File size: 47,778 Bytes
bf4c71c
 
 
 
 
cd46982
0f037dc
 
 
 
 
d376211
0f037dc
 
 
 
 
 
 
 
 
bf4c71c
0f037dc
 
 
 
 
 
 
cd46982
35e4ee3
bf4c71c
 
 
 
 
 
 
 
 
 
 
cd8d496
0f037dc
 
 
 
 
 
 
 
 
 
 
cd8d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f037dc
 
 
 
7e9086d
 
 
0f037dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f037dc
 
 
 
7e9086d
 
 
0f037dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f037dc
 
 
 
7e9086d
 
 
0f037dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f037dc
 
 
 
7e9086d
 
 
0f037dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f037dc
 
 
 
7e9086d
 
 
0f037dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f037dc
 
 
 
7e9086d
 
 
0f037dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f037dc
 
 
 
7e9086d
 
 
0f037dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f037dc
 
 
 
7e9086d
 
 
0f037dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f037dc
 
 
 
7e9086d
 
 
0f037dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f037dc
 
 
 
7e9086d
 
 
0f037dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f037dc
 
 
 
7e9086d
 
 
0f037dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f037dc
 
 
 
7e9086d
 
 
0f037dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f037dc
 
 
 
7e9086d
 
 
0f037dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f037dc
 
 
 
7e9086d
 
 
0f037dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f037dc
 
 
 
7e9086d
 
 
0f037dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f037dc
 
 
 
7e9086d
 
 
0f037dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f037dc
 
 
 
7e9086d
 
 
0f037dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f037dc
 
 
 
7e9086d
 
 
0f037dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f037dc
 
 
 
7e9086d
 
 
0f037dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f037dc
 
 
 
7e9086d
 
 
0f037dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f037dc
 
 
 
7e9086d
 
 
0f037dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f037dc
 
 
 
7e9086d
 
 
0f037dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f037dc
 
 
 
7e9086d
 
 
0f037dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8d496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f037dc
 
 
 
7e9086d
 
 
0f037dc
 
 
 
