/* * The Python Imaging Library * $Id$ * * convert images * * history: * 1995-06-15 fl created * 1995-11-28 fl added some "RGBA" and "CMYK" conversions * 1996-04-22 fl added "1" conversions (same as "L") * 1996-05-05 fl added palette conversions (hack) * 1996-07-23 fl fixed "1" conversions to zero/non-zero convention * 1996-11-01 fl fixed "P" to "L" and "RGB" to "1" conversions * 1996-12-29 fl set alpha byte in RGB converters * 1997-05-12 fl added ImagingConvert2 * 1997-05-30 fl added floating point support * 1997-08-27 fl added "P" to "1" and "P" to "F" conversions * 1998-01-11 fl added integer support * 1998-07-01 fl added "YCbCr" support * 1998-07-02 fl added "RGBX" conversions (sort of) * 1998-07-04 fl added floyd-steinberg dithering * 1998-07-12 fl changed "YCrCb" to "YCbCr" (!) * 1998-12-29 fl added basic "I;16" and "I;16B" conversions * 1999-02-03 fl added "RGBa", and "BGR" conversions (experimental) * 2003-09-26 fl added "LA" and "PA" conversions (experimental) * 2005-05-05 fl fixed "P" to "1" threshold * 2005-12-08 fl fixed palette memory leak in topalette * * Copyright (c) 1997-2005 by Secret Labs AB. * Copyright (c) 1995-1997 by Fredrik Lundh. * * See the README file for details on usage and redistribution. */ #include "Imaging.h" #define MAX(a, b) (a) > (b) ? (a) : (b) #define MIN(a, b) (a) < (b) ? (a) : (b) #define CLIP16(v) ((v) <= -32768 ? -32768 : (v) >= 32767 ? 32767 : (v)) /* ITU-R Recommendation 601-2 (assuming nonlinear RGB) */ #define L(rgb) ((INT32)(rgb)[0] * 299 + (INT32)(rgb)[1] * 587 + (INT32)(rgb)[2] * 114) #define L24(rgb) ((rgb)[0] * 19595 + (rgb)[1] * 38470 + (rgb)[2] * 7471 + 0x8000) #ifndef round double round(double x) { return floor(x + 0.5); } #endif /* ------------------- */ /* 1 (bit) conversions */ /* ------------------- */ static void bit2l(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++) *out++ = (*in++ != 0) ? 255 : 0; } static void bit2rgb(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++) { UINT8 v = (*in++ != 0) ? 255 : 0; *out++ = v; *out++ = v; *out++ = v; *out++ = 255; } } static void bit2cmyk(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++) { *out++ = 0; *out++ = 0; *out++ = 0; *out++ = (*in++ != 0) ? 0 : 255; } } static void bit2ycbcr(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++) { *out++ = (*in++ != 0) ? 255 : 0; *out++ = 128; *out++ = 128; *out++ = 255; } } static void bit2hsv(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, out += 4) { UINT8 v = (*in++ != 0) ? 255 : 0; out[0] = 0; out[1] = 0; out[2] = v; out[3] = 255; } } /* ----------------- */ /* RGB/L conversions */ /* ----------------- */ static void l2bit(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++) { *out++ = (*in++ >= 128) ? 255 : 0; } } static void lA2la(UINT8 *out, const UINT8 *in, int xsize) { int x; unsigned int alpha, pixel, tmp; for (x = 0; x < xsize; x++, in += 4) { alpha = in[3]; pixel = MULDIV255(in[0], alpha, tmp); *out++ = (UINT8)pixel; *out++ = (UINT8)pixel; *out++ = (UINT8)pixel; *out++ = (UINT8)alpha; } } /* RGBa -> RGBA conversion to remove premultiplication Needed for correct transforms/resizing on RGBA images */ static void la2lA(UINT8 *out, const UINT8 *in, int xsize) { int x; unsigned int alpha, pixel; for (x = 0; x < xsize; x++, in += 4) { alpha = in[3]; if (alpha == 255 || alpha == 0) { pixel = in[0]; } else { pixel = CLIP8((255 * in[0]) / alpha); } *out++ = (UINT8)pixel; *out++ = (UINT8)pixel; *out++ = (UINT8)pixel; *out++ = (UINT8)alpha; } } static void l2la(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++) { UINT8 v = *in++; *out++ = v; *out++ = v; *out++ = v; *out++ = 255; } } static void l2rgb(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++) { UINT8 v = *in++; *out++ = v; *out++ = v; *out++ = v; *out++ = 255; } } static void l2hsv(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, out += 4) { UINT8 v = *in++; out[0] = 0; out[1] = 0; out[2] = v; out[3] = 255; } } static void la2l(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, in += 4) { *out++ = in[0]; } } static void la2rgb(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, in += 4) { UINT8 v = in[0]; *out++ = v; *out++ = v; *out++ = v; *out++ = in[3]; } } static void la2hsv(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, in += 4, out += 4) { UINT8 v = in[0]; out[0] = 0; out[1] = 0; out[2] = v; out[3] = in[3]; } } static void rgb2bit(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, in += 4) { /* ITU-R Recommendation 601-2 (assuming nonlinear RGB) */ *out++ = (L(in) >= 128000) ? 