diff --git "a/Google Colab Notebooks/sd_token_similarity_calculator.ipynb" "b/Google Colab Notebooks/sd_token_similarity_calculator.ipynb" --- "a/Google Colab Notebooks/sd_token_similarity_calculator.ipynb" +++ "b/Google Colab Notebooks/sd_token_similarity_calculator.ipynb" @@ -3,7 +3,8 @@ "nbformat_minor": 0, "metadata": { "colab": { - "provenance": [] + "provenance": [], + "gpuType": "T4" }, "kernelspec": { "name": "python3", @@ -12,2746 +13,7 @@ "language_info": { "name": "python" }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "ecd90f093b8a4d9d890e9994dd125f73": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_75bd795ba1d54cfbb3f7a96d6dfe26fc", - "IPY_MODEL_22de342649f746218c6a3507af3133f3", - "IPY_MODEL_d4e3bf69064340e8baba7ef5280bb840" - ], - "layout": "IPY_MODEL_c02a6ba5455142f88fd3449afd0166e6" - } - }, - "75bd795ba1d54cfbb3f7a96d6dfe26fc": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_04623303169b4abb905413904b3c97b3", - "placeholder": "​", - "style": "IPY_MODEL_025393b0f9ff4a259f7d63e2a99e25cc", - "value": "tokenizer_config.json: 100%" - } - }, - "22de342649f746218c6a3507af3133f3": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_43513e6a12b14b6fb4b845778d79c774", - "max": 905, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_1e800969994147beaa17a53eaa985b7f", - "value": 905 - } - }, - "d4e3bf69064340e8baba7ef5280bb840": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b7ec09bd69e545f0a3082854c93fff75", - "placeholder": "​", - "style": "IPY_MODEL_74d8a4821a814214bd8b63bc55086214", - "value": " 905/905 [00:00<00:00, 7.72kB/s]" - } - }, - "c02a6ba5455142f88fd3449afd0166e6": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "04623303169b4abb905413904b3c97b3": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "025393b0f9ff4a259f7d63e2a99e25cc": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "43513e6a12b14b6fb4b845778d79c774": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1e800969994147beaa17a53eaa985b7f": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b7ec09bd69e545f0a3082854c93fff75": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "74d8a4821a814214bd8b63bc55086214": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "604c38bb547541deb7e0e1b97c273d40": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8b424e97ae3a491db5e2ac90db91bf6d", - "IPY_MODEL_604190b4b2d64e648556791141a88ed4", - "IPY_MODEL_ff80cce4b49e4e039186ade1d5f8a3d8" - ], - "layout": "IPY_MODEL_e87d4cd88a654a2e9431fdb7585c66b4" - } - }, - "8b424e97ae3a491db5e2ac90db91bf6d": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d2e03fe8207d4bc2827425c367907153", - "placeholder": "​", - "style": "IPY_MODEL_199d0425f52444ae8d5feadf5bc9455a", - "value": "vocab.json: 100%" - } - }, - "604190b4b2d64e648556791141a88ed4": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_40a355b8b6d4466a91241ce977db3b44", - "max": 961143, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_320860c2f1c74c31bc5cb56ca6ac35c8", - "value": 961143 - } - }, - "ff80cce4b49e4e039186ade1d5f8a3d8": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_376fff463bd242cda95ab5e6683580a3", - "placeholder": "​", - "style": "IPY_MODEL_94284f9962684abbaddb411fe26a88d6", - "value": " 961k/961k [00:00<00:00, 3.80MB/s]" - } - }, - "e87d4cd88a654a2e9431fdb7585c66b4": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d2e03fe8207d4bc2827425c367907153": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "199d0425f52444ae8d5feadf5bc9455a": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "40a355b8b6d4466a91241ce977db3b44": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "320860c2f1c74c31bc5cb56ca6ac35c8": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "376fff463bd242cda95ab5e6683580a3": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "94284f9962684abbaddb411fe26a88d6": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0b0012defa2f474dbb7f363e2b124c96": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_524b136f6dfc41b1b4bbc157821a5563", - "IPY_MODEL_3ad8ff7672274b9799baf7fd003f444e", - "IPY_MODEL_f0b841c6d593403ca5902f0c64dfb32b" - ], - "layout": "IPY_MODEL_f724f2227f7c40e3816db937863d233b" - } - }, - "524b136f6dfc41b1b4bbc157821a5563": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5a80fb276ba7430cb3098264ca169656", - "placeholder": "​", - "style": "IPY_MODEL_6e9fadd58aff4dd38bddf85eb76ed40d", - "value": "merges.txt: 100%" - } - }, - "3ad8ff7672274b9799baf7fd003f444e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2dc4a84e64844a98838b42ca44184095", - "max": 524619, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_8696928dff004d21b1ab0d9f6fed31ff", - "value": 524619 - } - }, - "f0b841c6d593403ca5902f0c64dfb32b": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2f8449d4a06b4b85a508e3b056c0ec36", - "placeholder": "​", - "style": "IPY_MODEL_15003cef68274ae397cd328de6599b82", - "value": " 525k/525k [00:00<00:00, 1.07MB/s]" - } - }, - "f724f2227f7c40e3816db937863d233b": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5a80fb276ba7430cb3098264ca169656": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6e9fadd58aff4dd38bddf85eb76ed40d": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2dc4a84e64844a98838b42ca44184095": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8696928dff004d21b1ab0d9f6fed31ff": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2f8449d4a06b4b85a508e3b056c0ec36": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "15003cef68274ae397cd328de6599b82": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7a8cb4d4b20343d8b21ecfd14e86cd78": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_174cf241adcd4cc7b5edbca7df1a8bb8", - "IPY_MODEL_08cc774f99b645ef8e702da8a31d9f05", - "IPY_MODEL_1efb74e8b2884464acff48acbfdc2d2b" - ], - "layout": "IPY_MODEL_da323d5f591444dd8d033fa57c5bca4d" - } - }, - "174cf241adcd4cc7b5edbca7df1a8bb8": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0703cb4c92ad4947b87a38560d20c278", - "placeholder": "​", - "style": "IPY_MODEL_fab28303b6fd42c0b756e01a5e60d953", - "value": "tokenizer.json: 100%" - } - }, - "08cc774f99b645ef8e702da8a31d9f05": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c18eef1ea3bc499e9cba6616ca41429d", - "max": 2224003, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_5d7c93ed38d0440892e810f48bb4eff5", - "value": 2224003 - } - }, - "1efb74e8b2884464acff48acbfdc2d2b": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ef5f2545abf7481ca85c6c02f9d6cb60", - "placeholder": "​", - "style": "IPY_MODEL_377801b80fe748c691d407c793d345f9", - "value": " 2.22M/2.22M [00:00<00:00, 2.95MB/s]" - } - }, - "da323d5f591444dd8d033fa57c5bca4d": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0703cb4c92ad4947b87a38560d20c278": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "fab28303b6fd42c0b756e01a5e60d953": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c18eef1ea3bc499e9cba6616ca41429d": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5d7c93ed38d0440892e810f48bb4eff5": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ef5f2545abf7481ca85c6c02f9d6cb60": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "377801b80fe748c691d407c793d345f9": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "483c97b9f6064c4589141bf114744b29": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5b4f2983d197485c8c51cdc0a23a40c3", - "IPY_MODEL_190d405222af4bd68845dd339a5ae739", - "IPY_MODEL_77f036d2d2944a73bdcda438c71329ac" - ], - "layout": "IPY_MODEL_77cf6bb6f64d49caa9a92bad8d0d3919" - } - }, - "5b4f2983d197485c8c51cdc0a23a40c3": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3c8ba3d3079842558ff93d1bef9a4c35", - "placeholder": "​", - "style": "IPY_MODEL_d8ac7b57ac604da788fd07ca6358a77f", - "value": "special_tokens_map.json: 100%" - } - }, - "190d405222af4bd68845dd339a5ae739": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3ab19d4d369441c2b16a6e382eba914f", - "max": 389, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_0ee0273756654ab3baf0e96fe1cb1808", - "value": 389 - } - }, - "77f036d2d2944a73bdcda438c71329ac": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5e4d0b560b434e2cbb13e87d0dfd8d24", - "placeholder": "​", - "style": "IPY_MODEL_bf3cb7b165d3490ea59df715873e05b8", - "value": " 389/389 [00:00<00:00, 38.3kB/s]" - } - }, - "77cf6bb6f64d49caa9a92bad8d0d3919": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "3c8ba3d3079842558ff93d1bef9a4c35": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d8ac7b57ac604da788fd07ca6358a77f": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3ab19d4d369441c2b16a6e382eba914f": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0ee0273756654ab3baf0e96fe1cb1808": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5e4d0b560b434e2cbb13e87d0dfd8d24": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "bf3cb7b165d3490ea59df715873e05b8": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "515b4585d00d4ef385fc1dbb331dba2d": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ecb39808f3a74a6c833f870eff7fb0f1", - "IPY_MODEL_ddd9ac3cc28b49629169df040007af68", - "IPY_MODEL_fc655bf52d274a698c220abeecbba088" - ], - "layout": "IPY_MODEL_609593be6c934d309e5ba0c7977b8834" - } - }, - "ecb39808f3a74a6c833f870eff7fb0f1": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_726cb0d466e547d4b2b1acf635b8ed48", - "placeholder": "​", - "style": "IPY_MODEL_4d0b0efbdcad4745986a206d594dcb14", - "value": "preprocessor_config.json: 100%" - } - }, - "ddd9ac3cc28b49629169df040007af68": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fea4ee38d45f4604bed4fc86d02b7662", - "max": 316, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_72f396f1e5b74d86b60f4818cab99e44", - "value": 316 - } - }, - "fc655bf52d274a698c220abeecbba088": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_26f0eb2a2fed43a4afd569e85f5a3a11", - "placeholder": "​", - "style": "IPY_MODEL_fdc0f26170974139bdf45c30b72e14af", - "value": " 316/316 [00:00<00:00, 15.9kB/s]" - } - }, - "609593be6c934d309e5ba0c7977b8834": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "726cb0d466e547d4b2b1acf635b8ed48": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4d0b0efbdcad4745986a206d594dcb14": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "fea4ee38d45f4604bed4fc86d02b7662": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "72f396f1e5b74d86b60f4818cab99e44": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "26f0eb2a2fed43a4afd569e85f5a3a11": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "fdc0f26170974139bdf45c30b72e14af": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a6c29ebbf748485ebbe101b58e6660f0": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_af124a390cfd4025a684c713dd6add08", - "IPY_MODEL_ef39f3b25ee84b8db58f29966171b426", - "IPY_MODEL_7362c4ac71044846bbe35bbf445c6ca5" - ], - "layout": "IPY_MODEL_79a366fdf1314d8fa86e36551b9a9fdf" - } - }, - "af124a390cfd4025a684c713dd6add08": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_357fba97146e4fbd92df23eca248887b", - "placeholder": "​", - "style": "IPY_MODEL_a7ba2123755249f6b22c9b0b1a57ce07", - "value": "config.json: 