 
bf4c71c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2020d03
bf4c71c
3a262e5
bf4c71c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0054d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf4c71c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f037dc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
---
annotations_creators:
- found
language_creators:
- found
language:
- bg
- cs
- da
- de
- el
- en
- es
- et
- fi
- fr
- hr
- hu
- it
- lt
- lv
- mt
- nl
- pl
- pt
- ro
- sk
- sl
- sv
license:
- cc-by-sa-4.0
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- multi-label-classification
- topic-classification
pretty_name: MultiEURLEX
dataset_info:
- config_name: en
  features:
  - name: celex_id
    dtype: string
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '100149'
          '1': '100160'
          '2': '100148'
          '3': '100147'
          '4': '100152'
          '5': '100143'
          '6': '100156'
          '7': '100158'
          '8': '100154'
          '9': '100153'
          '10': '100142'
          '11': '100145'
          '12': '100150'
          '13': '100162'
          '14': '100159'
          '15': '100144'
          '16': '100151'
          '17': '100157'
          '18': '100161'
          '19': '100146'
          '20': '100155'
  splits:
  - name: train
    num_bytes: 389250183
    num_examples: 55000
  - name: test
    num_bytes: 58966963
    num_examples: 5000
  - name: validation
    num_bytes: 41516165
    num_examples: 5000
  download_size: 2770050147
  dataset_size: 489733311
- config_name: da
  features:
  - name: celex_id
    dtype: string
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '100149'
          '1': '100160'
          '2': '100148'
          '3': '100147'
          '4': '100152'
          '5': '100143'
          '6': '100156'
          '7': '100158'
          '8': '100154'
          '9': '100153'
          '10': '100142'
          '11': '100145'
          '12': '100150'
          '13': '100162'
          '14': '100159'
          '15': '100144'
          '16': '100151'
          '17': '100157'
          '18': '100161'
          '19': '100146'
          '20': '100155'
  splits:
  - name: train
    num_bytes: 395774777
    num_examples: 55000
  - name: test
    num_bytes: 60343696
    num_examples: 5000
  - name: validation
    num_bytes: 42366390
    num_examples: 5000
  download_size: 2770050147
  dataset_size: 498484863
- config_name: de
  features:
  - name: celex_id
    dtype: string
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '100149'
          '1': '100160'
          '2': '100148'
          '3': '100147'
          '4': '100152'
          '5': '100143'
          '6': '100156'
          '7': '100158'
          '8': '100154'
          '9': '100153'
          '10': '100142'
          '11': '100145'
          '12': '100150'
          '13': '100162'
          '14': '100159'
          '15': '100144'
          '16': '100151'
          '17': '100157'
          '18': '100161'
          '19': '100146'
          '20': '100155'
  splits:
  - name: train
    num_bytes: 425489905
    num_examples: 55000
  - name: test
    num_bytes: 65739074
    num_examples: 5000
  - name: validation
    num_bytes: 46079574
    num_examples: 5000
  download_size: 2770050147
  dataset_size: 537308553
- config_name: nl
  features:
  - name: celex_id
    dtype: string
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '100149'
          '1': '100160'
          '2': '100148'
          '3': '100147'
          '4': '100152'
          '5': '100143'
          '6': '100156'
          '7': '100158'
          '8': '100154'
          '9': '100153'
          '10': '100142'
          '11': '100145'
          '12': '100150'
          '13': '100162'
          '14': '100159'
          '15': '100144'
          '16': '100151'
          '17': '100157'
          '18': '100161'
          '19': '100146'
          '20': '100155'
  splits:
  - name: train
    num_bytes: 430232783
    num_examples: 55000
  - name: test
    num_bytes: 64728034
    num_examples: 5000
  - name: validation
    num_bytes: 45452550
    num_examples: 5000
  download_size: 2770050147
  dataset_size: 540413367
- config_name: sv
  features:
  - name: celex_id
    dtype: string
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '100149'
          '1': '100160'
          '2': '100148'
          '3': '100147'
          '4': '100152'
          '5': '100143'
          '6': '100156'
          '7': '100158'
          '8': '100154'
          '9': '100153'
          '10': '100142'
          '11': '100145'
          '12': '100150'
          '13': '100162'
          '14': '100159'
          '15': '100144'
          '16': '100151'
          '17': '100157'
          '18': '100161'
          '19': '100146'
          '20': '100155'
  splits:
  - name: train
    num_bytes: 329071297
    num_examples: 42490
  - name: test
    num_bytes: 60602026
    num_examples: 5000
  - name: validation
    num_bytes: 42766067
    num_examples: 5000
  download_size: 2770050147
  dataset_size: 432439390
- config_name: bg
  features:
  - name: celex_id
    dtype: string
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '100149'
          '1': '100160'
          '2': '100148'
          '3': '100147'
          '4': '100152'
          '5': '100143'
          '6': '100156'
          '7': '100158'
          '8': '100154'
          '9': '100153'
          '10': '100142'
          '11': '100145'
          '12': '100150'
          '13': '100162'
          '14': '100159'
          '15': '100144'
          '16': '100151'
          '17': '100157'
          '18': '100161'
          '19': '100146'
          '20': '100155'
  splits:
  - name: train
    num_bytes: 273160256
    num_examples: 15986
  - name: test
    num_bytes: 109874769
    num_examples: 5000
  - name: validation
    num_bytes: 76892281
    num_examples: 5000
  download_size: 2770050147
  dataset_size: 459927306
- config_name: cs
  features:
  - name: celex_id
    dtype: string
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '100149'
          '1': '100160'
          '2': '100148'
          '3': '100147'
          '4': '100152'
          '5': '100143'
          '6': '100156'
          '7': '100158'
          '8': '100154'
          '9': '100153'
          '10': '100142'
          '11': '100145'
          '12': '100150'
          '13': '100162'
          '14': '100159'
          '15': '100144'
          '16': '100151'
          '17': '100157'
          '18': '100161'
          '19': '100146'
          '20': '100155'
  splits:
  - name: train
    num_bytes: 189826410
    num_examples: 23187
  - name: test
    num_bytes: 60702814
    num_examples: 5000
  - name: validation
    num_bytes: 42764243
    num_examples: 5000
  download_size: 2770050147
  dataset_size: 293293467
- config_name: hr
  features:
  - name: celex_id
    dtype: string
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '100149'
          '1': '100160'
          '2': '100148'
          '3': '100147'
          '4': '100152'
          '5': '100143'
          '6': '100156'
          '7': '100158'
          '8': '100154'
          '9': '100153'
          '10': '100142'
          '11': '100145'
          '12': '100150'
          '13': '100162'
          '14': '100159'
          '15': '100144'
          '16': '100151'
          '17': '100157'
          '18': '100161'