255 : 0; } } static void rgb2l(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, in += 4) { /* ITU-R Recommendation 601-2 (assuming nonlinear RGB) */ *out++ = L24(in) >> 16; } } static void rgb2la(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, in += 4, out += 4) { /* ITU-R Recommendation 601-2 (assuming nonlinear RGB) */ out[0] = out[1] = out[2] = L24(in) >> 16; out[3] = 255; } } static void rgb2i(UINT8 *out_, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, in += 4, out_ += 4) { INT32 v = L24(in) >> 16; memcpy(out_, &v, sizeof(v)); } } static void rgb2f(UINT8 *out_, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, in += 4, out_ += 4) { FLOAT32 v = (float)L(in) / 1000.0F; memcpy(out_, &v, sizeof(v)); } } static void rgb2bgr15(UINT8 *out_, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, in += 4, out_ += 2) { UINT16 v = ((((UINT16)in[0]) << 7) & 0x7c00) + ((((UINT16)in[1]) << 2) & 0x03e0) + ((((UINT16)in[2]) >> 3) & 0x001f); memcpy(out_, &v, sizeof(v)); } } static void rgb2bgr16(UINT8 *out_, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, in += 4, out_ += 2) { UINT16 v = ((((UINT16)in[0]) << 8) & 0xf800) + ((((UINT16)in[1]) << 3) & 0x07e0) + ((((UINT16)in[2]) >> 3) & 0x001f); memcpy(out_, &v, sizeof(v)); } } static void rgb2bgr24(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, in += 4) { *out++ = in[2]; *out++ = in[1]; *out++ = in[0]; } } static void rgb2hsv_row(UINT8 *out, const UINT8 *in) { // following colorsys.py float h, s, rc, gc, bc, cr; UINT8 maxc, minc; UINT8 r, g, b; UINT8 uh, us, uv; r = in[0]; g = in[1]; b = in[2]; maxc = MAX(r, MAX(g, b)); minc = MIN(r, MIN(g, b)); uv = maxc; if (minc == maxc) { uh = 0; us = 0; } else { cr = (float)(maxc - minc); s = cr / (float)maxc; rc = ((float)(maxc - r)) / cr; gc = ((float)(maxc - g)) / cr; bc = ((float)(maxc - b)) / cr; if (r == maxc) { h = bc - gc; } else if (g == maxc) { h = 2.0 + rc - bc; } else { h = 4.0 + gc - rc; } // incorrect hue happens if h/6 is negative. h = fmod((h / 6.0 + 1.0), 1.0); uh = (UINT8)CLIP8((int)(h * 255.0)); us = (UINT8)CLIP8((int)(s * 255.0)); } out[0] = uh; out[1] = us; out[2] = uv; } static void rgb2hsv(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, in += 4, out += 4) { rgb2hsv_row(out, in); out[3] = in[3]; } } static void hsv2rgb(UINT8 *out, const UINT8 *in, int xsize) { // following colorsys.py int p, q, t; UINT8 up, uq, ut; int i, x; float f, fs; UINT8 h, s, v; for (x = 0; x < xsize; x++, in += 4) { h = in[0]; s = in[1]; v = in[2]; if (s == 0) { *out++ = v; *out++ = v; *out++ = v; } else { i = floor((float)h * 6.0 / 255.0); // 0 - 6 f = (float)h * 6.0 / 255.0 - (float)i; // 0-1 : remainder. fs = ((float)s) / 255.0; p = round((float)v * (1.0 - fs)); q = round((float)v * (1.0 - fs * f)); t = round((float)v * (1.0 - fs * (1.0 - f))); up = (UINT8)CLIP8(p); uq = (UINT8)CLIP8(q); ut = (UINT8)CLIP8(t); switch (i % 6) { case 0: *out++ = v; *out++ = ut; *out++ = up; break; case 1: *out++ = uq; *out++ = v; *out++ = up; break; case 2: *out++ = up; *out++ = v; *out++ = ut; break; case 3: *out++ = up; *out++ = uq; *out++ = v; break; case 4: *out++ = ut; *out++ = up; *out++ = v; break; case 5: *out++ = v; *out++ = up; *out++ = uq; break; } } *out++ = in[3]; } } /* ---------------- */ /* RGBA conversions */ /* ---------------- */ static void rgb2rgba(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++) { *out++ = *in++; *out++ = *in++; *out++ = *in++; *out++ = 255; in++; } } static void rgba2la(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, in += 4, out += 4) { /* ITU-R Recommendation 601-2 (assuming nonlinear RGB) */ out[0] = out[1] = out[2] = L24(in) >> 16; out[3] = in[3]; } } static void rgba2rgb(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++) { *out++ = *in++; *out++ = *in++; *out++ = *in++; *out++ = 255; in++; } } static void rgbA2rgba(UINT8 *out, const UINT8 *in, int xsize) { int x; unsigned int alpha, tmp; for (x = 0; x < xsize; x++) { alpha = in[3]; *out++ = MULDIV255(*in++, alpha, tmp); *out++ = MULDIV255(*in++, alpha, tmp); *out++ = MULDIV255(*in++, alpha, tmp); *out++ = *in++; } } /* RGBa -> RGBA conversion to remove premultiplication Needed for correct transforms/resizing on RGBA images */ static void rgba2rgbA(UINT8 *out, const UINT8 *in, int xsize) { int x; unsigned int alpha; for (x = 0; x < xsize; x++, in += 4) { alpha = in[3]; if (alpha == 255 || alpha == 0) { *out++ = in[0]; *out++ = in[1]; *out++ = in[2]; } else { *out++ = CLIP8((255 * in[0]) / alpha); *out++ = CLIP8((255 * in[1]) / alpha); *out++ = CLIP8((255 * in[2]) / alpha); } *out++ = in[3]; } } /* * Conversion of RGB + single transparent color to RGBA, * where any pixel that matches the color will have the * alpha channel set to 0 */ static void rgbT2rgba(UINT8 *out, int xsize, int r, int g, int b) { #ifdef WORDS_BIGENDIAN UINT32 trns = ((r & 0xff) << 24) | ((g & 0xff) << 16) | ((b & 0xff) << 8) | 0xff; UINT32 repl = trns & 0xffffff00; #else UINT32 trns = (0xff << 24) | ((b & 0xff) << 16) | ((g & 0xff) << 8) | (r & 0xff); UINT32 repl = trns & 0x00ffffff; #endif int i; for (i = 0; i < xsize; i++, out += sizeof(trns)) { UINT32 v; memcpy(&v, out, sizeof(v)); if (v == trns) { memcpy(out, &repl, sizeof(repl)); } } } /* ---------------- */ /* CMYK conversions */ /* ---------------- */ static void l2cmyk(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++) { *out++ = 0; *out++ = 0; *out++ = 0; *out++ = ~(*in++); } } static void la2cmyk(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, in += 4) { *out++ = 0; *out++ = 0; *out++ = 0; *out++ = ~(in[0]); } } static void rgb2cmyk(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++) { /* Note: no undercolour removal */ *out++ = ~(*in++); *out++ = ~(*in++); *out++ = ~(*in++); *out++ = 0; in++; } } static void cmyk2rgb(UINT8 *out, const UINT8 *in, int xsize) { int x, nk, tmp; for (x = 0; x < xsize; x++) { nk = 255 - in[3]; out[0] = CLIP8(nk - MULDIV255(in[0], nk, tmp)); out[1] = CLIP8(nk - MULDIV255(in[1], nk, tmp)); out[2] = CLIP8(nk - MULDIV255(in[2], nk, tmp)); out[3] = 255; out += 4; in += 4; } } static void cmyk2hsv(UINT8 *out, const UINT8 *in, int xsize) { int x, nk, tmp; for (x = 0; x < xsize; x++) { nk = 255 - in[3]; out[0] = CLIP8(nk - MULDIV255(in[0], nk, tmp)); out[1] = CLIP8(nk - MULDIV255(in[1], nk, tmp)); out[2] = CLIP8(nk - MULDIV255(in[2], nk, tmp)); rgb2hsv_row(out, out); out[3] = 255; out += 4; in += 4; } } /* ------------- */ /* I conversions */ /* ------------- */ static void bit2i(UINT8 *out_, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, out_ += 4) { INT32 v = (*in++ != 0) ? 255 : 0; memcpy(out_, &v, sizeof(v)); } } static void l2i(UINT8 *out_, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, out_ += 4) { INT32 v = *in++; memcpy(out_, &v, sizeof(v)); } } static void i2l(UINT8 *out, const UINT8 *in_, int xsize) { int x; for (x = 0; x < xsize; x++, out++, in_ += 4) { INT32 v; memcpy(&v, in_, sizeof(v)); if (v <= 0) { *out = 0; } else if (v >= 255) { *out = 255; } else { *out = (UINT8)v; } } } static void i2f(UINT8 *out_, const UINT8 *in_, int xsize) { int x; for (x = 0; x < xsize; x++, in_ += 4, out_ += 4) { INT32 i; FLOAT32 f; memcpy(&i, in_, sizeof(i)); f = i; memcpy(out_, &f, sizeof(f)); } } static void i2rgb(UINT8 *out, const UINT8 *in_, int xsize) { int x; INT32 *in = (INT32 *)in_; for (x = 0; x < xsize; x++, in++, out += 4) { if (*in <= 0) { out[0] = out[1] = out[2] = 0; } else if (*in >= 255) { out[0] = out[1] = out[2] = 255; } else { out[0] = out[1] = out[2] = (UINT8)*in; } out[3] = 255; } } static void i2hsv(UINT8 *out, const UINT8 *in_, int xsize) { int x; INT32 *in = (INT32 *)in_; for (x = 0; x < xsize; x++, in++, out += 4) { out[0] = 0; out[1] = 0; if (*in <= 0) { out[2] = 0; } else if (*in >= 255) { out[2] = 255; } else { out[2] = (UINT8)*in; } out[3] = 255; } } /* ------------- */ /* F conversions */ /* ------------- */ static void bit2f(UINT8 *out_, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, out_ += 4) { FLOAT32 f = (*in++ != 0) ? 