lautel commited on
Commit
720257b
1 Parent(s): 96c5b8f

Upload fair-rationales.py

Browse files
Files changed (1) hide show
  1. fair-rationales.py +11 -17
fair-rationales.py CHANGED
@@ -58,15 +58,12 @@ class FairRationalesConfig(datasets.BuilderConfig):
58
 
59
  def __init__(
60
  self,
61
- dataname,
62
  url,
63
  data_url,
64
- citation,
65
- # data_file,
66
- # attentioncheck,
67
- # group_id,
68
- # originaldata_split,
69
  attributes,
 
 
70
  label_classes=None,
71
  label_classes_original=None,
72
  **kwargs,
@@ -87,16 +84,13 @@ class FairRationalesConfig(datasets.BuilderConfig):
87
  **kwargs: keyword arguments forwarded to super.
88
  """
89
  super(FairRationalesConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
90
- self.dataname = dataname
91
  self.label_classes = label_classes
92
  self.label_classes_original = label_classes_original
93
- # self.attentioncheck = attentioncheck
94
- # self.group_id = group_id
95
- # self.originaldata_split = originaldata_split
96
  self.attributes = attributes
97
- self.data_url = data_url
98
- # self.data_file = data_file
99
  self.url = url
 
 
100
  self.citation = citation
101
 
102
 
@@ -105,7 +99,7 @@ class FairRationales(datasets.GeneratorBasedBuilder):
105
 
106
  BUILDER_CONFIGS = [
107
  FairRationalesConfig(
108
- dataname="sst2",
109
  description=textwrap.dedent(
110
  """\
111
  The Stanford Sentiment Treebank is a corpus with fully labeled parse trees that allows for a complete analysis of the compositional effects of sentiment in language.
@@ -152,7 +146,7 @@ class FairRationales(datasets.GeneratorBasedBuilder):
152
  ),
153
  ),
154
  FairRationalesConfig(
155
- dataname="dynasent",
156
  description=textwrap.dedent(
157
  """\
158
  DynaSent is an English-language benchmark task for ternary (positive/negative/neutral) sentiment analysis.
@@ -185,7 +179,7 @@ class FairRationales(datasets.GeneratorBasedBuilder):
185
  ),
186
  ),
187
  FairRationalesConfig(
188
- dataname="cose",
189
  description=textwrap.dedent(
190
  """\
191
  Common Sense Explanations (CoS-E) allows for training language models to automatically
@@ -238,7 +232,7 @@ class FairRationales(datasets.GeneratorBasedBuilder):
238
  "originaldata_id": datasets.Value("string"),
239
  "annotator_ID": datasets.Value("int64")
240
  }
241
- if self.config.dataname == "cose":
242
  features["label"] = datasets.Value("string")
243
  else:
244
  features["label"] = datasets.ClassLabel(names=self.config.label_classes)
@@ -290,7 +284,7 @@ class FairRationales(datasets.GeneratorBasedBuilder):
290
  }
291
  for attribute_name, _ in self.config.attributes:
292
  example[attribute_name] = data[attribute_name]
293
- if self.config.dataname == "sst2":
294
  example["sst2_id"] = data["sst2_id"]
295
  example["sst2_split"] = data["sst2_split"]
296
  yield id_, example
 
58
 
59
  def __init__(
60
  self,
61
+ name,
62
  url,
63
  data_url,
 
 
 
 
 
64
  attributes,
65
+ citation,
66
+ description,
67
  label_classes=None,
68
  label_classes_original=None,
69
  **kwargs,
 
84
  **kwargs: keyword arguments forwarded to super.
85
  """
86
  super(FairRationalesConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
87
+ self.name = name
88
  self.label_classes = label_classes
89
  self.label_classes_original = label_classes_original
 
 
 
90
  self.attributes = attributes
 
 
91
  self.url = url
92
+ self.data_url = data_url
93
+ self.description = description
94
  self.citation = citation
95
 
96
 
 
99
 
100
  BUILDER_CONFIGS = [
101
  FairRationalesConfig(
102
+ name="sst2",
103
  description=textwrap.dedent(
104
  """\
105
  The Stanford Sentiment Treebank is a corpus with fully labeled parse trees that allows for a complete analysis of the compositional effects of sentiment in language.
 
146
  ),
147
  ),
148
  FairRationalesConfig(
149
+ name="dynasent",
150
  description=textwrap.dedent(
151
  """\
152
  DynaSent is an English-language benchmark task for ternary (positive/negative/neutral) sentiment analysis.
 
179
  ),
180
  ),
181
  FairRationalesConfig(
182
+ name="cose",
183
  description=textwrap.dedent(
184
  """\
185
  Common Sense Explanations (CoS-E) allows for training language models to automatically
 
232
  "originaldata_id": datasets.Value("string"),
233
  "annotator_ID": datasets.Value("int64")
234
  }
235
+ if self.config.name == "cose":
236
  features["label"] = datasets.Value("string")
237
  else:
238
  features["label"] = datasets.ClassLabel(names=self.config.label_classes)
 
284
  }
285
  for attribute_name, _ in self.config.attributes:
286
  example[attribute_name] = data[attribute_name]
287
+ if self.config.name == "sst2":
288
  example["sst2_id"] = data["sst2_id"]
289
  example["sst2_split"] = data["sst2_split"]
290
  yield id_, example