          '19': '100146'
          '20': '100155'
  splits:
  - name: train
    num_bytes: 80808173
    num_examples: 7944
  - name: test
    num_bytes: 56790830
    num_examples: 5000
  - name: validation
    num_bytes: 23881832
    num_examples: 2500
  download_size: 2770050147
  dataset_size: 161480835
- config_name: pl
  features:
  - name: celex_id
    dtype: string
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '100149'
          '1': '100160'
          '2': '100148'
          '3': '100147'
          '4': '100152'
          '5': '100143'
          '6': '100156'
          '7': '100158'
          '8': '100154'
          '9': '100153'
          '10': '100142'
          '11': '100145'
          '12': '100150'
          '13': '100162'
          '14': '100159'
          '15': '100144'
          '16': '100151'
          '17': '100157'
          '18': '100161'
          '19': '100146'
          '20': '100155'
  splits:
  - name: train
    num_bytes: 202211478
    num_examples: 23197
  - name: test
    num_bytes: 64654979
    num_examples: 5000
  - name: validation
    num_bytes: 45545517
    num_examples: 5000
  download_size: 2770050147
  dataset_size: 312411974
- config_name: sk
  features:
  - name: celex_id
    dtype: string
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '100149'
          '1': '100160'
          '2': '100148'
          '3': '100147'
          '4': '100152'
          '5': '100143'
          '6': '100156'
          '7': '100158'
          '8': '100154'
          '9': '100153'
          '10': '100142'
          '11': '100145'
          '12': '100150'
          '13': '100162'
          '14': '100159'
          '15': '100144'
          '16': '100151'
          '17': '100157'
          '18': '100161'
          '19': '100146'
          '20': '100155'
  splits:
  - name: train
    num_bytes: 188126769
    num_examples: 22971
  - name: test
    num_bytes: 60922686
    num_examples: 5000
  - name: validation
    num_bytes: 42786793
    num_examples: 5000
  download_size: 2770050147
  dataset_size: 291836248
- config_name: sl
  features:
  - name: celex_id
    dtype: string
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '100149'
          '1': '100160'
          '2': '100148'
          '3': '100147'
          '4': '100152'
          '5': '100143'
          '6': '100156'
          '7': '100158'
          '8': '100154'
          '9': '100153'
          '10': '100142'
          '11': '100145'
          '12': '100150'
          '13': '100162'
          '14': '100159'
          '15': '100144'
          '16': '100151'
          '17': '100157'
          '18': '100161'
          '19': '100146'
          '20': '100155'
  splits:
  - name: train
    num_bytes: 170800933
    num_examples: 23184
  - name: test
    num_bytes: 54552441
    num_examples: 5000
  - name: validation
    num_bytes: 38286422
    num_examples: 5000
  download_size: 2770050147
  dataset_size: 263639796
- config_name: es
  features:
  - name: celex_id
    dtype: string
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '100149'
          '1': '100160'
          '2': '100148'
          '3': '100147'
          '4': '100152'
          '5': '100143'
          '6': '100156'
          '7': '100158'
          '8': '100154'
          '9': '100153'
          '10': '100142'
          '11': '100145'
          '12': '100150'
          '13': '100162'
          '14': '100159'
          '15': '100144'
          '16': '100151'
          '17': '100157'
          '18': '100161'
          '19': '100146'
          '20': '100155'
  splits:
  - name: train
    num_bytes: 433955383
    num_examples: 52785
  - name: test
    num_bytes: 66885004
    num_examples: 5000
  - name: validation
    num_bytes: 47178821
    num_examples: 5000
  download_size: 2770050147
  dataset_size: 548019208
- config_name: fr
  features:
  - name: celex_id
    dtype: string
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '100149'
          '1': '100160'
          '2': '100148'
          '3': '100147'
          '4': '100152'
          '5': '100143'
          '6': '100156'
          '7': '100158'
          '8': '100154'
          '9': '100153'
          '10': '100142'
          '11': '100145'
          '12': '100150'
          '13': '100162'
          '14': '100159'
          '15': '100144'
          '16': '100151'
          '17': '100157'
          '18': '100161'
          '19': '100146'
          '20': '100155'
  splits:
  - name: train
    num_bytes: 442358905
    num_examples: 55000
  - name: test
    num_bytes: 68520127
    num_examples: 5000
  - name: validation
    num_bytes: 48408938
    num_examples: 5000
  download_size: 2770050147
  dataset_size: 559287970
- config_name: it
  features:
  - name: celex_id
    dtype: string
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '100149'
          '1': '100160'
          '2': '100148'
          '3': '100147'
          '4': '100152'
          '5': '100143'
          '6': '100156'
          '7': '100158'
          '8': '100154'
          '9': '100153'
          '10': '100142'
          '11': '100145'
          '12': '100150'
          '13': '100162'
          '14': '100159'
          '15': '100144'
          '16': '100151'
          '17': '100157'
          '18': '100161'
          '19': '100146'
          '20': '100155'
  splits:
  - name: train
    num_bytes: 429495813
    num_examples: 55000
  - name: test
    num_bytes: 64731770
    num_examples: 5000
  - name: validation
    num_bytes: 45886537
    num_examples: 5000
  download_size: 2770050147
  dataset_size: 540114120
- config_name: pt
  features:
  - name: celex_id
    dtype: string
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '100149'
          '1': '100160'
          '2': '100148'
          '3': '100147'
          '4': '100152'
          '5': '100143'
          '6': '100156'
          '7': '100158'
          '8': '100154'
          '9': '100153'
          '10': '100142'
          '11': '100145'
          '12': '100150'
          '13': '100162'
          '14': '100159'
          '15': '100144'
          '16': '100151'
          '17': '100157'
          '18': '100161'
          '19': '100146'
          '20': '100155'
  splits:
  - name: train
    num_bytes: 419281927
    num_examples: 52370
  - name: test
    num_bytes: 64771247
    num_examples: 5000
  - name: validation
    num_bytes: 45897231
    num_examples: 5000
  download_size: 2770050147
  dataset_size: 529950405
- config_name: ro
  features:
  - name: celex_id
    dtype: string
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '100149'
          '1': '100160'
          '2': '100148'
          '3': '100147'
          '4': '100152'
          '5': '100143'
          '6': '100156'
          '7': '100158'
          '8': '100154'
          '9': '100153'
          '10': '100142'
          '11': '100145'
          '12': '100150'
          '13': '100162'
          '14': '100159'
          '15': '100144'
          '16': '100151'
          '17': '100157'
          '18': '100161'
          '19': '100146'
          '20': '100155'
  splits:
  - name: train
    num_bytes: 164966676
    num_examples: 15921
  - name: test
    num_bytes: 67248472
    num_examples: 5000
  - name: validation
    num_bytes: 46968070
    num_examples: 5000
  download_size: 2770050147
  dataset_size: 279183218
- config_name: et
  features:
  - name: celex_id