255.0F : 0.0F; memcpy(out_, &f, sizeof(f)); } } static void l2f(UINT8 *out_, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, out_ += 4) { FLOAT32 f = (FLOAT32)*in++; memcpy(out_, &f, sizeof(f)); } } static void f2l(UINT8 *out, const UINT8 *in_, int xsize) { int x; for (x = 0; x < xsize; x++, out++, in_ += 4) { FLOAT32 v; memcpy(&v, in_, sizeof(v)); if (v <= 0.0) { *out = 0; } else if (v >= 255.0) { *out = 255; } else { *out = (UINT8)v; } } } static void f2i(UINT8 *out_, const UINT8 *in_, int xsize) { int x; for (x = 0; x < xsize; x++, in_ += 4, out_ += 4) { FLOAT32 f; INT32 i; memcpy(&f, in_, sizeof(f)); i = f; memcpy(out_, &i, sizeof(i)); } } /* ----------------- */ /* YCbCr conversions */ /* ----------------- */ /* See ConvertYCbCr.c for RGB/YCbCr tables */ static void l2ycbcr(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++) { *out++ = *in++; *out++ = 128; *out++ = 128; *out++ = 255; } } static void la2ycbcr(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, in += 4) { *out++ = in[0]; *out++ = 128; *out++ = 128; *out++ = 255; } } static void ycbcr2l(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, in += 4) { *out++ = in[0]; } } static void ycbcr2la(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, in += 4, out += 4) { out[0] = out[1] = out[2] = in[0]; out[3] = 255; } } /* ------------------------- */ /* I;16 (16-bit) conversions */ /* ------------------------- */ static void I_I16L(UINT8 *out, const UINT8 *in_, int xsize) { int x, v; for (x = 0; x < xsize; x++, in_ += 4) { INT32 i; memcpy(&i, in_, sizeof(i)); v = CLIP16(i); *out++ = (UINT8)v; *out++ = (UINT8)(v >> 8); } } static void I_I16B(UINT8 *out, const UINT8 *in_, int xsize) { int x, v; for (x = 0; x < xsize; x++, in_ += 4) { INT32 i; memcpy(&i, in_, sizeof(i)); v = CLIP16(i); *out++ = (UINT8)(v >> 8); *out++ = (UINT8)v; } } static void I16L_I(UINT8 *out_, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, in += 2, out_ += 4) { INT32 v = in[0] + ((int)in[1] << 8); memcpy(out_, &v, sizeof(v)); } } static void I16B_I(UINT8 *out_, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, in += 2, out_ += 4) { INT32 v = in[1] + ((int)in[0] << 8); memcpy(out_, &v, sizeof(v)); } } static void I16L_F(UINT8 *out_, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, in += 2, out_ += 4) { FLOAT32 v = in[0] + ((int)in[1] << 8); memcpy(out_, &v, sizeof(v)); } } static void I16B_F(UINT8 *out_, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, in += 2, out_ += 4) { FLOAT32 v = in[1] + ((int)in[0] << 8); memcpy(out_, &v, sizeof(v)); } } static void L_I16L(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, in++) { *out++ = *in; *out++ = 0; } } static void L_I16B(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, in++) { *out++ = 0; *out++ = *in; } } static void I16L_L(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, in += 2) { if (in[1] != 0) { *out++ = 255; } else { *out++ = in[0]; } } } static void I16B_L(UINT8 *out, const UINT8 *in, int xsize) { int x; for (x = 0; x < xsize; x++, in += 2) { if (in[0] != 0) { *out++ = 255; } else { *out++ = in[1]; } } } static struct { const char *from; const char *to; ImagingShuffler convert; } converters[] = { {"1", "L", bit2l}, {"1", "I", bit2i}, {"1", "F", bit2f}, {"1", "RGB", bit2rgb}, {"1", "RGBA", bit2rgb}, {"1", "RGBX", bit2rgb}, {"1", "CMYK", bit2cmyk}, {"1", "YCbCr", bit2ycbcr}, {"1", "HSV", bit2hsv}, {"L", "1", l2bit}, {"L", "LA", l2la}, {"L", "I", l2i}, {"L", "F", l2f}, {"L", "RGB", l2rgb}, {"L", "RGBA", l2rgb}, {"L", "RGBX", l2rgb}, {"L", "CMYK", l2cmyk}, {"L", "YCbCr", l2ycbcr}, {"L", "HSV", l2hsv}, {"LA", "L", la2l}, {"LA", "La", lA2la}, {"LA", "RGB", la2rgb}, {"LA", "RGBA", la2rgb}, {"LA", "RGBX", la2rgb}, {"LA", "CMYK", la2cmyk}, {"LA", "YCbCr", la2ycbcr}, {"LA", "HSV", la2hsv}, {"La", "LA", la2lA}, {"I", "L", i2l}, {"I", "F", i2f}, {"I", "RGB", i2rgb}, {"I", "RGBA", i2rgb}, {"I", "RGBX", i2rgb}, {"I", "HSV", i2hsv}, {"F", "L", f2l}, {"F", "I", f2i}, {"RGB", "1", rgb2bit}, {"RGB", "L", rgb2l}, {"RGB", "LA", rgb2la}, {"RGB", "I", rgb2i}, {"RGB", "F", rgb2f}, {"RGB", "BGR;15", rgb2bgr15}, {"RGB", "BGR;16", rgb