Upload fusion_t2i_CLIP_interrogator.ipynb
Browse files
Google Colab Notebooks/fusion_t2i_CLIP_interrogator.ipynb
CHANGED
@@ -412,7 +412,7 @@
|
|
412 |
"\n",
|
413 |
"#image_index = 0 # @param {type:'number'}\n",
|
414 |
"# @markdown 📥 Load the data (only required one time)\n",
|
415 |
-
"load_the_data =
|
416 |
"\n",
|
417 |
"# @markdown 🖼️ Choose a pre-encoded reference\n",
|
418 |
"index = 708 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
|
@@ -429,7 +429,7 @@
|
|
429 |
"strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.1}\n",
|
430 |
"\n",
|
431 |
"# @markdown Calculate most similiar items using above settings?\n",
|
432 |
-
"enable =
|
433 |
"\n",
|
434 |
"if (load_the_data):\n",
|
435 |
" target_prompts , target_text_encodings , urls , target_image_encodings , NUM_ITEMS = getPromptsAndLinks('/content/text-to-image-prompts/fusion')\n",
|
@@ -465,10 +465,10 @@
|
|
465 |
" # Get text features for user input\n",
|
466 |
" inputs = tokenizer(text = NEG, padding=True, return_tensors=\"pt\")\n",
|
467 |
" text_features_NEG = model.get_text_features(**inputs)\n",
|
468 |
-
" text_features_NEG =
|
469 |
"\n",
|
470 |
" # text-similarity\n",
|
471 |
-
" neg_sims =
|
472 |
" #------#\n",
|
473 |
"\n",
|
474 |
" # plus image-similarity\n",
|
@@ -476,7 +476,7 @@
|
|
476 |
"\n",
|
477 |
"\n",
|
478 |
" # minus NEG-similarity\n",
|
479 |
-
" sims = sims - neg_sims\n",
|
480 |
"\n",
|
481 |
" # Sort the items\n",
|
482 |
" sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
|
@@ -553,6 +553,77 @@
|
|
553 |
"execution_count": null,
|
554 |
"outputs": []
|
555 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
556 |
{
|
557 |
"cell_type": "markdown",
|
558 |
"source": [
|
@@ -798,77 +869,6 @@
|
|
798 |
"execution_count": null,
|
799 |
"outputs": []
|
800 |
},
|
801 |
-
{
|
802 |
-
"cell_type": "code",
|
803 |
-
"source": [
|
804 |
-
"# @title ⚙️📝 Print the results (Advanced)\n",
|
805 |
-
"list_size = 1000 # @param {type:'number'}\n",
|
806 |
-
"start_at_index = 0 # @param {type:'number'}\n",
|
807 |
-
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
808 |
-
"print_Prompts = True # @param {type:\"boolean\"}\n",
|
809 |
-
"print_Descriptions = True # @param {type:\"boolean\"}\n",
|
810 |
-
"compact_Output = True # @param {type:\"boolean\"}\n",
|
811 |
-
"newline_Separator = False # @param {type:\"boolean\"}\n",
|
812 |
-
"\n",
|
813 |
-
"import random\n",
|
814 |
-
"# @markdown -----------\n",
|
815 |
-
"# @markdown Mix with...\n",
|
816 |
-
"list_size2 = 1000 # @param {type:'number'}\n",
|
817 |
-
"start_at_index2 = 10000 # @param {type:'number'}\n",
|
818 |
-
"rate_percent = 0 # @param {type:\"slider\", min:0, max:100, step:1}\n",
|
819 |
-
"\n",
|
820 |
-
"# @markdown -----------\n",
|
821 |
-
"# @markdown Repeat output N times\n",
|
822 |
-
"N = 6 # @param {type:\"slider\", min:0, max:10, step:1}\n",
|
823 |
-
"\n",
|
824 |
-
"# title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
|
825 |
-
"RANGE = list_size\n",
|
826 |
-
"separator = '|'\n",
|
827 |
-
"if newline_Separator : separator = separator + '\\n'\n",
|
828 |
-
"\n",
|
829 |
-
"_prompts = ''\n",
|
830 |
-
"_sims = ''\n",
|
831 |
-
"for _index in range(start_at_index + RANGE):\n",
|
832 |
-
" if _index < start_at_index : continue\n",
|
833 |
-
" index = indices[_index].item()\n",
|
834 |
-
"\n",
|
835 |
-