100%" - } - }, - "ef39f3b25ee84b8db58f29966171b426": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_49ca12b87b6c4f2188f46cf749f781ec", - "max": 4519, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_5c5a7963b5ab42cca0d520d34ead0d7a", - "value": 4519 - } - }, - "7362c4ac71044846bbe35bbf445c6ca5": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8344b8676d824967b59314725313abc2", - "placeholder": "​", - "style": "IPY_MODEL_17497782d90141b89d0e0ebae93c3579", - "value": " 4.52k/4.52k [00:00<00:00, 387kB/s]" - } - }, - "79a366fdf1314d8fa86e36551b9a9fdf": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "357fba97146e4fbd92df23eca248887b": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a7ba2123755249f6b22c9b0b1a57ce07": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "49ca12b87b6c4f2188f46cf749f781ec": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5c5a7963b5ab42cca0d520d34ead0d7a": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8344b8676d824967b59314725313abc2": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "17497782d90141b89d0e0ebae93c3579": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d2ee451b217e4c7fafb442fe6fc4d63d": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_312bc9d4ee1f4acf89afe54bc86b9166", - "IPY_MODEL_0dec9ab20b0546b5ae4d497e6d7e1202", - "IPY_MODEL_c862c221b54544b1bb74ac7a8adab20b" - ], - "layout": "IPY_MODEL_caa34d7ce8e64bb591131c2a12dc19e8" - } - }, - "312bc9d4ee1f4acf89afe54bc86b9166": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6f148570671c434793ddff1f322e77e1", - "placeholder": "​", - "style": "IPY_MODEL_61f23e35323e4d3f956971e049cea55a", - "value": "model.safetensors: 100%" - } - }, - "0dec9ab20b0546b5ae4d497e6d7e1202": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a18dc75a05a3440d80bca2441bdf32c6", - "max": 1710540580, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_31b0d34881f64a1fb47725e326f71b7b", - "value": 1710540580 - } - }, - "c862c221b54544b1bb74ac7a8adab20b": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cefbca57ef744fc5afe83674350850df", - "placeholder": "​", - "style": "IPY_MODEL_4ea40c0e14d94a8abbb2f0242350e604", - "value": " 1.71G/1.71G [00:08<00:00, 186MB/s]" - } - }, - "caa34d7ce8e64bb591131c2a12dc19e8": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6f148570671c434793ddff1f322e77e1": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "61f23e35323e4d3f956971e049cea55a": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a18dc75a05a3440d80bca2441bdf32c6": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "31b0d34881f64a1fb47725e326f71b7b": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "cefbca57ef744fc5afe83674350850df": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4ea40c0e14d94a8abbb2f0242350e604": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - } - } - } + "accelerator": "GPU" }, "cells": [ { @@ -2908,7 +170,7 @@ "colab": { "base_uri": "https://localhost:8080/" }, - "outputId": "ff5bb951-13fe-492d-f533-1da421c41d15" + "outputId": "6aeb5939-1334-4ff0-b6ea-3ef8d8ae0c46" }, "execution_count": 1, "outputs": [ @@ -2919,12 +181,14 @@ "/content\n", "/content\n", "Cloning into 'text-to-image-prompts'...\n", - "remote: Enumerating objects: 2368, done.\u001b[K\n", - "remote: Total 2368 (delta 0), reused 0 (delta 0), pack-reused 2368 (from 1)\u001b[K\n", - "Receiving objects: 100% (2368/2368), 18.35 MiB | 6.72 MiB/s, done.\n", - "Resolving deltas: 100% (417/417), done.\n", - "Updating files: 100% (1301/1301), done.\n", - "Filtering content: 100% (578/578), 2.21 GiB | 39.94 MiB/s, done.\n" + "remote: Enumerating objects: 2380, done.\u001b[K\n", + "remote: Counting objects: 100% (498/498), done.\u001b[K\n", + "remote: Compressing objects: 100% (223/223), done.\u001b[K\n", + "remote: Total 2380 (delta 326), reused 355 (delta 266), pack-reused 1882 (from 1)\u001b[K\n", + "Receiving objects: 100% (2380/2380), 23.62 MiB | 7.15 MiB/s, done.\n", + "Resolving deltas: 100% (326/326), done.\n", + "Updating files: 100% (1302/1302), done.\n", + "Filtering content: 100% (578/578), 2.21 GiB | 36.30 MiB/s, done.\n" ] } ] @@ -3059,7 +323,7 @@ "base_uri": "https://localhost:8080/" } }, - "execution_count": 7, + "execution_count": null, "outputs": [ { "output_type": "stream", @@ -3342,7 +606,7 @@ "metadata": { "id": "xc-PbIYF428y" }, - "execution_count": 9, + "execution_count": null, "outputs": [] }, { @@ -3418,7 +682,7 @@ "base_uri": "https://localhost:8080/" } }, - "execution_count": 10, + "execution_count": null, "outputs": [ { "output_type": "stream", @@ -3874,7 +1138,7 @@ { "cell_type": "code", "source": [ - "# @title Make your own text_encodings .safetensor file for later use (using GPU is recommended to speed things up , but not required)\n", + "# @title Do the same but for image encodings (if urls exist)\n", "import json\n", "import pandas as pd\n", "import os\n", @@ -3882,6 +1146,8 @@ "import torch\n", "from safetensors.torch import save_file\n", "import json\n", + "from PIL import Image\n", + "import requests\n", "\n", "# Determine if this notebook is running on Colab or Kaggle\n", "#Use https://www.kaggle.com/ if Google Colab GPU is busy\n", @@ -3905,24 +1171,27 @@ "root_output_folder = home_directory + 'output/'\n", "output_folder = root_output_folder + 'fusion/'\n", "root_filename = 'prompts'\n", + "root_filename_links = 'links'\n", "NUM_FILES = 1\n", "#--------#\n", "\n", - "\n", - "\n", "# Setup environment\n", "def my_mkdirs(folder):\n", " if os.path.exists(folder)==False:\n", " os.makedirs(folder)\n", "#--------#\n", "output_folder_text = output_folder + 'text/'\n", - "output_folder_text = output_folder + 'text/'\n", + "output_folder_images = output_folder + 'images/'\n", "output_folder_text_encodings = output_folder + 'text_encodings/'\n", - "target_raw = target + 'raw/text/'\n", + "output_folder_image_encodings = output_folder + 'image_encodings/'\n", + "target_raw_text = target + 'raw/text/'\n", + "target_raw_images = target + 'raw/images/'\n", "%cd {home_directory}\n", "my_mkdirs(output_folder)\n", "my_mkdirs(output_folder_text)\n", + "my_mkdirs(output_folder_images)\n", "my_mkdirs(output_folder_text_encodings)\n", + "my_mkdirs(output_folder_image_encodings)\n", "#-------#\n", "\n", "\n", @@ -3934,113 +1203,149 @@ "model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\").to(device)\n", "#---------#\n", "for file_index in range(NUM_FILES + 1):\n", - " if (file_index < 1): continue\n", - "\n", - " # Assign name of JSON file to read\n", - " filename = f'{root_filename}{file_index}'\n", - " if NUM_FILES == 1 : filename = f'{root_filename}'\n", - " #--------#\n", + " if (file_index < 1): continue\n", "\n", - " # Read {filename}.json\n", - " %cd {target_raw}\n", - " with open(filename + '.json', 'r') as f:\n", - " data = json.load(f)\n", - " _df = pd.DataFrame({'count': data})['count']\n", - " prompts = {\n", - " key : value.replace(\"\",\" \") for key, value in _df.items()\n", - " }\n", - " index = 0\n", - " for key in prompts:\n", - " index = index + 1\n", - " #----------#\n", - " NUM_ITEMS = index\n", - " #------#\n", + " # Assign name of JSON file to read\n", + " filename = f'{root_filename}{file_index}'\n", + " if NUM_FILES == 1 : filename = f'{root_filename}'\n", + " #--------#\n", "\n", - " # Calculate text_encoding for .json file contents and results as .db file\n", - " names_dict = {}\n", - " text_encoding_dict = {}\n", - " segments = {}\n", - " index = 0;\n", - " subby = 1;\n", - " NUM_HEADERS = 2\n", - " CHUNKS_SIZE = 300\n", - " _filename = ''\n", - " for _index in range(NUM_ITEMS):\n", - " if not (f'{_index}' in prompts) : continue\n", - " if (prompts[f'{_index}']==\"SKIP\") : continue\n", - " if (index % 100 == 0) : print(index)\n", - " if (index == 0 and _index>0) : index = index + 2 #make space for headers\n", - " if (_index % (CHUNKS_SIZE-NUM_HEADERS) == 0 and _index > 0) :\n", + " # Assign name of JSON file to read\n", + " filename_links = f'{root_filename_links}{file_index}'\n", + " if NUM_FILES == 1 : filename_links = f'{root_filename_links}'\n", + " #--------#\n", "\n", - " # Write headers in the .json\n", - " names_dict[f'{0}'] = f'{_index}'\n", - " names_dict[f'{1}'] = f'{filename}-{subby}'\n", + " # Read {filename}.json\n", + " %cd {target_raw_text}\n", + " with open(filename + '.json', 'r') as f:\n", + " data = json.load(f)\n", + " _df = pd.DataFrame({'count': data})['count']\n", + " prompts = {\n", + " key : value.replace(\"\",\" \") for key, value in _df.items()\n", + " }\n", + " index = 0\n", + " for key in prompts:\n", + " index = index + 1\n", + " #----------#\n", + " NUM_ITEMS = index\n", + " #------#\n", "\n", - " # Encode the headers into text_encoding\n", - " inputs = tokenizer(text = '' + names_dict[f'{0}'], padding=True,truncation=True, return_tensors=\"pt\").to(device)\n", - " text_features = model.get_text_features(**inputs).to(device)\n", - " text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n", - " text_encoding_dict[f'{0}'] = text_features.to(torch.device('cpu'))\n", - " inputs = tokenizer(text = '' + names_dict[f'{1}'], padding=True,truncation=True, return_tensors=\"pt\").to(device)\n", - " text_features = model.get_text_features(**inputs).to(device)\n", - " text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n", - " text_encoding_dict[f'{1}'] = text_features.to(torch.device('cpu'))\n", - " #-------#\n", + " # Read image_urls\n", + " %cd {target_raw_images}\n", + " with open(filename_links + '.json', 'r') as f:\n", + " data = json.load(f)\n", + " _df = pd.DataFrame({'count': data})['count']\n", + " image_urls = {\n", + " key : value.replace(\"\",\" \") for key, value in _df.items()\n", + " }\n", + " index = 0\n", + " for key in image_urls:\n", + " index = index + 1\n", + " #----------#\n", + " NUM_ITEMS2 = index\n", + " #------#\n", "\n", - " # Write .json\n", - " _filename = f'{filename}-{subby}.json'\n", - " %cd {output_folder_text}\n", - " print(f'Saving segment {_filename} to {output_folder_text}...')