    dtype: string
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '100149'
          '1': '100160'
          '2': '100148'
          '3': '100147'
          '4': '100152'
          '5': '100143'
          '6': '100156'
          '7': '100158'
          '8': '100154'
          '9': '100153'
          '10': '100142'
          '11': '100145'
          '12': '100150'
          '13': '100162'
          '14': '100159'
          '15': '100144'
          '16': '100151'
          '17': '100157'
          '18': '100161'
          '19': '100146'
          '20': '100155'
  splits:
  - name: train
    num_bytes: 173878703
    num_examples: 23126
  - name: test
    num_bytes: 56535287
    num_examples: 5000
  - name: validation
    num_bytes: 39580866
    num_examples: 5000
  download_size: 2770050147
  dataset_size: 269994856
- config_name: fi
  features:
  - name: celex_id
    dtype: string
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '100149'
          '1': '100160'
          '2': '100148'
          '3': '100147'
          '4': '100152'
          '5': '100143'
          '6': '100156'
          '7': '100158'
          '8': '100154'
          '9': '100153'
          '10': '100142'
          '11': '100145'
          '12': '100150'
          '13': '100162'
          '14': '100159'
          '15': '100144'
          '16': '100151'
          '17': '100157'
          '18': '100161'
          '19': '100146'
          '20': '100155'
  splits:
  - name: train
    num_bytes: 336145949
    num_examples: 42497
  - name: test
    num_bytes: 63280920
    num_examples: 5000
  - name: validation
    num_bytes: 44500040
    num_examples: 5000
  download_size: 2770050147
  dataset_size: 443926909
- config_name: hu
  features:
  - name: celex_id
    dtype: string
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '100149'
          '1': '100160'
          '2': '100148'
          '3': '100147'
          '4': '100152'
          '5': '100143'
          '6': '100156'
          '7': '100158'
          '8': '100154'
          '9': '100153'
          '10': '100142'
          '11': '100145'
          '12': '100150'
          '13': '100162'
          '14': '100159'
          '15': '100144'
          '16': '100151'
          '17': '100157'
          '18': '100161'
          '19': '100146'
          '20': '100155'
  splits:
  - name: train
    num_bytes: 208805862
    num_examples: 22664
  - name: test
    num_bytes: 68990666
    num_examples: 5000
  - name: validation
    num_bytes: 48101023
    num_examples: 5000
  download_size: 2770050147
  dataset_size: 325897551
- config_name: lt
  features:
  - name: celex_id
    dtype: string
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '100149'
          '1': '100160'
          '2': '100148'
          '3': '100147'
          '4': '100152'
          '5': '100143'
          '6': '100156'
          '7': '100158'
          '8': '100154'
          '9': '100153'
          '10': '100142'
          '11': '100145'
          '12': '100150'
          '13': '100162'
          '14': '100159'
          '15': '100144'
          '16': '100151'
          '17': '100157'
          '18': '100161'
          '19': '100146'
          '20': '100155'
  splits:
  - name: train
    num_bytes: 185211691
    num_examples: 23188
  - name: test
    num_bytes: 59484711
    num_examples: 5000
  - name: validation
    num_bytes: 41841024
    num_examples: 5000
  download_size: 2770050147
  dataset_size: 286537426
- config_name: lv
  features:
  - name: celex_id
    dtype: string
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '100149'
          '1': '100160'
          '2': '100148'
          '3': '100147'
          '4': '100152'
          '5': '100143'
          '6': '100156'
          '7': '100158'
          '8': '100154'
          '9': '100153'
          '10': '100142'
          '11': '100145'
          '12': '100150'
          '13': '100162'
          '14': '100159'
          '15': '100144'
          '16': '100151'
          '17': '100157'
          '18': '100161'
          '19': '100146'
          '20': '100155'
  splits:
  - name: train
    num_bytes: 186396252
    num_examples: 23208
  - name: test
    num_bytes: 59814093
    num_examples: 5000
  - name: validation
    num_bytes: 42002727
    num_examples: 5000
  download_size: 2770050147
  dataset_size: 288213072
- config_name: el
  features:
  - name: celex_id
    dtype: string
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '100149'
          '1': '100160'
          '2': '100148'
          '3': '100147'
          '4': '100152'
          '5': '100143'
          '6': '100156'
          '7': '100158'
          '8': '100154'
          '9': '100153'
          '10': '100142'
          '11': '100145'
          '12': '100150'
          '13': '100162'
          '14': '100159'
          '15': '100144'
          '16': '100151'
          '17': '100157'
          '18': '100161'
          '19': '100146'
          '20': '100155'
  splits:
  - name: train
    num_bytes: 768224743
    num_examples: 55000
  - name: test
    num_bytes: 117209312
    num_examples: 5000
  - name: validation
    num_bytes: 81923366
    num_examples: 5000
  download_size: 2770050147
  dataset_size: 967357421
- config_name: mt
  features:
  - name: celex_id
    dtype: string
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '100149'
          '1': '100160'
          '2': '100148'
          '3': '100147'
          '4': '100152'
          '5': '100143'
          '6': '100156'
          '7': '100158'
          '8': '100154'
          '9': '100153'
          '10': '100142'
          '11': '100145'
          '12': '100150'
          '13': '100162'
          '14': '100159'
          '15': '100144'
          '16': '100151'
          '17': '100157'
          '18': '100161'
          '19': '100146'
          '20': '100155'
  splits:
  - name: train
    num_bytes: 179866781
    num_examples: 17521
  - name: test
    num_bytes: 65831230
    num_examples: 5000
  - name: validation
    num_bytes: 46737914
    num_examples: 5000
  download_size: 2770050147
  dataset_size: 292435925
- config_name: all_languages
  features:
  - name: celex_id
    dtype: string
  - name: text
    dtype:
      translation:
        languages:
        - en
        - da
        - de
        - nl
        - sv
        - bg
        - cs
        - hr
        - pl
        - sk
        - sl
        - es
        - fr
        - it
        - pt
        - ro
        - et
        - fi
        - hu
        - lt
        - lv
        - el
        - mt
  - name: labels
    sequence:
      class_label:
        names:
          '0': '100149'
          '1': '100160'
          '2': '100148'
          '3': '100147'
          '4': '100152'
          '5': '100143'
          '6': '100156'
          '7': '100158'
          '8': '100154'
          '9': '100153'
          '10': '100142'
          '11': '100145'
          '12': '100150'
          '13': '100162'
          '14': '100159'
          '15': '100144'
          '16': '100151'
          '17': '100157'
          '18': '100161'
          '19': '100146'
          '20': '100155'
  splits:
  - name: train
    num_bytes: 6971500859
    num_examples: 55000
  - name: test
    num_bytes: 1536038431
    num_examples: 5000
  - name: validation
    num_bytes: 1062290624
    num_examples: 5000
  download_size: 2770050147
  dataset_size: 9569829914
---