" prompt = prompts[f'{index}']\n",
|
836 |
-
" if rate_percent >= random.randint(0,100) : prompt = prompts[f'{random.randint(start_at_index2 , start_at_index2 + list_size2)}']\n",
|
837 |
-
"\n",
|
838 |
-
" #Remove duplicates\n",
|
839 |
-
" if _prompts.find(prompt + separator)<=-1:\n",
|
840 |
-
" _sims = _sims + f'{round(100*sims[index].item(), 2)} %' + separator\n",
|
841 |
-
" #-------#\n",
|
842 |
-
" _prompts = _prompts.replace(prompt + separator,'')\n",
|
843 |
-
" _prompts = _prompts + prompt + separator\n",
|
844 |
-
" #------#\n",
|
845 |
-
"#------#\n",
|
846 |
-
"__prompts = fix_bad_symbols(__prompts)\n",
|
847 |
-
"__prompts = ('{' + _prompts + '}').replace(separator + '}', '}')\n",
|
848 |
-
"__sims = ('{' + _sims + '}').replace(separator + '}', '}')\n",
|
849 |
-
"#------#\n",
|
850 |
-
"\n",
|
851 |
-
"if(not print_Prompts): __prompts = ''\n",
|
852 |
-
"if(not print_Similarity): __sims = ''\n",
|
853 |
-
"\n",
|
854 |
-
"if(not compact_Output):\n",
|
855 |
-
" if(print_Descriptions):\n",
|
856 |
-
" print(f'The {start_at_index}-{start_at_index + RANGE} most similiar items to prompt : \\n\\n ')\n",
|
857 |
-
" for i in range(N) : print(__prompts)\n",
|
858 |
-
" print(f'The {start_at_index}-{start_at_index + RANGE} similarity % for items : \\n\\n' + __sims)\n",
|
859 |
-
" print('')\n",
|
860 |
-
" else:\n",
|
861 |
-
" for i in range(N) : print(__prompts)\n",
|
862 |
-
"else:\n",
|
863 |
-
" for i in range(N) : print(__prompts)\n",
|
864 |
-
"#-------#"
|
865 |
-
],
|
866 |
-
"metadata": {
|
867 |
-
"id": "EdBiAguJO9aX"
|
868 |
-
},
|
869 |
-
"execution_count": null,
|
870 |
-
"outputs": []
|
871 |
-
},
|
872 |
{
|
873 |
"cell_type": "code",
|
874 |
"source": [
|
|
|
412 |
"\n",
|
413 |
"#image_index = 0 # @param {type:'number'}\n",
|
414 |
"# @markdown 📥 Load the data (only required one time)\n",
|
415 |
+
"load_the_data = True # @param {type:\"boolean\"}\n",
|
416 |
"\n",
|
417 |
"# @markdown 🖼️ Choose a pre-encoded reference\n",
|
418 |
"index = 708 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
|
|
|
429 |
"strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.1}\n",
|
430 |
"\n",
|
431 |
"# @markdown Calculate most similiar items using above settings?\n",
|
432 |
+
"enable = False # @param {type:\"boolean\"}\n",
|
433 |
"\n",
|
434 |
"if (load_the_data):\n",
|
435 |
" target_prompts , target_text_encodings , urls , target_image_encodings , NUM_ITEMS = getPromptsAndLinks('/content/text-to-image-prompts/fusion')\n",
|
|
|
465 |
" # Get text features for user input\n",
|
466 |
" inputs = tokenizer(text = NEG, padding=True, return_tensors=\"pt\")\n",
|
467 |
" text_features_NEG = model.get_text_features(**inputs)\n",
|
468 |
+
" text_features_NEG = text_features_NEG/text_features_NEG.norm(p=2, dim=-1, keepdim=True)\n",
|
469 |
"\n",
|
470 |
" # text-similarity\n",
|
471 |
+
" neg_sims = torch.matmul(text_tensor, text_features_NEG.t())\n",
|
472 |
" #------#\n",
|
473 |
"\n",
|
474 |
" # plus image-similarity\n",
|
|
|
476 |
"\n",
|
477 |
"\n",
|
478 |
" # minus NEG-similarity\n",
|
479 |
+
" sims = sims - strength*neg_sims\n",
|
480 |
"\n",
|
481 |
" # Sort the items\n",
|
482 |
" sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
|
|
|
553 |
"execution_count": null,
|
554 |
"outputs": []
|
555 |
},
|
556 |
+
{
|
557 |
+
"cell_type": "code",
|
558 |
+
"source": [
|
559 |
+