\n", - " with open(_filename, 'w') as f:\n", - " json.dump(names_dict, f)\n", - " #-------#\n", + " if (NUM_ITEMS != NUM_ITEMS2) :\n", + " print(f\"NUM_ITEMS (text) : {NUM_ITEMS}\")\n", + " print(f\"NUM_ITEMS (links) : {NUM_ITEMS2}\")\n", "\n", - " # Write .safetensors\n", - " _filename = f'{filename}-{subby}.safetensors'\n", - " %cd {output_folder_text_encodings}\n", - " print(f'Saving segment {_filename} to {output_folder_text_encodings}...')\n", - " save_file(text_encoding_dict, _filename)\n", - " #--------#\n", + " # Calculate text_encoding for .json file contents and results as .db file\n", + " NUM_HEADERS = 2\n", + " CHUNKS_SIZE = 20\n", + " START_AT = 0 #<---Use this is job was aborted and you wish to continue where you left of. Set the value to 0 otherwise\n", + " #--------#\n", + " names_dict = {}\n", + " image_encoding_dict = {}\n", + " text_encoding_dict = {}\n", + " segments = {}\n", + " index = 0;\n", + " subby = 1;\n", + " _filename = ''\n", "\n", - " #Iterate\n", - " subby = subby + 1\n", - " segments[f'{subby}'] = _filename\n", - " text_encoding_dict = {}\n", - " names_dict = {}\n", - " index = 0\n", - " #------#\n", - " #------#\n", - " else: index = index + 1\n", - " #--------#\n", - " inputs = tokenizer(text = '' + prompts[f'{_index}'], padding=True,truncation=True, return_tensors=\"pt\").to(device)\n", - " text_features = model.get_text_features(**inputs).to(device)\n", - " text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n", - " text_encoding_dict[f'{index}'] = text_features.to(torch.device('cpu'))\n", - " names_dict[f'{index}'] = prompts[f'{_index}']\n", + " print(f'processing batch no {subby}....')\n", + " print(f'----------')\n", + " for _index in range(NUM_ITEMS2):\n", + " if not (f'{_index}' in prompts) : continue\n", + " if (prompts[f'{_index}']==\"SKIP\") : continue\n", + " if (index % 100 == 0) : print(index)\n", + " if (index == 0 and _index>0) : index = index + 2 #make space for headers\n", + " if (index % (CHUNKS_SIZE-NUM_HEADERS)> 0 or _index <= 0) :\n", + " index = index + 1\n", + " else:\n", + " if index=0.43.0dev0 in /usr/local/lib/python3.10/dist-packages (from numba) (0.43.0)\n", + "Requirement already satisfied: numpy<2.1,>=1.22 in /usr/local/lib/python3.10/dist-packages (from numba) (1.26.4)\n" + ] + } + ] }, { "cell_type": "code", @@ -4076,6 +1920,8 @@ "import torch\n", "from safetensors.torch import save_file\n", "import json\n", + "from PIL import Image\n", + "import requests\n", "\n", "# Determine if this notebook is running on Colab or Kaggle\n", "#Use https://www.kaggle.com/ if Google Colab GPU is busy\n", @@ -4098,20 +1944,18 @@ "target = home_directory + 'text-to-image-prompts/fusion/'\n", "root_output_folder = home_directory + 'output/'\n", "output_folder = root_output_folder + 'fusion/'\n", - "root_filename = 'links'\n", + "root_filename = 'prompts'\n", + "root_filename_links = 'links'\n", "NUM_FILES = 1\n", "#--------#\n", "\n", - "\n", - "\n", "# Setup environment\n", "def my_mkdirs(folder):\n", " if os.path.exists(folder)==False:\n", " os.makedirs(folder)\n", "#--------#\n", - "output_folder_images = output_folder + 'images/'\n", "output_folder_text = output_folder + 'text/'\n", - "output_folder_images_urls = output_folder + 'images/urls/'\n", + "output_folder_images = output_folder + 'images/'\n", "output_folder_text_encodings = output_folder + 'text_encodings/'\n", "output_folder_image_encodings = output_folder + 'image_encodings/'\n", "target_raw_text = target + 'raw/text/'\n", @@ -4119,7 +1963,7 @@ "%cd {home_directory}\n", "my_mkdirs(output_folder)\n", "my_mkdirs(output_folder_text)\n", - "my_mkdirs(output_folder_text_urls)\n", + "my_mkdirs(output_folder_images)\n", "my_mkdirs(output_folder_text_encodings)\n", "my_mkdirs(output_folder_image_encodings)\n", "#-------#\n", @@ -4133,137 +1977,184 @@ "model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\").to(device)\n", "#---------#\n", "for file_index in range(NUM_FILES + 1):\n", - " if (file_index < 1): continue\n", - "\n", - " # Assign name of JSON file to read\n", - " filename = f'{root_filename}{file_index}'\n", - " if NUM_FILES == 1 : filename = f'{root_filename}'\n", - " #--------#\n", + " if (file_index < 1): continue\n", "\n", - " # Read {filename}.json\n", - " %cd {target_raw_images}\n", - " with open('links.json', 'r') as f:\n", - " data = json.load(f)\n", - " _df = pd.DataFrame({'count': data})['count']\n", - " image_urls = {\n", - " key : value.replace(\"\",\" \") for key, value in _df.items()\n", - " }\n", - " index = 0\n", - " for key in image_urls:\n", - " index = index + 1\n", - " #----------#\n", - " NUM_ITEMS = index\n", - " #------#\n", + " # Assign name of JSON file to read\n", + " filename = f'{root_filename}{file_index}'\n", + " if NUM_FILES == 1 : filename = f'{root_filename}'\n", + " #--------#\n", "\n", - " # Calculate text_encoding for .json file contents and results as .db file\n", - " names_dict = {}\n", - " image_encoding_dict = {}\n", - " segments = {}\n", - " index = 0;\n", - " subby = 1;\n", - " NUM_HEADERS = 2\n", - " CHUNKS_SIZE = 500\n", - " _filename = ''\n", - " for _index in range(NUM_ITEMS):\n", - " if not (f'{_index}' in prompts) : continue\n", - " if (prompts[f'{_index}']==\"SKIP\") : continue\n", - " if (index % 100 == 0) : print(index)\n", - " if (index == 0 and _index>0) : index = index + 2 #make space for headers\n", - " if (_index % (CHUNKS_SIZE-NUM_HEADERS) == 0 and _index > 0) :\n", + " # Assign name of JSON file to read\n", + " filename_links = f'{root_filename_links}{file_index}'\n", + " if NUM_FILES == 1 : filename_links = f'{root_filename_links}'\n", + " #--------#\n", "\n", - " # Write headers in the .json\n", - " names_dict[f'{0}'] = f'{_index}'\n", - " names_dict[f'{1}'] = f'{filename}-{subby}'\n", + " # Read {filename}.json\n", + " %cd {target_raw_text}\n", + " with open(filename + '.json', 'r') as f:\n", + " data = json.load(f)\n", + " _df = pd.DataFrame({'count': data})['count']\n", + " prompts = {\n", + " key : value.replace(\"\",\" \") for key, value in _df.items()\n", + " }\n", + " index = 0\n", + " for key in prompts:\n", + " index = index + 1\n", + " #----------#\n", + " NUM_ITEMS = index\n", + " #------#\n", "\n", - " # Encode the headers into text_encoding\n", - " inputs = tokenizer(text = '' + names_dict[f'{0}'], padding=True,truncation=True, return_tensors=\"pt\").to(device)\n", - " text_features = model.get_text_features(**inputs).to(device)\n", - " text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n", - " image_encoding_dict[f'{0}'] = text_features.to(torch.device('cpu'))\n", - " inputs = tokenizer(text = '' + names_dict[f'{1}'], padding=True,truncation=True, return_tensors=\"pt\").to(device)\n", - " text_features = model.get_text_features(**inputs).to(device)\n", - " text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n", - " image_encoding_dict[f'{1}'] = text_features.to(torch.device('cpu'))\n", - " #-------#\n", + " # Read image_urls\n", + " %cd {target_raw_images}\n", + " with open(filename_links + '.json', 'r') as f:\n", + " data = json.load(f)\n", + " _df = pd.DataFrame({'count': data})['count']\n", + " image_urls = {\n", + " key : value.replace(\"\",\" \") for key, value in _df.items()\n", + " }\n", + " index = 0\n", + " for key in image_urls:\n", + " index = index + 1\n", + " #----------#\n", + " NUM_ITEMS2 = index\n", + " #------#\n", "\n", - " Write .json\n", - " _filename = f'{filename}-{subby}.json'\n", - " %cd {output_folder_images}\n", - " print(f'Saving segment {_filename} to {output_folder_images}...')\n", - " with open(_filename, 'w') as f:\n", - " json.dump(names_dict, f)\n", - " #-------#\n", + " if (NUM_ITEMS != NUM_ITEMS2) :\n", + " print(f\"NUM_ITEMS (text) : {NUM_ITEMS}\")\n", + " print(f\"NUM_ITEMS (links) : {NUM_ITEMS2}\")\n", "\n", - " # Write .safetensors\n", - " _filename = f'{filename}-{subby}.safetensors'\n", - " %cd {output_folder_image_encodings}\n", - " print(f'Saving segment {_filename} to {output_folder_image_encodings}...')\n", - " save_file(image_encoding_dict, _filename)\n", - " #--------#\n", + " # Calculate text_encoding for .json file contents and results as .db file\n", + " NUM_HEADERS = 2\n", + " CHUNKS_SIZE = 20\n", + " START_AT = 0 #<---Use this is job was aborted and you wish to continue where you left of. Set the value to 0 otherwise\n", + " #--------#\n", + " names_dict = {}\n", + " image_encoding_dict = {}\n", + " segments = {}\n", + " index = 0;\n", + " subby = 1;\n", + " _filename = ''\n", "\n", - " #Iterate\n", - " subby = subby + 1\n", - " segments[f'{subby}'] = _filename\n", - " image_encoding_dict = {}\n", - " names_dict = {}\n", - " index = 0\n", - " #------#\n", - " #------#\n", - " else: index = index + 1\n", - " #--------#\n", + " print(f'processing batch no {subby}....')\n", + " print(f'----------')\n", + " for _index in range(NUM_ITEMS2):\n", + " if not (f'{_index}' in prompts) : continue\n", + " if (prompts[f'{_index}']==\"SKIP\") : continue\n", + " if (index % 100 == 0) : print(index)\n", + " if (index == 0 and _index>0) : index = index + 2 #make space for headers\n", + " if (index % (CHUNKS_SIZE-NUM_HEADERS)> 0 or _index <= 0) :\n", + " index = index + 1\n", + " else:\n", + " if index\",\" \") for key, value in _df.items()\n", + " }\n", + " index = 0\n", + " for key in prompts:\n", + " index = index + 1\n", + " #----------#\n", + " NUM_ITEMS = index\n", + " #------#\n", "\n", - " # Read {filename}.json for text prompts\n", - " %cd {target_raw_text}\n", - " with open(filename + '.json', 'r') as f:\n", - " data = json.load(f)\n", - " _df = pd.DataFrame({'count': data})['count']\n", - " prompts = {\n", - " key : value.replace(\"\",\" \") for key, value in _df.items()\n", - " }\n", - " index = 0\n", - " for key in prompts:\n", - " index = index + 1\n", - " #----------#\n", - " NUM_ITEMS = index\n", - " #------#\n", "\n", - " # Read {filename}.json for image urls\n", - " %cd {target_raw_images}\n", - " with open('links.json', 'r') as f:\n", - " data = json.load(f)\n", - " _df = pd.DataFrame({'count': data})['count']\n", - " urls = {\n", - " key : value.replace(\"\",\" \") for key, value in _df.items()\n", - " }\n", - " #-------#\n", + "\n", + " # Read image_urls\n", + " %cd {target_raw_images}\n", + " with open('links.json', 'r') as f:\n", + " data = json.load(f)\n", + " _df = pd.DataFrame({'count': data})['count']\n", + " image_urls = {\n", + " key : value.replace(\"\",\" \") for key, value in _df.items()\n", + " }\n", + " index = 0\n", + " for key in image_urls:\n", + " index = index + 1\n", + " #----------#\n", + " NUM_ITEMS = index\n", + " #------#\n", "\n", " # Calculate text_encoding for .json file contents and results as .db file\n", - " names_dict = {}\n", - " text_encoding_dict = {}\n", - " image_encoding_dict = {}\n", - " segments = {}\n", - " index = 