# Dataset Card for "MultiEURLEX"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Repository:** https://github.com/nlpaueb/multi-eurlex
- **Paper:** https://arxiv.org/abs/2109.00904
- **Data:** https://doi.org/10.5281/zenodo.5363165
- **Leaderboard:** N/A
- **Point of Contact:** [Ilias Chalkidis](mailto:[email protected])

### Dataset Summary

**Documents**

MultiEURLEX comprises 65k EU laws in 23 official EU languages. Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU. Each EUROVOC label ID is associated with a *label descriptor*, e.g., [60, agri-foodstuffs],  [6006, plant product], [1115, fruit]. The descriptors are also available in the 23 languages. Chalkidis et al. (2019) published a monolingual (English) version of this dataset, called EUR-LEX, comprising 57k EU laws with the originally assigned gold labels.

**Multi-granular Labeling**

EUROVOC has eight levels of concepts. Each document is assigned one or more concepts (labels). If a document is assigned a concept, the ancestors and descendants of that concept are typically not assigned to the same document. The documents were originally annotated with concepts from levels 3 to 8. 
We created three alternative sets of labels per document, by replacing each assigned concept by its ancestor from level 1, 2, or 3, respectively. Thus, we provide four sets of gold labels per document, one for each of the first three levels of the hierarchy, plus the original sparse label assignment. Levels 4 to 8 cannot be used independently, as many documents have gold concepts from the third level; thus many documents will be mislabeled, if we discard level 3.

**Data Split and Concept Drift**

MultiEURLEX is *chronologically* split in training (55k, 1958-2010), development (5k, 2010-2012), test (5k, 2012-2016) subsets, using the English documents. The test subset contains the same 5k documents in all 23 languages. The development subset also contains the same 5k documents in 23 languages, except Croatian. Croatia is the most recent EU member (2013); older laws are gradually translated.
For the official languages of the seven oldest member countries, the same 55k training documents are available; for the other languages, only a subset of the 55k training documents is available.
Compared to EUR-LEX (Chalkidis et al., 2019), MultiEURLEX is not only larger (8k more documents) and multilingual; it is also more challenging, as the chronological split leads to temporal real-world *concept drift* across the training, development, test subsets, i.e., differences in label distribution and phrasing, representing a realistic *temporal generalization* problem (Huang et al., 2019; Lazaridou et al., 2021). Recently, S酶gaard et al. (2021) showed this setup is more realistic, as it does not over-estimate real performance, contrary to random splits (Gorman and Bedrick, 2019).

### Supported Tasks and Leaderboards

Similarly to EUR-LEX (Chalkidis et al., 2019), MultiEURLEX can be used for legal topic classification, a multi-label classification task where legal documents need to be assigned concepts (in our case, from EUROVOC) reflecting their topics. Unlike EUR-LEX, however, MultiEURLEX supports labels from three different granularities (EUROVOC levels). More importantly, apart from monolingual (*one-to-one*) experiments, it can be used to study cross-lingual transfer scenarios, including *one-to-many* (systems trained in one language and used in other languages with no training data), and *many-to-one* or *many-to-many* (systems jointly trained in multiple languages and used in one or more other languages).

The dataset is not yet part of an established benchmark.

### Languages

The EU has 24 official languages. When new members join the EU, the set of official languages usually expands, except the languages are already included. MultiEURLEX covers 23 languages from seven language families (Germanic, Romance, Slavic, Uralic, Baltic, Semitic, Hellenic). EU laws are published in all official languages, except Irish, for resource-related reasons (Read more at https://europa.eu/european-union/about-eu/eu-languages_en). This wide coverage makes MultiEURLEX a valuable testbed for cross-lingual transfer. All languages use the Latin script, except for Bulgarian (Cyrillic script) and Greek. Several other languages are also spoken in EU countries. The EU is home to over 60 additional indigenous regional or minority languages, e.g., Basque, Catalan, Frisian, Saami, and Yiddish, among others, spoken by approx. 40 million people, but these additional languages are not considered official (in terms of EU), and EU laws are not translated to them.