2bgr16}, {"RGB", "BGR;24", rgb2bgr24}, {"RGB", "RGBA", rgb2rgba}, {"RGB", "RGBX", rgb2rgba}, {"RGB", "CMYK", rgb2cmyk}, {"RGB", "YCbCr", ImagingConvertRGB2YCbCr}, {"RGB", "HSV", rgb2hsv}, {"RGBA", "1", rgb2bit}, {"RGBA", "L", rgb2l}, {"RGBA", "LA", rgba2la}, {"RGBA", "I", rgb2i}, {"RGBA", "F", rgb2f}, {"RGBA", "RGB", rgba2rgb}, {"RGBA", "RGBa", rgbA2rgba}, {"RGBA", "RGBX", rgb2rgba}, {"RGBA", "CMYK", rgb2cmyk}, {"RGBA", "YCbCr", ImagingConvertRGB2YCbCr}, {"RGBA", "HSV", rgb2hsv}, {"RGBa", "RGBA", rgba2rgbA}, {"RGBX", "1", rgb2bit}, {"RGBX", "L", rgb2l}, {"RGBX", "LA", rgb2la}, {"RGBX", "I", rgb2i}, {"RGBX", "F", rgb2f}, {"RGBX", "RGB", rgba2rgb}, {"RGBX", "CMYK", rgb2cmyk}, {"RGBX", "YCbCr", ImagingConvertRGB2YCbCr}, {"RGBX", "HSV", rgb2hsv}, {"CMYK", "RGB", cmyk2rgb}, {"CMYK", "RGBA", cmyk2rgb}, {"CMYK", "RGBX", cmyk2rgb}, {"CMYK", "HSV", cmyk2hsv}, {"YCbCr", "L", ycbcr2l}, {"YCbCr", "LA", ycbcr2la}, {"YCbCr", "RGB", ImagingConvertYCbCr2RGB}, {"HSV", "RGB", hsv2rgb}, {"I", "I;16", I_I16L}, {"I;16", "I", I16L_I}, {"L", "I;16", L_I16L}, {"I;16", "L", I16L_L}, {"I", "I;16L", I_I16L}, {"I;16L", "I", I16L_I}, {"I", "I;16B", I_I16B}, {"I;16B", "I", I16B_I}, {"L", "I;16L", L_I16L}, {"I;16L", "L", I16L_L}, {"L", "I;16B", L_I16B}, {"I;16B", "L", I16B_L}, {"I;16", "F", I16L_F}, {"I;16L", "F", I16L_F}, {"I;16B", "F", I16B_F}, {NULL}}; /* FIXME: translate indexed versions to pointer versions below this line */ /* ------------------- */ /* Palette conversions */ /* ------------------- */ static void p2bit(UINT8 *out, const UINT8 *in, int xsize, const UINT8 *palette) { int x; /* FIXME: precalculate greyscale palette? */ for (x = 0; x < xsize; x++) { *out++ = (L(&palette[in[x] * 4]) >= 128000) ? 255 : 0; } } static void pa2bit(UINT8 *out, const UINT8 *in, int xsize, const UINT8 *palette) { int x; /* FIXME: precalculate greyscale palette? */ for (x = 0; x < xsize; x++, in += 4) { *out++ = (L(&palette[in[0] * 4]) >= 128000) ? 255 : 0; } } static void p2l(UINT8 *out, const UINT8 *in, int xsize, const UINT8 *palette) { int x; /* FIXME: precalculate greyscale palette? */ for (x = 0; x < xsize; x++) { *out++ = L(&palette[in[x] * 4]) / 1000; } } static void pa2l(UINT8 *out, const UINT8 *in, int xsize, const UINT8 *palette) { int x; /* FIXME: precalculate greyscale palette? */ for (x = 0; x < xsize; x++, in += 4) { *out++ = L(&palette[in[0] * 4]) / 1000; } } static void p2pa(UINT8 *out, const UINT8 *in, int xsize, const UINT8 *palette) { int x; for (x = 0; x < xsize; x++, in++) { const UINT8 *rgba = &palette[in[0]]; *out++ = in[0]; *out++ = in[0]; *out++ = in[0]; *out++ = rgba[3]; } } static void p2la(UINT8 *out, const UINT8 *in, int xsize, const UINT8 *palette) { int x; /* FIXME: precalculate greyscale palette? */ for (x = 0; x < xsize; x++, out += 4) { const UINT8 *rgba = &palette[*in++ * 4]; out[0] = out[1] = out[2] = L(rgba) / 1000; out[3] = rgba[3]; } } static void pa2la(UINT8 *out, const UINT8 *in, int xsize, const UINT8 *palette) { int x; /* FIXME: precalculate greyscale palette? */ for (x = 0; x < xsize; x++, in += 4, out += 4) { out[0] = out[1] = out[2] = L(&palette[in[0] * 4]) / 1000; out[3] = in[3]; } } static void p2i(UINT8 *out_, const UINT8 *in, int xsize, const UINT8 *palette) { int x; for (x = 0; x < xsize; x++, out_ += 4) { INT32 v = L(&palette[in[x] * 4]) / 1000; memcpy(out_, &v, sizeof(v)); } } static void pa2i(UINT8 *out_, const UINT8 *in, int xsize, const UINT8 *palette) { int x; INT32 *out = (INT32 *)out_; for (x = 0; x < xsize; x++, in += 4) { *out++ = L(&palette[in[0] * 4]) / 1000; } } static void p2f(UINT8 *out_, const UINT8 *in, int xsize, const UINT8 *palette) { int x; for (x = 0; x < xsize; x++, out_ += 4) { FLOAT32 v = L(&palette[in[x] * 4]) / 1000.0F; memcpy(out_, &v, sizeof(v)); } } static void pa2f(UINT8 *out_, const UINT8 *in, int xsize, const UINT8 *palette) { int x; FLOAT32 *out = (FLOAT32 *)out_; for (x = 0; x < xsize; x++, in += 4) { *out++ = (float)L(&palette[in[0] * 4]) / 1000.0F; } } static void p2rgb(UINT8 *out, const UINT8 *in, int xsize, const UINT8 *palette) { int x; for (x = 0; x < xsize; x++) { const UINT8 *rgb = &palette[*in++ * 4]; *out++ = rgb[0]; *out++ = rgb[1]; *out++ = rgb[2]; *out++ = 255; } } static void pa2rgb(UINT8 *out, const UINT8 *in, int xsize, const UINT8 *palette) { int x; for (x = 0; x < xsize; x++, in += 4) { const UINT8 *rgb = &palette[in[0] * 4]; *out++ = rgb[0]; *out++ = rgb[1]; *out++ = rgb[2]; *out++ = 255; } } static void p2hsv(UINT8 *out, const UINT8 *in, int xsize, const UINT8 *palette) { int x; for (x = 0; x < xsize; x++, out += 4) { const UINT8 *rgb = &palette[*in++ * 4]; rgb2hsv_row(out, rgb); out[3] = 255; } } static void pa2hsv(UINT8 *out, const UINT8 *in, int xsize, const UINT8 *palette) { int x; for (x = 0; x < xsize; x++, in += 4, out += 4) { const UINT8 *rgb = &palette[in[0] * 4]; rgb2hsv_row(out, rgb); out[3] = 255; } } static void p2rgba(UINT8 *out, const UINT8 *in, int xsize, const UINT8 *palette) { int x; for (x = 0; x < xsize; x++) { const UINT8 *rgba = &palette[*in++ * 4]; *out++ = rgba[0]; *out++ = rgba[1]; *out++ = rgba[2]; *out++ = rgba[3]; } } static void pa2rgba(UINT8 *out, const UINT8 *in, int xsize, const UINT8 *palette) { int x; for (x = 0; x < xsize; x++, in += 4) { const UINT8 *rgb = &palette[in[0] * 4]; *out++ = rgb[0]; *out++ = rgb[1]; *out++ = rgb[2]; *out++ = in[3]; } } static void p2cmyk(UINT8 *out, const UINT8 *in, int xsize, const UINT8 *palette) { p2rgb(out, in, xsize, palette); rgb2cmyk(out, out, xsize); } static void pa2cmyk(UINT8 *out, const UINT8 *in, int xsize, const UINT8 *palette) { pa2rgb(out, in, xsize, palette); rgb2cmyk(out, out, xsize); } static void p2ycbcr(UINT8 *out, const UINT8 *in, int xsize, const UINT8 *palette) { p2rgb(out, in, xsize, palette); ImagingConvertRGB2YCbCr(out, out, xsize); } static void pa2ycbcr(UINT8 *out, const UINT8 *in, int xsize, const UINT8 *palette) { pa2rgb(out, in, xsize, palette); ImagingConvertRGB2YCbCr(out, out, xsize); } static Imaging frompalette(Imaging imOut, Imaging imIn, const char *mode) { ImagingSectionCookie cookie; int alpha; int y; void (*convert)(UINT8 *, const UINT8 *, int, const UINT8 *); /* Map palette image to L, RGB, RGBA, or CMYK */ if (!imIn->palette) { return (Imaging)ImagingError_ValueError("no palette"); } alpha = !strcmp(imIn->mode, "PA"); if (strcmp(mode, "1") == 0) { convert = alpha ? pa2bit : p2bit; } else if (strcmp(mode, "L") == 0) { convert = alpha ? pa2l : p2l; } else if (strcmp(mode, "LA") == 0) { convert = alpha ? pa2la : p2la; } else if (strcmp(mode, "PA") == 0) { convert = p2pa; } else if (strcmp(mode, "I") == 0) { convert = alpha ? pa2i : p2i; } else if (strcmp(mode, "F") == 0) { convert = alpha ? pa2f : p2f; } else if (strcmp(mode, "RGB") == 0) { convert = alpha ? pa2rgb : p2rgb; } else if (strcmp(mode, "RGBA") == 0) { convert = alpha ? pa2rgba : p2rgba; } else if (strcmp(mode, "RGBX") == 0) { convert = alpha ? pa2rgba : p2rgba; } else if (strcmp(mode, "CMYK") == 0) { convert = alpha ? pa2cmyk : p2cmyk; } else if (strcmp(mode, "YCbCr") == 0) { convert = alpha ? pa2ycbcr : p2ycbcr; } else if (strcmp(mode, "HSV") == 0) { convert = alpha ? pa2hsv : p2hsv; } else { return (Imaging)ImagingError_ValueError("conversion not supported"); } imOut = ImagingNew2Dirty(mode, imOut, imIn); if (!imOut) { return NULL; } ImagingSectionEnter(&cookie); for (y = 0; y < imIn->ysize; y++) { (*convert)( (UINT8 *)imOut->image[y], (UINT8 *)imIn->image[y], imIn->xsize, imIn->palette->palette); } ImagingSectionLeave(&cookie); return imOut; } #if defined(_MSC_VER) #pragma optimize("", off) #endif static Imaging topalette( Imaging imOut, Imaging imIn, const char *mode, ImagingPalette inpalette, int dither) { ImagingSectionCookie cookie; int alpha; int x, y; ImagingPalette palette = inpalette; ; /* Map L or RGB/RGBX/RGBA to palette image */ if (strcmp(imIn->mode, "L") != 0 && strncmp(imIn->mode, "RGB", 3) != 0) { return (Imaging)ImagingError_ValueError("conversion not supported"); } alpha = !strcmp(mode, "PA"); if (palette == NULL) { /* FIXME: make user configurable */ if (imIn->bands == 1) { palette = ImagingPaletteNew("RGB"); /* Initialised to grey ramp */ } else { palette = ImagingPaletteNewBrowser(); /* Standard colour cube */ } } if (!palette) { return (Imaging)ImagingError_ValueError("no palette"); } imOut = ImagingNew2Dirty(mode, imOut, imIn); if (!imOut) { if (palette != inpalette) { ImagingPaletteDelete(palette); } return NULL; } ImagingPaletteDelete(imOut->palette); imOut->palette = ImagingPaletteDuplicate(palette); if (imIn->bands == 1) { /* greyscale image */ /* Greyscale palette: copy data as is */ ImagingSectionEnter(&cookie); for (y = 0; y < imIn->ysize; y++) { if (alpha) { l2la((UINT8 *)imOut->image[y], (UINT8 *)imIn->image[y], imIn->xsize); } else { memcpy(imOut->image[y], imIn->image[y], imIn->linesize); } } ImagingSectionLeave(&cookie); } else { /* colour image */ /* Create mapping cache */ if (ImagingPaletteCachePrepare(palette) < 0) { ImagingDelete(imOut); if (palette != inpalette) { ImagingPaletteDelete(palette); } return NULL; } if (dither) { /* floyd-steinberg dither */ int *errors; errors = calloc(imIn->xsize + 1, sizeof(int) * 3); if (!errors) { ImagingDelete(imOut); return ImagingError_MemoryError(); } /* Map each pixel to the nearest palette entry */ ImagingSectionEnter(&cookie); for (y = 0; y < imIn->ysize; y++) { int r, r0, r1, r2; int g, g0, g1, g2; int b, b0, b1, b2; UINT8 *in = (UINT8 *)imIn->image[y]; UINT8 *out = alpha ? (UINT8 *)imOut->image32[y] : imOut->image8[y]; int *e = errors; r = r0 = r1 = 0; g = g0 = g1 = 0; b = b0 = b1 = b2 = 0; for (x = 0; x < imIn->xsize; x++, in += 4) { int d2; INT16 *cache; r = CLIP8(in[0] + (r + e[3 + 0]) / 16); g = CLIP8(in[1] + (g + e[3 + 1]) / 16); b = CLIP8(in[2] + (b + e[3 + 2]) / 16); /* get closest colour */ cache = &ImagingPaletteCache(palette, r, g, b); if (cache[0] == 0x100) { ImagingPaletteCacheUpdate(palette, r, g, b); } if (alpha) { out[x * 4] = out[x * 4 + 1] = out[x * 4 + 2] = (UINT8)cache[0]; out[x * 4 + 3] = 255; } else { out[x] = (UINT8)cache[0]; } r -= (int)palette->palette[cache[0] * 4]; g -= (int)palette->palette[cache[0] * 4 + 1]; b -= (int)palette->palette[cache[0] * 4 + 2]; /* propagate errors (don't ask ;-) */ r2 = r; d2 = r + r; r += d2; e[0] = r + r0; r += d2; r0 = r + r1; r1 = r2; r += d2; g2 = g; d2 = g + g; g += d2; e[1] = g + g0; g += d2; g0 = g + g1; g1 = g2; g += d2; b2 = b; d2 = b + b; b += d2; e[2] = b + b0; b += d2; b0 = b + b1; b1 = b2; b += d2; e += 3; } e[0] = b0; e[1] = b1; e[2] = b2; } ImagingSectionLeave(&cookie); free(errors); } else { /* closest colour */ ImagingSectionEnter(&cookie); for (y = 0; y < imIn->ysize; y++) { int r, g, b; UINT8 *in = (UINT8 *)imIn->image[y]; UINT8 *out = alpha ? (UINT8 *)imOut->image32[y] : imOut->image8[y]; for (x = 0; x < imIn->xsize; x++, in += 4) { INT16 *cache; r = in[0]; g = in[1]; b = in[2]; /* get closest colour */ cache = &ImagingPaletteCache(palette, r, g, b); if (cache[0] == 0x100) { ImagingPaletteCacheUpdate(palette, r, g, b); } if (alpha) { out[x * 4] = out[x * 4 + 1] = out[x * 4 + 2] = (UINT8)cache[0]; out[x * 4 + 3] = 255; } else { out[x] = (UINT8)cache[0]; } } } ImagingSectionLeave(&cookie); } if (inpalette != palette) { ImagingPaletteCacheDelete(palette); } } if (inpalette != palette) { ImagingPaletteDelete(palette); } return imOut; } static Imaging tobilevel(Imaging imOut, Imaging imIn, int dither) { ImagingSectionCookie cookie; int x, y; int *errors; /* Map L or RGB to dithered 1 image */ if (strcmp(imIn->mode, "L") != 0 && strcmp(imIn->mode, "RGB") != 0) { return (Imaging)ImagingError_ValueError("conversion not supported"); } imOut = ImagingNew2Dirty("1", imOut, imIn); if (!imOut) { return NULL; } errors = calloc(imIn->xsize + 1, sizeof(int)); if (!errors) { ImagingDelete(imOut); return ImagingError_MemoryError(); } if (imIn->bands == 1) { /* map each pixel to black or white, using error diffusion */ ImagingSectionEnter(&cookie); for (y = 0; y < imIn->ysize; y++) { int l, l0, l1, l2, d2; UINT8 *in = (UINT8 *)imIn->image[y]; UINT8 *out = imOut->image8[y]; l = l0 = l1 = 0; for (x = 0; x < imIn->xsize; x++) { /* pick closest colour */ l = CLIP8(in[x] + (l + errors[x + 1]) / 16); out[x] = (l > 128) ? 