0;\n", - " subby = 1;\n", - " NUM_HEADERS = 2\n", - " CHUNKS_SIZE = 1000\n", - " _filename = ''\n", - " #from google.colab.patches import cv2_imshow\n", + " names_dict = {}\n", + " image_encoding_dict = {}\n", + " segments = {}\n", + " index = 0;\n", + " subby = 1;\n", + " NUM_HEADERS = 2\n", + " CHUNKS_SIZE = 500\n", + " _filename = ''\n", + " for _index in range(NUM_ITEMS):\n", + " if not (f'{_index}' in prompts) : continue\n", + " if (prompts[f'{_index}']==\"SKIP\") : continue\n", + " if (index % 100 == 0) : print(index)\n", + " if (index == 0 and _index>0) : index = index + 2 #make space for headers\n", + " if (_index % (CHUNKS_SIZE-NUM_HEADERS) == 0 and _index > 0) :\n", "\n", - " for _index in range(NUM_ITEMS):\n", - " if not (f'{_index}' in prompts) : continue\n", - " if (prompts[f'{_index}']==\"SKIP\") : continue\n", - " if (index % 100 == 0) : print(index)\n", - " if (index == 0 and _index>0) : index = index + 2 #make space for headers\n", - " if (_index % (CHUNKS_SIZE-NUM_HEADERS) == 0 and _index > 0) :\n", + " # Write headers in the .json\n", + " names_dict[f'{0}'] = f'{_index}'\n", + " names_dict[f'{1}'] = f'{filename}-{subby}'\n", "\n", - " # Write headers in the .json\n", - " names_dict[f'{0}'] = f'{_index}'\n", - " names_dict[f'{1}'] = f'{filename}-{subby}'\n", + " # Encode the headers into text_encoding\n", + " inputs = tokenizer(text = '' + names_dict[f'{0}'], padding=True,truncation=True, return_tensors=\"pt\").to(device)\n", + " text_features = model.get_text_features(**inputs).to(device)\n", + " text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n", + " image_encoding_dict[f'{0}'] = text_features.to(torch.device('cpu'))\n", + " inputs = tokenizer(text = '' + names_dict[f'{1}'], padding=True,truncation=True, return_tensors=\"pt\").to(device)\n", + " text_features = model.get_text_features(**inputs).to(device)\n", + " text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n", + " image_encoding_dict[f'{1}'] = text_features.to(torch.device('cpu'))\n", + " #-------#\n", "\n", - " # Encode the headers into text_encoding and image_encoding\n", - " inputs = tokenizer(text = '' + names_dict[f'{0}'], padding=True,truncation=True, return_tensors=\"pt\").to(device)\n", - " text_features = model.get_text_features(**inputs).to(device)\n", - " text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n", - " text_encoding_dict[f'{0}'] = text_features.to(torch.device('cpu'))\n", - " #image_encoding_dict[f'{0}'] = text_features.to(torch.device('cpu'))\n", - " inputs = tokenizer(text = '' + names_dict[f'{1}'], padding=True,truncation=True, return_tensors=\"pt\").to(device)\n", - " text_features = model.get_text_features(**inputs).to(device)\n", - " text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n", - " text_encoding_dict[f'{1}'] = text_features.to(torch.device('cpu'))\n", - " #image_encoding_dict[f'{1}'] = text_features.to(torch.device('cpu'))\n", - " #-------#\n", + " Write .json\n", + " _filename = f'{filename}-{subby}.json'\n", + " %cd {output_folder_images}\n", + " print(f'Saving segment {_filename} to {output_folder_images}...')\n", + " with open(_filename, 'w') as f:\n", + " json.dump(names_dict, f)\n", + " #-------#\n", "\n", - " # Write .json\n", - " _filename = f'{filename}-{subby}.json'\n", - " %cd {output_folder_text}\n", - " print(f'Saving segment {_filename} to {output_folder_text}...')\n", - " with open(_filename, 'w') as f:\n", - " json.dump(names_dict, f)\n", - " #-------#\n", + " # Write .safetensors\n", + " _filename = f'{filename}-{subby}.safetensors'\n", + " %cd {output_folder_image_encodings}\n", + " print(f'Saving segment {_filename} to {output_folder_image_encodings}...')\n", + " save_file(image_encoding_dict, _filename)\n", + " #--------#\n", "\n", - " # Write .safetensors for text\n", - " _filename = f'{filename}-{subby}.safetensors'\n", - " %cd {output_folder_text_encodings}\n", - " print(f'Saving segment {_filename} to {output_folder_text_encodings}...')\n", - " save_file(text_encoding_dict, _filename)\n", - " #--------#\n", + " #Iterate\n", + " subby = subby + 1\n", + " segments[f'{subby}'] = _filename\n", + " image_encoding_dict = {}\n", + " names_dict = {}\n", + " index = 0\n", + " #------#\n", + " #------#\n", + " else: index = index + 1\n", + " #--------#\n", "\n", - " # Write .safetensors for images\n", - " #_filename = f'{filename}-{subby}.safetensors'\n", - " #%cd {output_folder_image_encodings}\n", - " #print(f'Saving segment {_filename} to {output_folder_image_encodings}...')\n", - " #save_file(image_encoding_dict, _filename)\n", - " #--------#\n", "\n", - " #Iterate\n", - " subby = subby + 1\n", - " segments[f'{subby}'] = _filename\n", - " text_encoding_dict = {}\n", - " image_encoding_dict = {}\n", - " names_dict = {}\n", - " index = 0\n", - " #------#\n", - " else:\n", - " index = index + 1\n", - " #--------#\n", + " inputs = tokenizer(text = '' + prompts[f'{_index}'], padding=True,truncation=True, return_tensors=\"pt\").to(device)\n", + " text_features = model.get_text_features(**inputs).to(device)\n", + " text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n", + " text_encoding_dict[f'{index}'] = text_features.to(torch.device('cpu'))\n", "\n", - " #----text-encodings----#\n", - " inputs = tokenizer(text = '' + prompts[f'{_index}'], padding=True,truncation=True, return_tensors=\"pt\").to(device)\n", - " text_features = model.get_text_features(**inputs).to(device)\n", - " text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n", - " text_encoding_dict[f'{index}'] = text_features.to(torch.device('cpu'))\n", - " names_dict[f'{index}'] = prompts[f'{_index}']\n", - " #-----#\n", "\n", - " #---image-encodings---#\n", - " if False:\n", - " image_url = urls[f'{_index}']\n", - " with Image.open(requests.get(image_url, stream=True).raw) as image_A :\n", - " inputs = processor(images=image_A, return_tensors=\"pt\").to(device)\n", - " image_features = model.get_image_features(**inputs).to(device)\n", - " image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True).to(device)\n", - " #--------#\n", - " #image_encoding_dict[f'{index}'] = text_features.to(torch.device('cpu'))\n", + " names_dict[f'{index}'] = prompts[f'{_index}']\n", + " continue\n", + " #-----#\n", " #-----#\n", - " continue\n", - " #-----#\n", - " #-----#\n", " # Write headers in the .json\n", " names_dict[f'{0}'] = f'{_index}'\n", " names_dict[f'{1}'] = f'{filename}-{subby}'\n", "\n", - " # Encode the headers into text_encoding and image_encoding\n", + " # Encode the headers into text_encoding\n", " inputs = tokenizer(text = '' + names_dict[f'{0}'], padding=True,truncation=True, return_tensors=\"pt\").to(device)\n", " text_features = model.get_text_features(**inputs).to(device)\n", " text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n", " text_encoding_dict[f'{0}'] = text_features.to(torch.device('cpu'))\n", - " #image_encoding_dict[f'{0}'] = text_features.to(torch.device('cpu'))\n", " inputs = tokenizer(text = '' + names_dict[f'{1}'], padding=True,truncation=True, return_tensors=\"pt\").to(device)\n", " text_features = model.get_text_features(**inputs).to(device)\n", " text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n", " text_encoding_dict[f'{1}'] = text_features.to(torch.device('cpu'))\n", - " #image_encoding_dict[f'{1}'] = text_features.to(torch.device('cpu'))\n", " #-------#\n", "\n", " # Write .json\n", @@ -4484,300 +2367,28 @@ " json.dump(names_dict, f)\n", " #-------#\n", "\n", - " # Write .safetensors for text\n", + " # Write .safetensors\n", " _filename = f'{filename}-{subby}.safetensors'\n", " %cd {output_folder_text_encodings}\n", " print(f'Saving segment {_filename} to {output_folder_text_encodings}...')\n", " save_file(text_encoding_dict, _filename)\n", " #--------#\n", "\n", - " # Write .safetensors for images\n", - " #_filename = f'{filename}-{subby}.safetensors'\n", - " #%cd {output_folder_image_encodings}\n", - " #print(f'Saving segment {_filename} to {output_folder_image_encodings}...')\n", - " #save_file(image_encoding_dict, _filename)\n", - " #--------#\n", - "\n", " #Iterate\n", " subby = subby + 1\n", " segments[f'{subby}'] = _filename\n", " text_encoding_dict = {}\n", - " image_encoding_dict = {}\n", " names_dict = {}\n", " index = 0\n", " #------#\n", " #----#" ], "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 976, - "referenced_widgets": [ - "ecd90f093b8a4d9d890e9994dd125f73", - "75bd795ba1d54cfbb3f7a96d6dfe26fc", - "22de342649f746218c6a3507af3133f3", - "d4e3bf69064340e8baba7ef5280bb840", - "c02a6ba5455142f88fd3449afd0166e6", - "04623303169b4abb905413904b3c97b3", - "025393b0f9ff4a259f7d63e2a99e25cc", - "43513e6a12b14b6fb4b845778d79c774", - "1e800969994147beaa17a53eaa985b7f", - "b7ec09bd69e545f0a3082854c93fff75", - "74d8a4821a814214bd8b63bc55086214", - "604c38bb547541deb7e0e1b97c273d40", - "8b424e97ae3a491db5e2ac90db91bf6d", - "604190b4b2d64e648556791141a88ed4", - "ff80cce4b49e4e039186ade1d5f8a3d8", - "e87d4cd88a654a2e9431fdb7585c66b4", - "d2e03fe8207d4bc2827425c367907153", - "199d0425f52444ae8d5feadf5bc9455a", - "40a355b8b6d4466a91241ce977db3b44", - "320860c2f1c74c31bc5cb56ca6ac35c8", - "376fff463bd242cda95ab5e6683580a3", - "94284f9962684abbaddb411fe26a88d6", - "0b0012defa2f474dbb7f363e2b124c96", - "524b136f6dfc41b1b4bbc157821a5563", - "3ad8ff7672274b9799baf7fd003f444e", - "f0b841c6d593403ca5902f0c64dfb32b", - "f724f2227f7c40e3816db937863d233b", - "5a80fb276ba7430cb3098264ca169656", - "6e9fadd58aff4dd38bddf85eb76ed40d", - "2dc4a84e64844a98838b42ca44184095", - "8696928dff004d21b1ab0d9f6fed31ff", - "2f8449d4a06b4b85a508e3b056c0ec36", - "15003cef68274ae397cd328de6599b82", - "7a8cb4d4b20343d8b21ecfd14e86cd78", - "174cf241adcd4cc7b5edbca7df1a8bb8", - "08cc774f99b645ef8e702da8a31d9f05", - "1efb74e8b2884464acff48acbfdc2d2b", - "da323d5f591444dd8d033fa57c5bca4d", - "0703cb4c92ad4947b87a38560d20c278", - "fab28303b6fd42c0b756e01a5e60d953", - "c18eef1ea3bc499e9cba6616ca41429d", - "5d7c93ed38d0440892e810f48bb4eff5", - "ef5f2545abf7481ca85c6c02f9d6cb60", - "377801b80fe748c691d407c793d345f9", - "483c97b9f6064c4589141bf114744b29", - "5b4f2983d197485c8c51cdc0a23a40c3", - "190d405222af4bd68845dd339a5ae739", - "77f036d2d2944a73bdcda438c71329ac", - "77cf6bb6f64d49caa9a92bad8d0d3919", - "3c8ba3d3079842558ff93d1bef9a4c35", - "d8ac7b57ac604da788fd07ca6358a77f", - "3ab19d4d369441c2b16a6e382eba914f", - "0ee0273756654ab3baf0e96fe1cb1808", - "5e4d0b560b434e2cbb13e87d0dfd8d24", - "bf3cb7b165d3490ea59df715873e05b8", - "515b4585d00d4ef385fc1dbb331dba2d", - "ecb39808f3a74a6c833f870eff7fb0f1", - "ddd9ac3cc28b49629169df040007af68", - "fc655bf52d274a698c220abeecbba088", - "609593be6c934d309e5ba0c7977b8834", - "726cb0d466e547d4b2b1acf635b8ed48", - "4d0b0efbdcad4745986a206d594dcb14", - "fea4ee38d45f4604bed4fc86d02b7662", - "72f396f1e5b74d86b60f4818cab99e44", - "26f0eb2a2fed43a4afd569e85f5a3a11", - "fdc0f26170974139bdf45c30b72e14af", - "a6c29ebbf748485ebbe101b58e6660f0", - "af124a390cfd4025a684c713dd6add08", - "ef39f3b25ee84b8db58f29966171b426", - "7362c4ac71044846bbe35bbf445c6ca5", - "79a366fdf1314d8fa86e36551b9a9fdf", - "357fba97146e4fbd92df23eca248887b", - "a7ba2123755249f6b22c9b0b1a57ce07", - "49ca12b87b6c4f2188f46cf749f781ec", - "5c5a7963b5ab42cca0d520d34ead0d7a", - "8344b8676d824967b59314725313abc2", - "17497782d90141b89d0e0ebae93c3579", - "d2ee451b217e4c7fafb442fe6fc4d63d", - "312bc9d4ee1f4acf89afe54bc86b9166", - "0dec9ab20b0546b5ae4d497e6d7e1202", - "c862c221b54544b1bb74ac7a8adab20b", - "caa34d7ce8e64bb591131c2a12dc19e8", - "6f148570671c434793ddff1f322e77e1", - "61f23e35323e4d3f956971e049cea55a", - "a18dc75a05a3440d80bca2441bdf32c6", - "31b0d34881f64a1fb47725e326f71b7b", - "cefbca57ef744fc5afe83674350850df", - "4ea40c0e14d94a8abbb2f0242350e604" - ] - }, - "id": "SDKl21yzsyuo", - "outputId": "27c66241-4338-4c33-c8fb-4c9c92001d18" + "id": "Sy5K7c-IDcic", + "cellView": "form" }, - "execution_count": 1, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "/content\n", - "/content\n", - "Cloning into 'text-to-image-prompts'...