## Dataset Structure

### Data Instances

**Multilingual use of the dataset**

When the dataset is used in a multilingual setting selecting the the 'all_languages' flag:

```python
from datasets import load_dataset
dataset = load_dataset('multi_eurlex', 'all_languages')
```

```json
{
  "celex_id": "31979D0509",
  "text": {"en": "COUNCIL DECISION  of 24 May 1979  on financial aid from the Community for the eradication of African swine fever in Spain  (79/509/EEC)\nTHE COUNCIL OF THE EUROPEAN COMMUNITIES\nHaving regard to the Treaty establishing the European Economic Community, and in particular Article 43 thereof,\nHaving regard to the proposal from the Commission (1),\nHaving regard to the opinion of the European Parliament (2),\nWhereas the Community should take all appropriate measures to protect itself against the appearance of African swine fever on its territory;\nWhereas to this end the Community has undertaken, and continues to undertake, action designed to contain outbreaks of this type of disease far from its frontiers by helping countries affected to reinforce their preventive measures ; whereas for this purpose Community subsidies have already been granted to Spain;\nWhereas these measures have unquestionably made an effective contribution to the protection of Community livestock, especially through the creation and maintenance of a buffer zone north of the river Ebro;\nWhereas, however, in the opinion of the Spanish authorities themselves, the measures so far implemented must be reinforced if the fundamental objective of eradicating the disease from the entire country is to be achieved;\nWhereas the Spanish authorities have asked the Community to contribute to the expenses necessary for the efficient implementation of a total eradication programme;\nWhereas a favourable response should be given to this request by granting aid to Spain, having regard to the undertaking given by that country to protect the Community against African swine fever and to eliminate completely this disease by the end of a five-year eradication plan;\nWhereas this eradication plan must include certain measures which guarantee the effectiveness of the action taken, and it must be possible to adapt these measures to developments in the situation by means of a procedure establishing close cooperation between the Member States and the Commission;\nWhereas it is necessary to keep the Member States regularly informed as to the progress of the action undertaken,",
           "es": "DECISI脫N DEL CONSEJO de 24 de mayo de 1979 sobre ayuda financiera de la Comunidad para la erradicaci贸n de la peste porcina africana en Espa帽a (79/509/CEE)\nEL CONSEJO DE LAS COMUNIDADES EUROPEAS\nVeniendo en cuenta el Tratado constitutivo de la Comunidad Econ贸mica Europea y, en particular, Su art铆culo 43,\n Vista la propuesta de la Comisi贸n (1),\n Visto el dictamen del Parlamento Europeo (2),\nConsiderando que la Comunidad debe tomar todas las medidas adecuadas para protegerse contra la aparici贸n de la peste porcina africana en su territorio;\nConsiderando a tal fin que la Comunidad ha emprendido y sigue llevando a cabo acciones destinadas a contener los brotes de este tipo de enfermedades lejos de sus fronteras, ayudando a los pa铆ses afectados a reforzar sus medidas preventivas; que a tal efecto ya se han concedido a Espa帽a subvenciones comunitarias;\nQue estas medidas han contribuido sin duda alguna a la protecci贸n de la ganader铆a comunitaria, especialmente mediante la creaci贸n y mantenimiento de una zona tamp贸n al norte del r铆o Ebro;\nConsiderando, no obstante, , a juicio de las propias autoridades espa帽olas, las medidas implementadas hasta ahora deben reforzarse si se quiere alcanzar el objetivo fundamental de erradicar la enfermedad en todo el pa铆s;\nConsiderando que las autoridades espa帽olas han pedido a la Comunidad que contribuya a los gastos necesarios para la ejecuci贸n eficaz de un programa de erradicaci贸n total;\nConsiderando que conviene dar una respuesta favorable a esta solicitud concediendo una ayuda a Espa帽a, habida cuenta del compromiso asumido por dicho pa铆s de proteger a la Comunidad contra la peste porcina africana y de eliminar completamente esta enfermedad al final de un plan de erradicaci贸n de cinco a帽os;\nMientras que este plan de erradicaci贸n debe incluir e determinadas medidas que garanticen la eficacia de las acciones emprendidas, debiendo ser posible adaptar estas medidas a la evoluci贸n de la situaci贸n mediante un procedimiento que establezca una estrecha cooperaci贸n entre los Estados miembros y la Comisi贸n;\nConsiderando que es necesario mantener el Los Estados miembros informados peri贸dicamente sobre el progreso de las acciones emprendidas.",
           "de": "...",
           "bg": "..."
  },
  "labels": [
    1,
    13,
    47
  ]
}
```

**Monolingual use of the dataset**

When the dataset is used in a monolingual setting selecting the ISO language code for one of the 23 supported languages. For example:

```python
from datasets import load_dataset
dataset = load_dataset('multi_eurlex', 'en')
```

```json
{
  "celex_id": "31979D0509",
  "text": "COUNCIL DECISION  of 24 May 1979  on financial aid from the Community for the eradication of African swine fever in Spain  (79/509/EEC)\nTHE COUNCIL OF THE EUROPEAN COMMUNITIES\nHaving regard to the Treaty establishing the European Economic Community, and in particular Article 43 thereof,\nHaving regard to the proposal from the Commission (1),\nHaving regard to the opinion of the European Parliament (2),\nWhereas the Community should take all appropriate measures to protect itself against the appearance of African swine fever on its territory;\nWhereas to this end the Community has undertaken, and continues to undertake, action designed to contain outbreaks of this type of disease far from its frontiers by helping countries affected to reinforce their preventive measures ; whereas for this purpose Community subsidies have already been granted to Spain;\nWhereas these measures have unquestionably made an effective contribution to the protection of Community livestock, especially through the creation and maintenance of a buffer zone north of the river Ebro;\nWhereas, however, in the opinion of the Spanish authorities themselves, the measures so far implemented must be reinforced if the fundamental objective of eradicating the disease from the entire country is to be achieved;\nWhereas the Spanish authorities have asked the Community to contribute to the expenses necessary for the efficient implementation of a total eradication programme;\nWhereas a favourable response should be given to this request by granting aid to Spain, having regard to the undertaking given by that country to protect the Community against African swine fever and to eliminate completely this disease by the end of a five-year eradication plan;\nWhereas this eradication plan must include certain measures which guarantee the effectiveness of the action taken, and it must be possible to adapt these measures to developments in the situation by means of a procedure establishing close cooperation between the Member States and the Commission;\nWhereas it is necessary to keep the Member States regularly informed as to the progress of the action undertaken,",
  "labels": [
    1,
    13,
    47
  ]
}
```

### Data Fields

**Multilingual use of the dataset**

The following data fields are provided for documents (`train`, `dev`, `test`):

`celex_id`: (**str**)  The official ID of the document. The CELEX number is the unique identifier for all publications in both Eur-Lex and CELLAR.\
`text`: (dict[**str**])  A dictionary with the 23 languages as keys and the full content of each document as values.\
`labels`: (**List[int]**) The relevant EUROVOC concepts (labels).


**Monolingual use of the dataset**

The following data fields are provided for documents (`train`, `dev`, `test`):

`celex_id`: (**str**)  The official ID of the document. The CELEX number is the unique identifier for all publications in both Eur-Lex and CELLAR.\
`text`: (**str**)  The full content of each document across languages.\
`labels`: (**List[int]**) The relevant EUROVOC concepts (labels).


