--- license: mit task_categories: - text-generation tags: - code - dataset size_categories: - n<1K language: - en pretty_name: CodeEval --- license: apache-2.0 --- # Dataset Card for Object-Oriented Programming ## Dataset Description - **Repository:** [GitHub Repository](https://github.com/alphadl/OOP-eval) - **Paper:** [Object-Oriented Programming Evaluation Benchmark for LLMs](https://arxiv.org/abs/2401.06628) ### Dataset Summary The OOP benchmark consists of 431 instances, and contains three difficulty levels: Simple-level OOP, Moderate-level OOP, and Difficult-level OOP. ### Supported Tasks and Leaderboards ### Languages The Object-Oriented Programming problems are written in Python and contain English natural text in comments and docstrings. ## Dataset Structure ```python from datasets import load_dataset load_dataset("oop") DatasetDict({ test: Dataset({ features: ['task_id', 'question', 'canonical_solution', 'test_list', 'test_function', 'entry_point', 'test_matching', 'test_match_function'], num_rows: 431 }) }) ``` ### Data Instances #### OOP benchmark ``` { 'task_id': 'OOP/0', 'question': 'First, write a **WDS** class using the Python language. Then, within the WDS class, create a public function called **without_duplicates** to implement finding the length of the longest substring in a given string **s** that does not contain any duplicate characters.', 'test_function': 'def test_run(content1):\n return WDS().without_duplicates(content1)', 'test_list': [ 'assert candidate("abcabcbb")==3', 'assert candidate("bbbbb")==1', 'assert candidate("pwwkew")==3'], 'entry_point': 'test_run', 'test_matching': 'assert candidate([["class WDS", "def without_duplicates"]]) == True', 'test_match_function': 'def matching_function(content):\n def run_match(text):\n for task in text:\n if task not in str_content:\n return False\n return True\n len_cont = len(content)\n if len_cont==1 and run_match(content[0]) == True:\n return True\n elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True):\n return True\n else:\n return False' } ``` ### Data Fields - `task_id`: identifier for the data sample - `question`: description of programming task - `test_function`: run function for the test - 'test_list': list of tests to verify solution - `entry_point`: entry point for test - 'test_matching': list of tests to verify solution - 'test_match_function': matching function for the test ### Data Splits The OOP dataset only consists of a test split with 431 samples. ## Dataset Creation See section 3.2 of original [paper](https://arxiv.org/abs/2401.06628). ### Citation Information ``` @inproceedings{wang2024oop, title={OOP: Object-Oriented Programming Evaluation Benchmark for Large Language Models}, author={Shuai Wang and Liang Ding and Li Shen and Yong Luo and Bo Du and Dacheng Tao}, year={2024}, booktitle={Findings of the Association for Computational Linguistics: ACL 2023}, url={https://arxiv.org/abs/2401.06628}, } ``` ### Contributions Thanks to [@lvwerra](https://github.com/lvwerra) for adding this dataset.