\n", - "remote: Enumerating objects: 2351, done.\u001b[K\n", - "remote: Counting objects: 100% (2348/2348), done.\u001b[K\n", - "remote: Compressing objects: 100% (1923/1923), done.\u001b[K\n", - "remote: Total 2351 (delta 415), reused 2245 (delta 369), pack-reused 3 (from 1)\u001b[K\n", - "Receiving objects: 100% (2351/2351), 18.24 MiB | 8.82 MiB/s, done.\n", - "Resolving deltas: 100% (415/415), done.\n", - "Filtering content: 100% (572/572), 2.20 GiB | 65.28 MiB/s, done.\n", - "/content\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "tokenizer_config.json: 0%| | 0.00/905 [00:00\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 168\u001b[0m \u001b[0;31m#----text-encodings----#\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 169\u001b[0m \u001b[0minputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtokenizer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtext\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m''\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mprompts\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34mf'{_index}'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpadding\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mtruncation\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mreturn_tensors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"pt\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdevice\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 170\u001b[0;31m \u001b[0mtext_features\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_text_features\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdevice\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 171\u001b[0m \u001b[0mtext_features\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtext_features\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0mtext_features\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnorm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mp\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdim\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkeepdim\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 172\u001b[0m \u001b[0mtext_encoding_dict\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34mf'{index}'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtext_features\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdevice\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'cpu'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/models/clip/modeling_clip.py\u001b[0m in \u001b[0;36mget_text_features\u001b[0;34m(self, input_ids, attention_mask, position_ids, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m 1184\u001b[0m \u001b[0mreturn_dict\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mreturn_dict\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mreturn_dict\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0muse_return_dict\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1185\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1186\u001b[0;31m text_outputs = self.text_model(\n\u001b[0m\u001b[1;32m 1187\u001b[0m \u001b[0minput_ids\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minput_ids\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1188\u001b[0m \u001b[0mattention_mask\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mattention_mask\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1551\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_compiled_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# type: ignore[misc]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1552\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1553\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1554\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1555\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1560\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_pre_hooks\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_hooks\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1561\u001b[0m or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1562\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1563\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1564\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/models/clip/modeling_clip.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, input_ids, attention_mask, position_ids, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m 888\u001b[0m \u001b[0mattention_mask\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_prepare_4d_attention_mask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mattention_mask\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhidden_states\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 889\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 890\u001b[0;31m encoder_outputs = self.encoder(\n\u001b[0m\u001b[1;32m 891\u001b[0m \u001b[0minputs_embeds\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mhidden_states\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 892\u001b[0m \u001b[0mattention_mask\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mattention_mask\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1551\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_compiled_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# type: ignore[misc]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1552\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1553\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1554\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1555\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1560\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_pre_hooks\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_hooks\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1561\u001b[0m or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1562\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1563\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1564\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/models/clip/modeling_clip.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, inputs_embeds, attention_mask, causal_attention_mask, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m 811\u001b[0m )\n\u001b[1;32m 812\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 813\u001b[0;31m layer_outputs = encoder_layer(\n\u001b[0m\u001b[1;32m 814\u001b[0m \u001b[0mhidden_states\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 815\u001b[0m \u001b[0mattention_mask\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1551\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_compiled_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# type: ignore[misc]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1552\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1553\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1554\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1555\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1560\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_pre_hooks\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_hooks\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1561\u001b[0m or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1562\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1563\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1564\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/models/clip/modeling_clip.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, hidden_states, attention_mask, causal_attention_mask, output_attentions)\u001b[0m\n\u001b[1;32m 556\u001b[0m \u001b[0mresidual\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mhidden_states\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 557\u001b[0m \u001b[0mhidden_states\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlayer_norm2\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhidden_states\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 558\u001b[0;31m \u001b[0mhidden_states\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmlp\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhidden_states\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 559\u001b[0m \u001b[0mhidden_states\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mresidual\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mhidden_states\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 560\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1551\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_compiled_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# type: ignore[misc]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1552\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1553\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1554\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1555\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1560\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_pre_hooks\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_hooks\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1561\u001b[0m or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1562\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1563\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1564\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/models/clip/modeling_clip.