If you want to use the descriptors of the EUROVOC concepts, similar to [Chalkidis et al. (2020)](https://aclanthology.org/2020.emnlp-main.607/), please download the relevant JSON file [here](https://raw.githubusercontent.com/nlpaueb/multi-eurlex/master/data/eurovoc_descriptors.json).
Then you may load it and use it:
```python
import json
from datasets import load_dataset

# Load the English part of the dataset
dataset = load_dataset('multi_eurlex', 'en', split='train')

# Load (label_id, descriptor) mapping 
with open('./eurovoc_descriptors.json') as jsonl_file:
    eurovoc_concepts =  json.load(jsonl_file)

# Get feature map info
classlabel = dataset.features["labels"].feature

# Retrieve IDs and descriptors from dataset
for sample in dataset:
  print(f'DOCUMENT: {sample["celex_id"]}')
  # DOCUMENT: 32006D0213
  for label_id in sample['labels']:
    print(f'LABEL: id:{label_id}, eurovoc_id: {classlabel.int2str(label_id)}, \
            eurovoc_desc:{eurovoc_concepts[classlabel.int2str(label_id)]}')
    # LABEL: id: 1, eurovoc_id: '100160', eurovoc_desc: 'industry'
```

### Data Splits
<table>
<tr><td> Language </td> <td>   ISO code </td> <td>  Member Countries where official </td> <td>  EU Speakers [1] </td> <td>   Number of Documents [2] </td> </tr> 
<tr><td> English     </td> <td> <b>en</b>   </td> <td>  United Kingdom (1973-2020), Ireland (1973), Malta (2004)   </td> <td> 13/ 51% </td> <td>  55,000 / 5,000 / 5,000 </td> </tr> 
<tr><td> German    </td> <td>  <b>de</b>   </td> <td> Germany (1958), Belgium (1958), Luxembourg (1958)  </td> <td> 16/32% </td> <td> 55,000 / 5,000 / 5,000 </td> </tr> 
<tr><td> French    </td> <td>  <b>fr</b>   </td> <td> France (1958), Belgium(1958), Luxembourg (1958)  </td> <td> 12/26% </td> <td> 55,000 / 5,000 / 5,000 </td> </tr> 
<tr><td> Italian     </td> <td>  <b>it</b>   </td> <td> Italy (1958)   </td> <td>  13/16% </td> <td>  55,000 / 5,000 / 5,000 </td> </tr> 
<tr><td> Spanish     </td> <td>  <b>es</b>   </td> <td> Spain (1986)  </td> <td>  8/15% </td> <td>  52,785 / 5,000 / 5,000 </td> </tr> 
<tr><td> Polish      </td> <td>  <b>pl</b>   </td> <td> Poland (2004)  </td> <td>  8/9% </td> <td>  23,197 / 5,000 / 5,000 </td> </tr>  
<tr><td> Romanian    </td> <td>  <b>ro</b>   </td> <td> Romania (2007)  </td> <td>  5/5% </td> <td>  15,921 / 5,000 / 5,000 </td> </tr>  
<tr><td> Dutch       </td> <td>  <b>nl</b>   </td> <td> Netherlands (1958), Belgium (1958)  </td> <td>  4/5% </td> <td>  55,000 / 5,000 / 5,000 </td> </tr>  
<tr><td> Greek       </td> <td>  <b>el</b>   </td> <td> Greece (1981), Cyprus (2008) </td> <td>  3/4% </td> <td>  55,000 / 5,000 / 5,000 </td> </tr>  
<tr><td> Hungarian   </td> <td>  <b>hu</b>   </td> <td> Hungary (2004)  </td> <td>  3/3% </td> <td>  22,664 / 5,000 / 5,000 </td> </tr>  
<tr><td> Portuguese  </td> <td>  <b>pt</b>   </td> <td> Portugal (1986)  </td> <td>  2/3% </td> <td>  23,188 / 5,000 / 5,000 </td> </tr>  
<tr><td> Czech       </td> <td>  <b>cs</b>   </td> <td> Czech Republic (2004)  </td> <td>  2/3% </td> <td>  23,187 / 5,000 / 5,000 </td> </tr>  
<tr><td> Swedish     </td> <td>  <b>sv</b>   </td> <td> Sweden (1995)  </td> <td>  2/3% </td> <td>  42,490 / 5,000 / 5,000 </td> </tr>  
<tr><td> Bulgarian   </td> <td>  <b>bg</b>   </td> <td> Bulgaria (2007)  </td> <td>  2/2% </td> <td>  15,986 / 5,000 / 5,000 </td> </tr>  
<tr><td> Danish      </td> <td>  <b>da</b>   </td> <td> Denmark (1973)  </td> <td>  1/1% </td> <td>  55,000 / 5,000 / 5,000 </td> </tr>  
<tr><td> Finnish     </td> <td>  <b>fi</b>   </td> <td> Finland (1995)  </td> <td>  1/1% </td> <td>  42,497 / 5,000 / 5,000 </td> </tr>  
<tr><td> Slovak      </td> <td>  <b>sk</b>   </td> <td> Slovakia (2004)  </td> <td>  1/1% </td> <td>  15,986 / 5,000 / 5,000 </td> </tr>  
<tr><td> Lithuanian  </td> <td>  <b>lt</b>   </td> <td> Lithuania (2004)   </td> <td>  1/1% </td> <td>  23,188 / 5,000 / 5,000 </td> </tr>  
<tr><td> Croatian    </td> <td>  <b>hr</b>   </td> <td> Croatia (2013) </td> <td>  1/1% </td> <td>  7,944 / 2,500 / 5,000 </td> </tr>  
<tr><td> Slovene     </td> <td>  <b>sl</b>   </td> <td> Slovenia (2004) </td> <td>  <1/<1% </td> <td>  23,184 / 5,000 / 5,000 </td> </tr>  
<tr><td> Estonian    </td> <td>  <b>et</b>   </td> <td> Estonia (2004) </td> <td>  <1/<1% </td> <td>  23,126 / 5,000 / 5,000 </td> </tr> 
<tr><td> Latvian     </td> <td>  <b>lv</b>   </td> <td> Latvia (2004) </td> <td>  <1/<1% </td> <td>  23,188 / 5,000 / 5,000 </td> </tr>  
<tr><td> Maltese     </td> <td>  <b>mt</b>   </td> <td> Malta (2004) </td> <td>  <1/<1% </td> <td>  17,521 / 5,000 / 5,000 </td> </tr>  
</table>

