates) from the EU parliament. The corpus consists of approx. 87k individual speeches in the period 2009-2023.
|
25 |
+
We exhaustively scrape the data from the official European Parliament Plenary website. All speeches are time-stamped, thematically organized on debates,
|
26 |
+
and include metadata relevant to the speaker's identity (full name, euro-party affiliation, speaker role), and the debate (date and title).
|
27 |
+
Older debate speeches are originally in English, while newer ones are linguistically diverse across the 23 official EU languages, thus we also provide machine-translated
|
28 |
+
versions in English, when official translations are missing.
|
29 |
+
"""
|
30 |
+
MAIN_PATH = 'https://huggingface.co/datasets/coastalcph/eu_debates/resolve/main'
|
31 |
+
|
32 |
+
|
33 |
+
class EUDebatesConfig(datasets.BuilderConfig):
|
34 |
+
"""BuilderConfig for EU Debates"""
|
35 |
+
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
data_url,
|
39 |
+
citation,
|
40 |
+
**kwargs,
|
41 |
+
):
|
42 |
+
"""BuilderConfig for EU Debates.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
data_url: `string`, url to download the zip file from
|
46 |
+
data_file: `string`, filename for data set
|
47 |
+
url: `string`, url for information about the data set
|
48 |
+
**kwargs: keyword arguments forwarded to super.
|
49 |
+
"""
|
50 |
+
super(EUParliamentsConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
|
51 |
+
self.data_url = data_url
|
52 |
+
self.citation = citation
|
53 |
+
|
54 |
+
|
55 |
+
class EUDebates(datasets.GeneratorBasedBuilder):
|
56 |
+
"""N/A. Version 1.0"""
|
57 |
+
|
58 |
+
BUILDER_CONFIGS = [
|
59 |
+
EUParliamentsConfig(
|
60 |
+
name="eu",
|
61 |
+
data_url=os.path.join(MAIN_PATH, "eu_parliament.zip"),
|
62 |
+
citation=textwrap.dedent(
|
63 |
+
"""N/A"""
|
64 |
+
),
|
65 |
+
),
|
66 |
+
]
|
67 |
+
|
68 |
+
def _info(self):
|
69 |
+
features = {"text": datasets.Value("string"),
|
70 |
+
"translated_text": datasets.Value("string"),
|
71 |
+
"speaker_party": datasets.Value("string"),
|
72 |
+
"speaker_role": datasets.Value("string"),
|
73 |
+
"speaker_name": datasets.Value("string"),
|
74 |
+
"debate_title": datasets.Value("string"),
|
75 |
+
"date": datasets.Value("string"),
|
76 |
+
"year": datasets.Value("string")}
|
77 |
+
return datasets.DatasetInfo(
|
78 |
+
description=self.config.description,
|
79 |
+
features=datasets.Features(features),
|
80 |
+
homepage='https://www.europarl.europa.eu/',
|
81 |
+
citation=MAIN_CITATION,
|
82 |
+
)
|
83 |
+
|
84 |
+
def _split_generators(self, dl_manager):
|
85 |
+
data_dir = dl_manager.download_and_extract(self.config.data_url)
|
86 |
+
return [
|
87 |
+
datasets.SplitGenerator(
|
88 |
+
name=datasets.Split.TRAIN,
|
89 |
+
# These kwargs will be passed to _generate_examples
|
90 |
+
gen_kwargs={
|
91 |
+
"filepath": os.path.join(data_dir, f"train.jsonl"),
|
92 |
+
"split": "train",
|
93 |
+
},
|
94 |
+
),
|
95 |
+
]
|
96 |
+
|
97 |
+
def _generate_examples(self, filepath, split):
|
98 |
+
"""This function returns the examples."""
|
99 |
+
with open(filepath, encoding="utf-8") as f:
|
100 |
+
for id_, row in enumerate(f):
|
101 |
+
data = json.loads(row)
|
102 |
+
example = {
|
103 |
+
"text": data["text"],
|
104 |
+
"translated_text": data["translated_text"],
|
105 |
+
"speaker_party": data["speaker_party"],
|
106 |
+
"speaker_role": data["speaker_role"],
|
107 |
+
"speaker_name": data["speaker_name"],
|
108 |
+
"debate_title": data["debate_title"],
|
109 |
+
"date": data["date"],
|
110 |
+
"year": data["year"]
|
111 |
+
}
|
112 |
+
yield id_, example
|