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, hidden_states)\u001b[0m\n\u001b[1;32m 513\u001b[0m \u001b[0mhidden_states\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfc1\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhidden_states\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 514\u001b[0m \u001b[0mhidden_states\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mactivation_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhidden_states\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 515\u001b[0;31m \u001b[0mhidden_states\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfc2\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhidden_states\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 516\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mhidden_states\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 517\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1551\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_compiled_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# type: ignore[misc]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1552\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1553\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1554\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1555\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1560\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_pre_hooks\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_hooks\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1561\u001b[0m or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1562\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1563\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1564\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, input)\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 116\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mTensor\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mTensor\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 117\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mF\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlinear\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mweight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbias\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 118\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 119\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mextra_repr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mOutOfMemoryError\u001b[0m: CUDA out of memory. Tried to allocate 2.00 MiB. GPU 0 has a total capacity of 14.75 GiB of which 1.06 MiB is free. Process 31920 has 14.74 GiB memory in use. Of the allocated memory 14.54 GiB is allocated by PyTorch, and 85.99 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)" - ] - } - ] + "execution_count": null, + "outputs": [] }, { "cell_type": "code", @@ -4799,10 +2410,421 @@ "!zip -r {zip_dest} {root_output_folder}" ], "metadata": { - "id": "V4YCpmWlkPMG" + "id": "V4YCpmWlkPMG", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "157c08eb-f323-49ce-8120-cead51d3a279" }, - "execution_count": null, - "outputs": [] + "execution_count": 6, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "/content\n", + "/content\n", + " adding: content/output/ (stored 0%)\n", + " adding: content/output/fusion/ (stored 0%)\n", + " adding: content/output/fusion/text_encodings/ (stored 0%)\n", + " adding: content/output/fusion/text_encodings/prompts-9.safetensors (deflated 38%)\n", + " adding: content/output/fusion/text_encodings/prompts-41.safetensors (deflated 18%)\n", + " adding: content/output/fusion/text_encodings/prompts-76.safetensors (deflated 33%)\n", + " adding: content/output/fusion/text_encodings/prompts-2.safetensors (deflated 8%)\n", + " adding: content/output/fusion/text_encodings/prompts-98.safetensors (deflated 28%)\n", + " adding: content/output/fusion/text_encodings/prompts-22.safetensors (deflated 13%)\n", + " adding: content/output/fusion/text_encodings/prompts-12.safetensors (deflated 18%)\n", + " adding: content/output/fusion/text_encodings/prompts-38.safetensors (deflated 8%)\n", + " adding: content/output/fusion/text_encodings/prompts-75.safetensors (deflated 28%)\n", + " adding: content/output/fusion/text_encodings/prompts-88.safetensors (deflated 18%)\n", + " adding: content/output/fusion/text_encodings/prompts-49.safetensors (deflated 13%)\n", + " adding: content/output/fusion/text_encodings/prompts-61.safetensors (deflated 23%)\n", + " adding: content/output/fusion/text_encodings/prompts-33.safetensors (deflated 8%)\n", + " adding: content/output/fusion/text_encodings/prompts-16.safetensors (deflated 18%)\n", + " adding: content/output/fusion/text_encodings/prompts-34.safetensors (deflated 33%)\n", + " adding: content/output/fusion/text_encodings/prompts-7.safetensors (deflated 28%)\n", + " adding: content/output/fusion/text_encodings/prompts-30.safetensors (deflated 8%)\n", + " adding: content/output/fusion/text_encodings/prompts-17.safetensors (deflated 18%)\n", + " adding: content/output/fusion/text_encodings/prompts-40.safetensors (deflated 43%)\n", + " adding: content/output/fusion/text_encodings/prompts-50.safetensors (deflated 8%)\n", + " adding: content/output/fusion/text_encodings/prompts-46.safetensors (deflated 13%)\n", + " adding: content/output/fusion/text_encodings/prompts-11.safetensors (deflated 18%)\n", + " adding: content/output/fusion/text_encodings/prompts-20.safetensors (deflated 8%)\n", + " adding: content/output/fusion/text_encodings/prompts-24.safetensors (deflated 18%)\n", + " adding: content/output/fusion/text_encodings/prompts-4.safetensors (deflated 18%)\n", + " adding: content/output/fusion/text_encodings/prompts-56.safetensors (deflated 18%)\n", + " adding: content/output/fusion/text_encodings/prompts-52.safetensors (deflated 9%)\n", + " adding: content/output/fusion/text_encodings/prompts-42.safetensors (deflated 28%)\n", + " adding: content/output/fusion/text_encodings/prompts-93.safetensors (deflated 28%)\n", + " adding: content/output/fusion/text_encodings/prompts-59.safetensors (deflated 13%)\n", + " adding: content/output/fusion/text_encodings/prompts-44.safetensors (deflated 48%)\n", + " adding: content/output/fusion/text_encodings/prompts-58.safetensors (deflated 13%)\n", + " adding: content/output/fusion/text_encodings/prompts-97.safetensors (deflated 33%)\n", + " adding: content/output/fusion/text_encodings/prompts-36.safetensors (deflated 73%)\n", + " adding: content/output/fusion/text_encodings/prompts-37.safetensors (deflated 49%)\n", + " adding: content/output/fusion/text_encodings/prompts-63.safetensors (deflated 13%)\n", + " adding: content/output/fusion/text_encodings/prompts-74.safetensors (deflated 18%)\n", + " adding: content/output/fusion/text_encodings/prompts-72.safetensors (deflated 13%)\n", + " adding: content/output/fusion/text_encodings/prompts-84.safetensors (deflated 13%)\n", + " adding: content/output/fusion/text_encodings/prompts-54.safetensors (deflated 8%)\n", + " adding: content/output/fusion/text_encodings/prompts-14.safetensors (deflated 23%)\n", + " adding: content/output/fusion/text_encodings/prompts-45.safetensors (deflated 28%)\n", + " adding: content/output/fusion/text_encodings/prompts-86.safetensors (deflated 28%)\n", + " adding: content/output/fusion/text_encodings/prompts-65.safetensors (deflated 28%)\n", + " adding: content/output/fusion/text_encodings/prompts-5.safetensors (deflated 23%)\n", + " adding: content/output/fusion/text_encodings/prompts-1.safetensors (deflated 13%)\n", + " adding: content/output/fusion/text_encodings/prompts-3.safetensors (deflated 33%)\n", + " adding: content/output/fusion/text_encodings/prompts-94.safetensors (deflated 43%)\n", + " adding: content/output/fusion/text_encodings/prompts-8.safetensors (deflated 28%)\n", + " adding: content/output/fusion/text_encodings/prompts-67.safetensors (deflated 13%)\n", + " adding: content/output/fusion/text_encodings/prompts-92.safetensors (deflated 33%)\n", + " adding: content/output/fusion/text_encodings/prompts-87.safetensors (deflated 9%)\n", + " adding: content/output/fusion/text_encodings/prompts-19.safetensors (deflated 8%)\n", + " adding: content/output/fusion/text_encodings/prompts-80.safetensors (deflated 28%)\n", + " adding: content/output/fusion/text_encodings/prompts-95.safetensors (deflated 33%)\n", + " adding: content/output/fusion/text_encodings/prompts-66.safetensors (deflated 38%)\n", + " adding: content/output/fusion/text_encodings/prompts-47.safetensors (deflated 13%)\n", + " adding: content/output/fusion/text_encodings/prompts-53.safetensors (deflated 8%)\n", + " adding: content/output/fusion/text_encodings/prompts-39.safetensors (deflated 18%)\n", + " adding: content/output/fusion/text_encodings/prompts-73.safetensors (deflated 43%)\n", + " adding: content/output/fusion/text_encodings/prompts-85.safetensors (deflated 8%)\n", + " adding: content/output/fusion/text_encodings/prompts-96.safetensors (deflated 8%)\n", + " adding: content/output/fusion/text_encodings/prompts-13.safetensors (deflated 38%)\n", + " adding: content/output/fusion/text_encodings/prompts-62.safetensors (deflated 28%)\n", + " adding: content/output/fusion/text_encodings/prompts-6.safetensors (deflated 18%)\n", + " adding: content/output/fusion/text_encodings/prompts-26.safetensors (deflated 8%)\n", + " adding: content/output/fusion/text_encodings/prompts-68.safetensors (deflated 18%)\n", + " adding: content/output/fusion/text_encodings/prompts-91.safetensors (deflated 18%)\n", + " adding: content/output/fusion/text_encodings/prompts-81.safetensors (deflated 9%)\n", + " adding: content/output/fusion/text_encodings/prompts-79.safetensors (deflated 8%)\n", + " adding: content/output/fusion/text_encodings/prompts-60.safetensors (deflated 13%)\n", + " adding: content/output/fusion/text_encodings/prompts-89.safetensors (deflated 13%)\n", + " adding: content/output/fusion/text_encodings/prompts-82.safetensors (deflated 18%)\n", + " adding: content/output/fusion/text_encodings/prompts-90.safetensors (deflated 8%)\n", + " adding: content/output/fusion/text_encodings/prompts-48.safetensors (deflated 8%)\n", + " adding: content/output/fusion/text_encodings/prompts-28.safetensors (deflated 9%)\n", + " adding: content/output/fusion/text_encodings/prompts-31.safetensors (deflated 9%)\n", + " adding: content/output/fusion/text_encodings/prompts-21.safetensors (deflated 8%)\n", + " adding: content/output/fusion/text_encodings/prompts-78.safetensors (deflated 13%)\n", + " adding: content/output/fusion/text_encodings/prompts-83.safetensors (deflated 13%)\n", + " adding: content/output/fusion/text_encodings/prompts-27.safetensors (deflated 8%)\n", + " adding: content/output/fusion/text_encodings/prompts-70.safetensors (deflated 13%)\n", + " adding: content/output/fusion/text_encodings/prompts-69.safetensors (deflated 13%)\n", + " adding: content/output/fusion/text_encodings/prompts-57.safetensors (deflated 13%)\n", + " adding: content/output/fusion/text_encodings/prompts-43.safetensors (deflated 28%)\n", + " adding: content/output/fusion/text_encodings/prompts-35.safetensors (deflated 33%)\n", + " adding: content/output/fusion/text_encodings/prompts-55.safetensors (deflated 18%)\n", + " adding: content/output/fusion/text_encodings/prompts-15.safetensors (deflated 13%)\n", + " adding: content/output/fusion/text_encodings/prompts-71.safetensors (deflated 19%)\n", + " adding: content/output/fusion/text_encodings/prompts-29.safetensors (deflated 9%)\n", + " adding: content/output/fusion/text_encodings/prompts-77.safetensors (deflated 13%)\n", + " adding: content/output/fusion/text_encodings/prompts-10.safetensors (deflated 58%)\n", + " adding: content/output/fusion/text_encodings/prompts-32.safetensors (deflated 8%)\n", + " adding: content/output/fusion/text_encodings/prompts-25.safetensors (deflated 43%)\n", + " adding: content/output/fusion/text_encodings/prompts-18.safetensors (deflated 8%)\n", + " adding: content/output/fusion/text_encodings/prompts-23.safetensors (deflated 78%)\n", + " adding: content/output/fusion/text_encodings/prompts-51.safetensors (deflated 8%)\n", + " adding: content/output/fusion/text_encodings/prompts-64.safetensors (deflated 8%)\n", + " adding: content/output/fusion/images/ (stored 0%)\n", + " adding: content/output/fusion/images/links-6.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-59.json (deflated 62%)\n", + " adding: content/output/fusion/images/links-81.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-21.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-49.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-60.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-87.json (deflated 62%)\n", + " adding: content/output/fusion/images/links-26.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-16.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-38.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-28.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-90.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-36.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-34.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-37.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-44.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-56.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-65.json (deflated 62%)\n", + " adding: content/output/fusion/images/links-83.json (deflated 62%)\n", + " adding: content/output/fusion/images/links-96.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-76.json (deflated 62%)\n", + " adding: content/output/fusion/images/links-97.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-48.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-78.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-9.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-32.json (deflated 62%)\n", + " adding: content/output/fusion/images/links-11.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-33.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-51.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-91.json (deflated 62%)\n", + " adding: content/output/fusion/images/links-95.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-5.json (deflated 62%)\n", + " adding: content/output/fusion/images/links-89.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-23.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-19.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-8.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-14.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-22.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-18.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-47.json (deflated 62%)\n", + " adding: content/output/fusion/images/links-20.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-3.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-35.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-46.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-55.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-15.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-73.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-39.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-24.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-45.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-67.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-68.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-98.json (deflated 62%)\n", + " adding: content/output/fusion/images/links-10.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-42.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-27.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-66.json (deflated 62%)\n", + " adding: content/output/fusion/images/links-70.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-4.json (deflated 62%)\n", + " adding: content/output/fusion/images/links-64.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-80.json (deflated 62%)\n", + " adding: content/output/fusion/images/links-74.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-7.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-2.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-29.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-71.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-25.json (deflated 62%)\n", + " adding: content/output/fusion/images/links-94.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-12.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-88.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-93.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-31.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-58.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-79.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-41.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-30.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-13.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-77.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-75.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-82.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-84.json (deflated 62%)\n", + " adding: content/output/fusion/images/links-40.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-50.json (deflated 62%)\n", + " adding: content/output/fusion/images/links-53.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-57.json (deflated 62%)\n", + " adding: content/output/fusion/images/links-69.json (deflated 62%)\n", + " adding: content/output/fusion/images/links-1.json (deflated 62%)\n", + " adding: content/output/fusion/images/links-17.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-85.json (deflated 62%)\n", + " adding: content/output/fusion/images/links-63.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-86.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-61.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-54.json (deflated 62%)\n", + " adding: content/output/fusion/images/links-43.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-72.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-52.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-92.json (deflated 63%)\n", + " adding: content/output/fusion/images/links-62.json (deflated 63%)\n", + " adding: content/output/fusion/image_encodings/ (stored 0%)\n", + " adding: content/output/fusion/image_encodings/links-85.safetensors (deflated 9%)\n", + " adding: content/output/fusion/image_encodings/links-51.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-46.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-89.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-54.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-96.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-76.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-90.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-22.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-8.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-92.safetensors (deflated 9%)\n", + " adding: content/output/fusion/image_encodings/links-44.safetensors (deflated 9%)\n", + " adding: content/output/fusion/image_encodings/links-55.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-34.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-27.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-18.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-39.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-11.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-4.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-35.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-37.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-14.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-57.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-24.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-80.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-15.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-79.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-58.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-66.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-21.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-62.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-26.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-72.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-60.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-1.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-67.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-17.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-29.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-6.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-5.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-25.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-20.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-73.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-65.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-16.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-95.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-71.safetensors (deflated 9%)\n", + " adding: content/output/fusion/image_encodings/links-87.