[1] Native and Total EU speakers percentage (%) \
[2] Training / Development / Test Splits 

## Dataset Creation

### Curation Rationale

The dataset was curated by Chalkidis et al. (2021).\
The documents have been annotated by the Publications Office of EU (https://publications.europa.eu/en).

### Source Data

#### Initial Data Collection and Normalization

The original data are available at the EUR-LEX portal (https://eur-lex.europa.eu) in unprocessed formats (HTML, XML, RDF). The documents were downloaded from the EUR-LEX portal in HTML. The relevant EUROVOC concepts were downloaded from the SPARQL endpoint of the Publications Office of EU (http://publications.europa.eu/webapi/rdf/sparql). 
We stripped HTML mark-up to provide the documents in plain text format.
We inferred the labels for EUROVOC levels 1--3, by backtracking the EUROVOC hierarchy branches, from the originally assigned labels to their ancestors in levels 1--3, respectively.

#### Who are the source language producers?

The EU has 24 official languages. When new members join the EU, the set of official languages usually expands, except the languages are already included. MultiEURLEX covers 23 languages from seven language families (Germanic, Romance, Slavic, Uralic, Baltic, Semitic, Hellenic). EU laws are published in all official languages, except Irish, for resource-related reasons (Read more at https://europa.eu/european-union/about-eu/eu-languages_en). This wide coverage makes MultiEURLEX a valuable testbed for cross-lingual transfer. All languages use the Latin script, except for Bulgarian (Cyrillic script) and Greek. Several other languages are also spoken in EU countries. The EU is home to over 60 additional indigenous regional or minority languages, e.g., Basque, Catalan, Frisian, Saami, and Yiddish, among others, spoken by approx. 40 million people, but these additional languages are not considered official (in terms of EU), and EU laws are not translated to them.


### Annotations

#### Annotation process

All the documents of the dataset have been annotated by the Publications Office of EU (https://publications.europa.eu/en) with multiple concepts from EUROVOC (http://eurovoc.europa.eu/). EUROVOC has eight levels of concepts. Each document is assigned one or more concepts (labels). If a document is assigned a concept, the ancestors and descendants of that concept are typically not assigned to the same document. The documents were originally annotated with concepts from levels 3 to 8.
We augmented the annotation with three alternative sets of labels per document, replacing each assigned concept by its ancestor from level 1, 2, or 3, respectively. 
Thus, we provide four sets of gold labels per document, one for each of the first three levels of the hierarchy, plus the original sparse label assignment.Levels 4 to 8 cannot be used independently, as many documents have gold concepts from the third level; thus many documents will be mislabeled, if we discard level 3.


#### Who are the annotators?

Publications Office of EU (https://publications.europa.eu/en)

### Personal and Sensitive Information

The dataset contains publicly available EU laws that do not include personal or sensitive information with the exception of trivial information presented by consent, e.g., the names of the current presidents of the European Parliament and European Council, and other administration bodies.

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

MultiEURLEX covers 23 languages from seven language  families (Germanic, Romance, Slavic, Uralic, Baltic, Semitic, Hellenic). This does not imply that no other languages are spoken in EU countries, although EU laws are not translated to other languages (https://europa.eu/european-union/about-eu/eu-languages_en).

## Additional Information

### Dataset Curators

Chalkidis et al. (2021)

### Licensing Information

We provide MultiEURLEX with the same licensing as the original EU data (CC-BY-4.0):

漏 European Union, 1998-2021

The Commission鈥檚 document reuse policy is based on Decision 2011/833/EU. Unless otherwise specified, you can re-use the legal documents published in EUR-Lex for commercial or non-commercial purposes.

The copyright for the editorial content of this website, the summaries of EU legislation and the consolidated texts, which is owned by the EU, is licensed under the Creative Commons Attribution 4.0 International licence. This means that you can re-use the content provided you acknowledge the source and indicate any changes you have made.

Source: https://eur-lex.europa.eu/content/legal-notice/legal-notice.html \
Read more:  https://eur-lex.europa.eu/content/help/faq/reuse-contents-eurlex.html

### Citation Information

*Ilias Chalkidis, Manos Fergadiotis, and Ion Androutsopoulos.*
*MultiEURLEX - A multi-lingual and multi-label legal document classification dataset for zero-shot cross-lingual transfer.*
*Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Punta Cana, Dominican Republic. 2021*
```
@InProceedings{chalkidis-etal-2021-multieurlex,
  author = {Chalkidis, Ilias  
                and Fergadiotis, Manos
                and Androutsopoulos, Ion},
  title = {MultiEURLEX -- A multi-lingual and multi-label legal document 
               classification dataset for zero-shot cross-lingual transfer},
  booktitle = {Proceedings of the 2021 Conference on Empirical Methods
               in Natural Language Processing},
  year = {2021},
  publisher = {Association for Computational Linguistics},
  location = {Punta Cana, Dominican Republic},
  url = {https://arxiv.org/abs/2109.00904}
}
```

### Contributions

Thanks to [@iliaschalkidis](https://github.com/iliaschalkidis) for adding this dataset.