"# @title ⚙️📝 Print the results (Advanced)\n",
|
560 |
+
"list_size = 1000 # @param {type:'number'}\n",
|
561 |
+
"start_at_index = 0 # @param {type:'number'}\n",
|
562 |
+
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
563 |
+
"print_Prompts = True # @param {type:\"boolean\"}\n",
|
564 |
+
"print_Descriptions = True # @param {type:\"boolean\"}\n",
|
565 |
+
"compact_Output = True # @param {type:\"boolean\"}\n",
|
566 |
+
"newline_Separator = False # @param {type:\"boolean\"}\n",
|
567 |
+
"\n",
|
568 |
+
"import random\n",
|
569 |
+
"# @markdown -----------\n",
|
570 |
+
"# @markdown Mix with...\n",
|
571 |
+
"list_size2 = 1000 # @param {type:'number'}\n",
|
572 |
+
"start_at_index2 = 10000 # @param {type:'number'}\n",
|
573 |
+
"rate_percent = 0 # @param {type:\"slider\", min:0, max:100, step:1}\n",
|
574 |
+
"\n",
|
575 |
+
"# @markdown -----------\n",
|
576 |
+
"# @markdown Repeat output N times\n",
|
577 |
+
"N = 6 # @param {type:\"slider\", min:0, max:10, step:1}\n",
|
578 |
+
"\n",
|
579 |
+
"# title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
|
580 |
+
"RANGE = list_size\n",
|
581 |
+
"separator = '|'\n",
|
582 |
+
"if newline_Separator : separator = separator + '\\n'\n",
|
583 |
+
"\n",
|
584 |
+
"_prompts = ''\n",
|
585 |
+
"_sims = ''\n",
|
586 |
+
"for _index in range(start_at_index + RANGE):\n",
|
587 |
+
" if _index < start_at_index : continue\n",
|
588 |
+
" index = indices[_index].item()\n",
|
589 |
+
"\n",
|
590 |
+
" prompt = prompts[f'{index}']\n",
|
591 |
+
" if rate_percent >= random.randint(0,100) : prompt = prompts[f'{random.randint(start_at_index2 , start_at_index2 + list_size2)}']\n",
|
592 |
+
"\n",
|
593 |
+
" #Remove duplicates\n",
|
594 |
+
" if _prompts.find(prompt + separator)<=-1:\n",
|
595 |
+
" _sims = _sims + f'{round(100*sims[index].item(), 2)} %' + separator\n",
|
596 |
+
" #-------#\n",
|
597 |
+
" _prompts = _prompts.replace(prompt + separator,'')\n",
|
598 |
+
" _prompts = _prompts + prompt + separator\n",
|
599 |
+
" #------#\n",
|
600 |
+
"#------#\n",
|
601 |
+
"__prompts = fix_bad_symbols(__prompts)\n",
|
602 |
+
"__prompts = ('{' + _prompts + '}').replace(separator + '}', '}')\n",
|
603 |
+
"__sims = ('{' + _sims + '}').replace(separator + '}', '}')\n",
|
604 |
+
"#------#\n",
|
605 |
+
"\n",
|
606 |
+
"if(not print_Prompts): __prompts = ''\n",
|
607 |
+
"if(not print_Similarity): __sims = ''\n",
|
608 |
+
"\n",
|
609 |
+
"if(not compact_Output):\n",
|
610 |
+
" if(print_Descriptions):\n",
|
611 |
+
" print(f'The {start_at_index}-{start_at_index + RANGE} most similiar items to prompt : \\n\\n ')\n",
|
612 |
+
" for i in range(N) : print(__prompts)\n",
|
613 |
+
" print(f'The {start_at_index}-{start_at_index + RANGE} similarity % for items : \\n\\n' + __sims)\n",
|
614 |
+
" print('')\n",
|
615 |
+
" else:\n",
|
616 |
+
" for i in range(N) : print(__prompts)\n",
|
617 |
+
"else:\n",
|
618 |
+
" for i in range(N) : print(__prompts)\n",
|
619 |
+
"#-------#"
|
620 |
+
],
|
621 |
+
"metadata": {
|
622 |
+
"id": "EdBiAguJO9aX"
|
623 |
+
},
|
624 |
+
"execution_count": null,
|
625 |
+
"outputs": []
|
626 |
+
},
|
627 |
{
|
628 |
"cell_type": "markdown",
|
629 |
"source": [
|
|
|
869 |
"execution_count": null,
|
870 |
"outputs": []
|
871 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
872 |
{
|
873 |
"cell_type": "code",
|
874 |
"source": [
|