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-23.safetensors (deflated 9%)\n", + " adding: content/output/fusion/image_encodings/links-50.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-86.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-70.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-81.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-64.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-13.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-93.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-12.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-40.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-61.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-43.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-94.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-56.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-10.safetensors (deflated 9%)\n", + " adding: content/output/fusion/image_encodings/links-49.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-48.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-28.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-69.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-97.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-2.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-45.safetensors (deflated 9%)\n", + " adding: content/output/fusion/image_encodings/links-68.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-31.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-47.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-3.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-9.safetensors (deflated 9%)\n", + " adding: content/output/fusion/image_encodings/links-77.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-59.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-36.safetensors (deflated 9%)\n", + " adding: content/output/fusion/image_encodings/links-53.safetensors (deflated 9%)\n", + " adding: content/output/fusion/image_encodings/links-78.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-7.safetensors (deflated 9%)\n", + " adding: content/output/fusion/image_encodings/links-84.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-42.safetensors (deflated 9%)\n", + " adding: content/output/fusion/image_encodings/links-41.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-33.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-91.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-32.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-83.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-19.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-63.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-75.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-98.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-52.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-38.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-82.safetensors (deflated 9%)\n", + " adding: content/output/fusion/image_encodings/links-88.safetensors (deflated 9%)\n", + " adding: content/output/fusion/image_encodings/links-74.safetensors (deflated 8%)\n", + " adding: content/output/fusion/image_encodings/links-30.safetensors (deflated 8%)\n", + " adding: content/output/fusion/text/ (stored 0%)\n", + " adding: content/output/fusion/text/prompts-78.json (deflated 58%)\n", + " adding: content/output/fusion/text/prompts-61.json (deflated 55%)\n", + " adding: content/output/fusion/text/prompts-10.json (deflated 75%)\n", + " adding: content/output/fusion/text/prompts-3.json (deflated 71%)\n", + " adding: content/output/fusion/text/prompts-69.json (deflated 49%)\n", + " adding: content/output/fusion/text/prompts-94.json (deflated 74%)\n", + " adding: content/output/fusion/text/prompts-81.json (deflated 49%)\n", + " adding: content/output/fusion/text/prompts-91.json (deflated 52%)\n", + " adding: content/output/fusion/text/prompts-28.json (deflated 59%)\n", + " adding: content/output/fusion/text/prompts-68.json (deflated 51%)\n", + " adding: content/output/fusion/text/prompts-34.json (deflated 67%)\n", + " adding: content/output/fusion/text/prompts-66.json (deflated 72%)\n", + " adding: content/output/fusion/text/prompts-8.json (deflated 62%)\n", + " adding: content/output/fusion/text/prompts-21.json (deflated 75%)\n", + " adding: content/output/fusion/text/prompts-96.json (deflated 59%)\n", + " adding: content/output/fusion/text/prompts-56.json (deflated 52%)\n", + " adding: content/output/fusion/text/prompts-7.json (deflated 56%)\n", + " adding: content/output/fusion/text/prompts-14.json (deflated 53%)\n", + " adding: content/output/fusion/text/prompts-38.json (deflated 69%)\n", + " adding: content/output/fusion/text/prompts-42.json (deflated 68%)\n", + " adding: content/output/fusion/text/prompts-80.json (deflated 59%)\n", + " adding: content/output/fusion/text/prompts-73.json (deflated 73%)\n", + " adding: content/output/fusion/text/prompts-90.json (deflated 54%)\n", + " adding: content/output/fusion/text/prompts-43.json (deflated 69%)\n", + " adding: content/output/fusion/text/prompts-67.json (deflated 48%)\n", + " adding: content/output/fusion/text/prompts-70.json (deflated 66%)\n", + " adding: content/output/fusion/text/prompts-83.json (deflated 49%)\n", + " adding: content/output/fusion/text/prompts-54.json (deflated 45%)\n", + " adding: content/output/fusion/text/prompts-36.json (deflated 87%)\n", + " adding: content/output/fusion/text/prompts-41.json (deflated 57%)\n", + " adding: content/output/fusion/text/prompts-20.json (deflated 75%)\n", + " adding: content/output/fusion/text/prompts-26.json (deflated 51%)\n", + " adding: content/output/fusion/text/prompts-60.json (deflated 51%)\n", + " adding: content/output/fusion/text/prompts-82.json (deflated 48%)\n", + " adding: content/output/fusion/text/prompts-12.json (deflated 60%)\n", + " adding: content/output/fusion/text/prompts-13.json (deflated 69%)\n", + " adding: content/output/fusion/text/prompts-57.json (deflated 48%)\n", + " adding: content/output/fusion/text/prompts-93.json (deflated 53%)\n", + " adding: content/output/fusion/text/prompts-47.json (deflated 52%)\n", + " adding: content/output/fusion/text/prompts-74.json (deflated 48%)\n", + " adding: content/output/fusion/text/prompts-87.json (deflated 48%)\n", + " adding: content/output/fusion/text/prompts-92.json (deflated 71%)\n", + " adding: content/output/fusion/text/prompts-5.json (deflated 56%)\n", + " adding: content/output/fusion/text/prompts-85.json (deflated 53%)\n", + " adding: content/output/fusion/text/prompts-23.json (deflated 77%)\n", + " adding: content/output/fusion/text/prompts-4.json (deflated 53%)\n", + " adding: content/output/fusion/text/prompts-30.json (deflated 61%)\n", + " adding: content/output/fusion/text/prompts-55.json (deflated 53%)\n", + " adding: content/output/fusion/text/prompts-29.json (deflated 63%)\n", + " adding: content/output/fusion/text/prompts-45.json (deflated 62%)\n", + " adding: content/output/fusion/text/prompts-31.json (deflated 58%)\n", + " adding: content/output/fusion/text/prompts-44.json (deflated 76%)\n", + " adding: content/output/fusion/text/prompts-65.json (deflated 62%)\n", + " adding: content/output/fusion/text/prompts-48.json (deflated 48%)\n", + " adding: content/output/fusion/text/prompts-35.json (deflated 61%)\n", + " adding: content/output/fusion/text/prompts-51.json (deflated 47%)\n", + " adding: content/output/fusion/text/prompts-16.json (deflated 54%)\n", + " adding: content/output/fusion/text/prompts-2.json (deflated 59%)\n", + " adding: content/output/fusion/text/prompts-11.json (deflated 55%)\n", + " adding: content/output/fusion/text/prompts-77.json (deflated 51%)\n", + " adding: content/output/fusion/text/prompts-58.json (deflated 43%)\n", + " adding: content/output/fusion/text/prompts-9.json (deflated 60%)\n", + " adding: content/output/fusion/text/prompts-27.json (deflated 61%)\n", + " adding: content/output/fusion/text/prompts-53.json (deflated 44%)\n", + " adding: content/output/fusion/text/prompts-25.json (deflated 65%)\n", + " adding: content/output/fusion/text/prompts-59.json (deflated 49%)\n", + " adding: content/output/fusion/text/prompts-6.json (deflated 55%)\n", + " adding: content/output/fusion/text/prompts-64.json (deflated 57%)\n", + " adding: content/output/fusion/text/prompts-18.json (deflated 58%)\n", + " adding: content/output/fusion/text/prompts-97.json (deflated 62%)\n", + " adding: content/output/fusion/text/prompts-49.json (deflated 52%)\n", + " adding: content/output/fusion/text/prompts-75.json (deflated 60%)\n", + " adding: content/output/fusion/text/prompts-98.json (deflated 61%)\n", + " adding: content/output/fusion/text/prompts-19.json (deflated 54%)\n", + " adding: content/output/fusion/text/prompts-63.json (deflated 43%)\n", + " adding: content/output/fusion/text/prompts-22.json (deflated 68%)\n", + " adding: content/output/fusion/text/prompts-52.json (deflated 43%)\n", + " adding: content/output/fusion/text/prompts-40.json (deflated 57%)\n", + " adding: content/output/fusion/text/prompts-86.json (deflated 58%)\n", + " adding: content/output/fusion/text/prompts-72.json (deflated 65%)\n", + " adding: content/output/fusion/text/prompts-79.json (deflated 60%)\n", + " adding: content/output/fusion/text/prompts-46.json (deflated 53%)\n", + " adding: content/output/fusion/text/prompts-1.json (deflated 54%)\n", + " adding: content/output/fusion/text/prompts-84.json (deflated 52%)\n", + " adding: content/output/fusion/text/prompts-33.json (deflated 66%)\n", + " adding: content/output/fusion/text/prompts-76.json (deflated 64%)\n", + " adding: content/output/fusion/text/prompts-39.json (deflated 57%)\n", + " adding: content/output/fusion/text/prompts-15.json (deflated 58%)\n", + " adding: content/output/fusion/text/prompts-95.json (deflated 66%)\n", + " adding: content/output/fusion/text/prompts-32.json (deflated 60%)\n", + " adding: content/output/fusion/text/prompts-24.json (deflated 58%)\n", + " adding: content/output/fusion/text/prompts-17.json (deflated 48%)\n", + " adding: content/output/fusion/text/prompts-71.json (deflated 64%)\n", + " adding: content/output/fusion/text/prompts-89.json (deflated 47%)\n", + " adding: content/output/fusion/text/prompts-50.json (deflated 47%)\n", + " adding: content/output/fusion/text/prompts-62.json (deflated 54%)\n", + " adding: content/output/fusion/text/prompts-88.json (deflated 51%)\n", + " adding: content/output/fusion/text/prompts-37.json (deflated 84%)\n" + ] + } + ] }, { "cell_type": "code",