/* * Copyright (C) 2018 Intel Corporation. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #define pr_prefix "iommu: " #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DBG_IOMMU 0 #if DBG_IOMMU #define DBG_LEVEL_IOMMU LOG_INFO #define DMAR_FAULT_LOOP_MAX 10 #else #define DBG_LEVEL_IOMMU 6U #endif #define LEVEL_WIDTH 9U #define ROOT_ENTRY_LOWER_PRESENT_POS (0U) #define ROOT_ENTRY_LOWER_PRESENT_MASK (1UL << ROOT_ENTRY_LOWER_PRESENT_POS) #define ROOT_ENTRY_LOWER_CTP_POS (12U) #define ROOT_ENTRY_LOWER_CTP_MASK (0xFFFFFFFFFFFFFUL << ROOT_ENTRY_LOWER_CTP_POS) #define CONFIG_MAX_IOMMU_NUM DRHD_COUNT /* 4 iommu fault register state */ #define IOMMU_FAULT_REGISTER_STATE_NUM 4U #define IOMMU_FAULT_REGISTER_SIZE 4U #define CTX_ENTRY_UPPER_AW_POS (0U) #define CTX_ENTRY_UPPER_AW_MASK (0x7UL << CTX_ENTRY_UPPER_AW_POS) #define CTX_ENTRY_UPPER_DID_POS (8U) #define CTX_ENTRY_UPPER_DID_MASK (0xFFFFUL << CTX_ENTRY_UPPER_DID_POS) #define CTX_ENTRY_LOWER_P_POS (0U) #define CTX_ENTRY_LOWER_P_MASK (0x1UL << CTX_ENTRY_LOWER_P_POS) #define CTX_ENTRY_LOWER_FPD_POS (1U) #define CTX_ENTRY_LOWER_FPD_MASK (0x1UL << CTX_ENTRY_LOWER_FPD_POS) #define CTX_ENTRY_LOWER_TT_POS (2U) #define CTX_ENTRY_LOWER_TT_MASK (0x3UL << CTX_ENTRY_LOWER_TT_POS) #define CTX_ENTRY_LOWER_SLPTPTR_POS (12U) #define CTX_ENTRY_LOWER_SLPTPTR_MASK (0xFFFFFFFFFFFFFUL << CTX_ENTRY_LOWER_SLPTPTR_POS) static inline uint64_t dmar_get_bitslice(uint64_t var, uint64_t mask, uint32_t pos) { return ((var & mask) >> pos); } static inline uint64_t dmar_set_bitslice(uint64_t var, uint64_t mask, uint32_t pos, uint64_t val) { return ((var & ~mask) | ((val << pos) & mask)); } /* translation type */ #define DMAR_CTX_TT_UNTRANSLATED 0x0UL #define DMAR_CTX_TT_ALL 0x1UL #define DMAR_CTX_TT_PASSTHROUGH 0x2UL /* Fault event MSI data register */ #define DMAR_MSI_DELIVERY_MODE_SHIFT (8U) #define DMAR_MSI_DELIVERY_FIXED (0U << DMAR_MSI_DELIVERY_MODE_SHIFT) #define DMAR_MSI_DELIVERY_LOWPRI (1U << DMAR_MSI_DELIVERY_MODE_SHIFT) /* Fault event MSI address register */ #define DMAR_MSI_DEST_MODE_SHIFT (2U) #define DMAR_MSI_DEST_MODE_PHYS (0U << DMAR_MSI_DEST_MODE_SHIFT) #define DMAR_MSI_DEST_MODE_LOGIC (1U << DMAR_MSI_DEST_MODE_SHIFT) #define DMAR_MSI_REDIRECTION_SHIFT (3U) #define DMAR_MSI_REDIRECTION_CPU (0U << DMAR_MSI_REDIRECTION_SHIFT) #define DMAR_MSI_REDIRECTION_LOWPRI (1U << DMAR_MSI_REDIRECTION_SHIFT) #define DMAR_INVALIDATION_QUEUE_SIZE 4096U #define DMAR_QI_INV_ENTRY_SIZE 16U #define DMAR_NUM_IR_ENTRIES_PER_PAGE 256U #define DMAR_INV_STATUS_WRITE_SHIFT 5U #define DMAR_INV_CONTEXT_CACHE_DESC 