Upload fusion_t2i_CLIP_interrogator.ipynb
Browse files
Google Colab Notebooks/fusion_t2i_CLIP_interrogator.ipynb
CHANGED
@@ -387,11 +387,6 @@
|
|
387 |
"cell_type": "code",
|
388 |
"source": [
|
389 |
"# @title \tβ Use a pre-encoded prompt + image pair from the fusion gen (note: NSFW!)\n",
|
390 |
-
"\n",
|
391 |
-
"#image_index = 0 # @param {type:'number'}\n",
|
392 |
-
"# @markdown π₯ Load the data (only required one time)\n",
|
393 |
-
"load_the_data = True # @param {type:\"boolean\"}\n",
|
394 |
-
"\n",
|
395 |
"# @markdown πΌοΈ Choose a pre-encoded reference\n",
|
396 |
"index = 708 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
|
397 |
"\n",
|
@@ -407,9 +402,47 @@
|
|
407 |
"strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.1}\n",
|
408 |
"\n",
|
409 |
"# @markdown Calculate most similiar items using above settings?\n",
|
410 |
-
"enable = False # @param {type:\"boolean\"}\n",
|
411 |
"\n",
|
412 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
413 |
" target_prompts , target_text_encodings , urls , target_image_encodings , NUM_ITEMS = getPromptsAndLinks('/content/text-to-image-prompts/fusion')\n",
|
414 |
" from transformers import AutoTokenizer\n",
|
415 |
" tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
@@ -459,27 +492,6 @@
|
|
459 |
" # Sort the items\n",
|
460 |
" sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
|
461 |
"\n",
|
462 |
-
" # @title βοΈπ Print the results (Advanced)\n",
|
463 |
-
" list_size = 1000 # param {type:'number'}\n",
|
464 |
-
" start_at_index = 0 # param {type:'number'}\n",
|
465 |
-
" print_Similarity = True # param {type:\"boolean\"}\n",
|
466 |
-
" print_Prompts = True # param {type:\"boolean\"}\n",
|
467 |
-
" print_Prefix = True # param {type:\"boolean\"}\n",
|
468 |
-
" print_Descriptions = True # param {type:\"boolean\"}\n",
|
469 |
-
" compact_Output = True # param {type:\"boolean\"}\n",
|
470 |
-
"\n",
|
471 |
-
" # @markdown -----------\n",
|
472 |
-
" # @markdown βοΈπ Printing options\n",
|
473 |
-
" newline_Separator = False # @param {type:\"boolean\"}\n",
|
474 |
-
"\n",
|
475 |
-
" import random\n",
|
476 |
-
" list_size2 = 1000 # param {type:'number'}\n",
|
477 |
-
" start_at_index2 = 10000 # param {type:'number'}\n",
|
478 |
-
" rate_percent = 0 # param {type:\"slider\", min:0, max:100, step:1}\n",
|
479 |
-
"\n",
|
480 |
-
" # @markdown Repeat output N times\n",
|
481 |
-
" N = 7 # @param {type:\"slider\", min:0, max:10, step:1}\n",
|
482 |
-
"\n",
|
483 |
" # title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
|
484 |
" RANGE = list_size\n",
|
485 |
" separator = '|'\n",
|
|
|
387 |
"cell_type": "code",
|
388 |
"source": [
|
389 |
"# @title \tβ Use a pre-encoded prompt + image pair from the fusion gen (note: NSFW!)\n",
|
|
|
|
|
|
|
|
|
|
|
390 |
"# @markdown πΌοΈ Choose a pre-encoded reference\n",
|
391 |
"index = 708 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
|
392 |
"\n",
|
|
|
402 |
"strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.1}\n",
|
403 |
"\n",
|
404 |
"# @markdown Calculate most similiar items using above settings?\n",
|
|
|
405 |
"\n",
|
406 |
+
"\n",
|
407 |
+
"# @title βοΈπ Print the results (Advanced)\n",
|
408 |
+
"list_size = 1000 # param {type:'number'}\n",
|
409 |
+
"start_at_index = 0 # param {type:'number'}\n",
|
410 |
+
"print_Similarity = True # param {type:\"boolean\"}\n",
|
411 |
+
"print_Prompts = True # param {type:\"boolean\"}\n",
|
412 |
+
"print_Prefix = True # param {type:\"boolean\"}\n",
|
413 |
+
"print_Descriptions = True # param {type:\"boolean\"}\n",
|
414 |
+
"compact_Output = True # param {type:\"boolean\"}\n",
|
415 |
+
"\n",
|
416 |
+
"# @markdown -----------\n",
|
417 |
+
"# @markdown π Printing options\n",
|
418 |
+
"newline_Separator = False # @param {type:\"boolean\"}\n",
|
419 |
+
"\n",
|
420 |
+
"import random\n",
|
421 |
+
"list_size2 = 1000 # param {type:'number'}\n",
|
422 |
+
"start_at_index2 = 10000 # param {type:'number'}\n",
|
423 |
+
"rate_percent = 0 # param {type:\"slider\", min:0, max:100, step:1}\n",
|
424 |
+
"\n",
|
425 |
+
"# @markdown Repeat output N times\n",
|
426 |
+
"N = 7 # @param {type:\"slider\", min:0, max:10, step:1}\n",
|
427 |
+
"\n",
|
428 |
+
"#image_index = 0 # @param {type:'number'}\n",
|
429 |
+
"# @markdown π₯ Reload vocab (required if you change the vocab)\n",
|
430 |
+
"reload_vocab = False # @param {type:\"boolean\"}\n",
|
431 |
+
"_load_the_data = reload_vocab\n",
|
432 |
+
"\n",
|
433 |
+
"#image_index = 0 # @param {type:'number'}\n",
|
434 |
+
"# @markdown βοΈ Do dot product calculation (disable if you only want to browse images)\n",
|
435 |
+
"run_script = True # @param {type:\"boolean\"}\n",
|
436 |
+
"enable = run_script\n",
|
437 |
+
"\n",
|
438 |
+
"\n",
|
439 |
+
"# Load the data if not already loaded\n",
|
440 |
+
"try:\n",
|
441 |
+
" loaded2\n",
|
442 |
+
"except:\n",
|
443 |
+
" _load_the_data = True\n",
|
444 |
+
"\n",
|
445 |
+
"if (_load_the_data):\n",
|
446 |
" target_prompts , target_text_encodings , urls , target_image_encodings , NUM_ITEMS = getPromptsAndLinks('/content/text-to-image-prompts/fusion')\n",
|
447 |
" from transformers import AutoTokenizer\n",
|
448 |
" tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
|
|
492 |
" # Sort the items\n",
|
493 |
" sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
|
494 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
495 |
" # title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
|
496 |
" RANGE = list_size\n",
|
497 |
" separator = '|'\n",
|