255 : 0; /* propagate errors */ l -= (int)out[x]; l2 = l; d2 = l + l; l += d2; errors[x] = l + l0; l += d2; l0 = l + l1; l1 = l2; l += d2; } errors[x] = l0; } ImagingSectionLeave(&cookie); } else { /* map each pixel to black or white, using error diffusion */ ImagingSectionEnter(&cookie); for (y = 0; y < imIn->ysize; y++) { int l, l0, l1, l2, d2; UINT8 *in = (UINT8 *)imIn->image[y]; UINT8 *out = imOut->image8[y]; l = l0 = l1 = 0; for (x = 0; x < imIn->xsize; x++, in += 4) { /* pick closest colour */ l = CLIP8(L(in) / 1000 + (l + errors[x + 1]) / 16); out[x] = (l > 128) ? 255 : 0; /* propagate errors */ l -= (int)out[x]; l2 = l; d2 = l + l; l += d2; errors[x] = l + l0; l += d2; l0 = l + l1; l1 = l2; l += d2; } errors[x] = l0; } ImagingSectionLeave(&cookie); } free(errors); return imOut; } #if defined(_MSC_VER) #pragma optimize("", on) #endif static Imaging convert( Imaging imOut, Imaging imIn, const char *mode, ImagingPalette palette, int dither) { ImagingSectionCookie cookie; ImagingShuffler convert; int y; if (!imIn) { return (Imaging)ImagingError_ModeError(); } if (!mode) { /* Map palette image to full depth */ if (!imIn->palette) { return (Imaging)ImagingError_ModeError(); } mode = imIn->palette->mode; } else { /* Same mode? */ if (!strcmp(imIn->mode, mode)) { return ImagingCopy2(imOut, imIn); } } /* test for special conversions */ if (strcmp(imIn->mode, "P") == 0 || strcmp(imIn->mode, "PA") == 0) { return frompalette(imOut, imIn, mode); } if (strcmp(mode, "P") == 0 || strcmp(mode, "PA") == 0) { return topalette(imOut, imIn, mode, palette, dither); } if (dither && strcmp(mode, "1") == 0) { return tobilevel(imOut, imIn, dither); } /* standard conversion machinery */ convert = NULL; for (y = 0; converters[y].from; y++) { if (!strcmp(imIn->mode, converters[y].from) && !strcmp(mode, converters[y].to)) { convert = converters[y].convert; break; } } if (!convert) { #ifdef notdef return (Imaging)ImagingError_ValueError("conversion not supported"); #else static char buf[100]; sprintf(buf, "conversion from %.10s to %.10s not supported", imIn->mode, mode); return (Imaging)ImagingError_ValueError(buf); #endif } imOut = ImagingNew2Dirty(mode, imOut, imIn); if (!imOut) { return NULL; } ImagingSectionEnter(&cookie); for (y = 0; y < imIn->ysize; y++) { (*convert)((UINT8 *)imOut->image[y], (UINT8 *)imIn->image[y], imIn->xsize); } ImagingSectionLeave(&cookie); return imOut; } Imaging ImagingConvert(Imaging imIn, const char *mode, ImagingPalette palette, int dither) { return convert(NULL, imIn, mode, palette, dither); } Imaging ImagingConvert2(Imaging imOut, Imaging imIn) { return convert(imOut, imIn, imOut->mode, NULL, 0); } Imaging ImagingConvertTransparent(Imaging imIn, const char *mode, int r, int g, int b) { ImagingSectionCookie cookie; ImagingShuffler convert; Imaging imOut = NULL; int y; if (!imIn) { return (Imaging)ImagingError_ModeError(); } if (!((strcmp(imIn->mode, "RGB") == 0 || strcmp(imIn->mode, "1") == 0 || strcmp(imIn->mode, "I") == 0 || strcmp(imIn->mode, "L") == 0) && strcmp(mode, "RGBA") == 0)) #ifdef notdef { return (Imaging)ImagingError_ValueError("conversion not supported"); } #else { static char buf[100]; sprintf( buf, "conversion from %.10s to %.10s not supported in convert_transparent", imIn->mode, mode); return (Imaging)ImagingError_ValueError(buf); } #endif if (strcmp(imIn->mode, "RGB") == 0) { convert = rgb2rgba; } else { if (strcmp(imIn->mode, "1") == 0) { convert = bit2rgb; } else if (strcmp(imIn->mode, "I") == 0) { convert = i2rgb; } else { convert = l2rgb; } g = b = r; } imOut = ImagingNew2Dirty(mode, imOut, imIn); if (!imOut) { return NULL; } ImagingSectionEnter(&cookie); for (y = 0; y < imIn->ysize; y++) { (*convert)((UINT8 *)imOut->image[y], (UINT8 *)imIn->image[y], imIn->xsize); rgbT2rgba((UINT8 *)imOut->image[y], imIn->xsize, r, g, b); } ImagingSectionLeave(&cookie); return imOut; } Imaging ImagingConvertInPlace(Imaging imIn, const char *mode) { ImagingSectionCookie cookie; ImagingShuffler convert; int y; /* limited support for inplace conversion */ if (strcmp(imIn->mode, "L") == 0 && strcmp(mode, "1") == 0) { convert = l2bit; } else if (strcmp(imIn->mode, "1") == 0 && strcmp(mode, "L") == 0) { convert = bit2l; } else { return ImagingError_ModeError(); } ImagingSectionEnter(&cookie); for (y = 0; y < imIn->ysize; y++) { (*convert)((UINT8 *)imIn->image[y], (UINT8 *)imIn->image[y], imIn->xsize); } ImagingSectionLeave(&cookie); return imIn; }