0x01UL #define DMAR_INV_IOTLB_DESC 0x02UL #define DMAR_INV_IEC_DESC 0x04UL #define DMAR_INV_WAIT_DESC 0x05UL #define DMAR_INV_STATUS_WRITE (1UL << DMAR_INV_STATUS_WRITE_SHIFT) #define DMAR_INV_STATUS_INCOMPLETE 0UL #define DMAR_INV_STATUS_COMPLETED 1UL #define DMAR_INV_STATUS_DATA_SHIFT 32U #define DMAR_INV_STATUS_DATA (DMAR_INV_STATUS_COMPLETED << DMAR_INV_STATUS_DATA_SHIFT) #define DMAR_INV_WAIT_DESC_LOWER (DMAR_INV_STATUS_WRITE | DMAR_INV_WAIT_DESC | DMAR_INV_STATUS_DATA) #define DMAR_IR_ENABLE_EIM_SHIFT 11UL #define DMAR_IR_ENABLE_EIM (1UL << DMAR_IR_ENABLE_EIM_SHIFT) enum dmar_cirg_type { DMAR_CIRG_RESERVED = 0, DMAR_CIRG_GLOBAL, DMAR_CIRG_DOMAIN, DMAR_CIRG_DEVICE }; enum dmar_iirg_type { DMAR_IIRG_RESERVED = 0, DMAR_IIRG_GLOBAL, DMAR_IIRG_DOMAIN, DMAR_IIRG_PAGE }; /* dmar unit runtime data */ struct dmar_drhd_rt { uint32_t index; spinlock_t lock; struct dmar_drhd *drhd; uint64_t root_table_addr; uint64_t ir_table_addr; uint64_t irte_alloc_bitmap[CONFIG_MAX_IR_ENTRIES / 64U]; uint64_t irte_reserved_bitmap[CONFIG_MAX_IR_ENTRIES / 64U]; uint64_t qi_queue; uint16_t qi_tail; uint64_t cap; uint64_t ecap; uint32_t gcmd; /* sw cache value of global cmd register */ uint32_t dmar_irq; bool cap_pw_coherency; /* page-walk coherency */ uint8_t cap_msagaw; uint16_t cap_num_fault_regs; uint16_t cap_fault_reg_offset; uint16_t ecap_iotlb_offset; uint32_t fault_state[IOMMU_FAULT_REGISTER_STATE_NUM]; /* 32bit registers */ }; struct context_table { struct page buses[CONFIG_IOMMU_BUS_NUM]; }; struct intr_remap_table { struct page tables[CONFIG_MAX_IR_ENTRIES/DMAR_NUM_IR_ENTRIES_PER_PAGE]; }; static inline uint8_t *get_root_table(uint32_t dmar_index) { static struct page root_tables[CONFIG_MAX_IOMMU_NUM] __aligned(PAGE_SIZE); return root_tables[dmar_index].contents; } static inline uint8_t *get_ctx_table(uint32_t dmar_index, uint8_t bus_no) { static struct context_table ctx_tables[CONFIG_MAX_IOMMU_NUM] __aligned(PAGE_SIZE); return ctx_tables[dmar_index].buses[bus_no].contents; } /* * @pre dmar_index < CONFIG_MAX_IOMMU_NUM */ static inline void *get_qi_queue(uint32_t dmar_index) { static struct page qi_queues[CONFIG_MAX_IOMMU_NUM] __aligned(PAGE_SIZE); return (void *)qi_queues[dmar_index].contents; } static inline void *get_ir_table(uint32_t dmar_index) { static struct intr_remap_table ir_tables[CONFIG_MAX_IOMMU_NUM] __aligned(PAGE_SIZE); return (void *)ir_tables[dmar_index].tables[0].contents; } static struct dmar_drhd_rt dmar_drhd_units[MAX_DRHDS]; static bool iommu_page_walk_coherent = true; static struct dmar_info *platform_dmar_info = NULL; /* Domain id 0 is reserved in some cases per VT-d */ #define MAX_DOMAIN_NUM (CONFIG_MAX_VM_NUM + 1) static inline uint16_t vmid_to_domainid(uint16_t vm_id) { return vm_id + 1U; } static int32_t dmar_register_hrhd(struct dmar_drhd_rt *dmar_unit); static struct dmar_drhd_rt *device_to_dmaru(uint8_t bus, uint8_t devfun); static int32_t register_hrhd_units(void) { struct dmar_drhd_rt *drhd_rt; uint32_t i; int32_t ret = 0; for (i = 0U; i < platform_dmar_info->drhd_count; i++) { drhd_rt = &dmar_drhd_units[i]; drhd_rt->index = i; drhd_rt->drhd = &platform_dmar_info->drhd_units[i]; drhd_rt->dmar_irq = IRQ_INVALID; set_paging_supervisor(drhd_rt->drhd->reg_base_addr, PAGE_SIZE); ret = dmar_register_hrhd(drhd_rt); if (ret != 0) { break; } if ((iommu_cap_pi(drhd_rt->cap) == 0U) || (!is_apicv_advanced_feature_supported())) { platform_caps.pi = false; } } return ret; } static uint32_t iommu_read32(const struct dmar_drhd_rt *dmar_unit, uint32_t offset) { return mmio_read32(hpa2hva(dmar_unit->drhd->reg_base_addr + offset)); } static uint64_t iommu_read64(const struct dmar_drhd_rt *dmar_unit, uint32_t offset) { return mmio_read64(hpa2hva(dmar_unit->drhd->reg_base_addr + offset)); } static void iommu_write32(const struct dmar_drhd_rt *dmar_unit, uint32_t offset, uint32_t value) { mmio_write32(value, hpa2hva(dmar_unit->drhd->reg_base_addr + offset)); } static void iommu_write64(const struct dmar_drhd_rt *dmar_unit, uint32_t offset, uint64_t value) { mmio_write64(value, hpa2hva(dmar_unit->drhd->reg_base_addr + offset)); } static inline void dmar_wait_completion(const struct dmar_drhd_rt *dmar_unit, uint32_t offset, uint32_t mask, uint32_t pre_condition, uint32_t *status) { /* variable start isn't used when built as release version */ __unused uint64_t start = cpu_ticks(); do { *status = iommu_read32(dmar_unit, offset); ASSERT(((cpu_ticks() - start) < TICKS_PER_MS), "DMAR OP Timeout!"); asm_pause(); } while( (*status & mask) == pre_condition); } /* Flush CPU cache when root table, context table or second-level translation teable updated * In the context of ACRN, GPA to HPA mapping relationship is not changed after VM created, * skip flushing iotlb to avoid performance penalty. */ void iommu_flush_cache(const void *p, uint32_t size) { /* if vtd support page-walk coherency, no need to flush cacheline */ if (!iommu_page_walk_coherent) { flush_cache_range(p, size); } } #if DBG_IOMMU static inline uint8_t iommu_cap_rwbf(uint64_t cap) { return ((uint8_t)(cap >> 4U) & 1U); } static inline uint8_t iommu_ecap_sc(uint64_t ecap) { return ((uint8_t)(ecap >> 7U) & 1U); } static void dmar_unit_show_capability(struct dmar_drhd_rt *dmar_unit) { pr_info("dmar unit[0x%x]", dmar_unit->drhd->reg_base_addr); pr_info("\tNumDomain:%d", iommu_cap_ndoms(dmar_unit->cap)); pr_info("\tAdvancedFaultLogging:%d", iommu_cap_afl(dmar_unit->cap)); pr_info("\tRequiredWBFlush:%d", iommu_cap_rwbf(dmar_unit->cap)); pr_info("\tProtectedLowMemRegion:%d", iommu_cap_plmr(dmar_unit->cap)); pr_info("\tProtectedHighMemRegion:%d", iommu_cap_phmr(dmar_unit->cap)); pr_info("\tCachingMode:%d", iommu_cap_caching_mode(dmar_unit->cap)); pr_info("\tSAGAW:0x%x", iommu_cap_sagaw(dmar_unit->cap)); pr_info("\tMGAW:%d", iommu_cap_mgaw(dmar_unit->cap)); pr_info("\tZeroLenRead:%d", iommu_cap_zlr(dmar_unit->cap)); pr_info("\tLargePageSupport:0x%x", iommu_cap_super_page_val(dmar_unit->cap)); pr_info("\tPageSelectiveInvalidation:%d", iommu_cap_pgsel_inv(dmar_unit->cap)); pr_info("\tPageSelectInvalidation:%d", iommu_cap_pgsel_inv(dmar_unit->cap)); pr_info("\tNumOfFaultRecordingReg:%d", iommu_cap_num_fault_regs(dmar_unit->cap)); pr_info("\tMAMV:0x%x", iommu_cap_max_amask_val(dmar_unit->cap)); pr_info("\tWriteDraining:%d", iommu_cap_write_drain(dmar_unit->cap)); pr_info("\tReadDraining:%d", iommu_cap_read_drain(dmar_unit->cap)); pr_info("\tPostInterrupts:%d\n", iommu_cap_pi(dmar_unit->cap)); pr_info("\tPage-walk Coherency:%d", iommu_ecap_c(dmar_unit->ecap)); pr_info("\tQueuedInvalidation:%d", iommu_ecap_qi(dmar_unit->ecap)); pr_info("\tDeviceTLB:%d", iommu_ecap_dt(dmar_unit->ecap)); pr_info("\tInterruptRemapping:%d", iommu_ecap_ir(dmar_unit->ecap)); pr_info("\tExtendedInterruptMode:%d", iommu_ecap_eim(dmar_unit->ecap)); pr_info("\tPassThrough:%d", iommu_ecap_pt(dmar_unit->ecap)); pr_info("\tSnoopControl:%d", iommu_ecap_sc(dmar_unit->ecap)); pr_info("\tIOTLB RegOffset:0x%x", iommu_ecap_iro(dmar_unit->ecap)); pr_info("\tMHMV:0x%x", iommu_ecap_mhmv(dmar_unit->ecap)); pr_info("\tECS:%d", iommu_ecap_ecs(dmar_unit->ecap)); pr_info("\tMTS:%d", iommu_ecap_mts(dmar_unit->ecap)); pr_info("\tNEST:%d", iommu_ecap_nest(dmar_unit->ecap)); pr_info("\tDIS:%d", iommu_ecap_dis(dmar_unit->ecap)); pr_info("\tPRS:%d", iommu_ecap_prs(dmar_unit->ecap)); pr_info("\tERS:%d", iommu_ecap_ers(dmar_unit->ecap)); pr_info("\tSRS:%d", iommu_ecap_srs(dmar_unit->ecap)); pr_info("\tNWFS:%d", iommu_ecap_nwfs(dmar_unit->ecap)); pr_info("\tEAFS:%d", iommu_ecap_eafs(dmar_unit->ecap)); pr_info("\tPSS:0x%x", iommu_ecap_pss(dmar_unit->ecap)); pr_info("\tPASID:%d", iommu_ecap_pasid(dmar_unit->ecap)); pr_info("\tDIT:%d", iommu_ecap_dit(dmar_unit->ecap)); pr_info("\tPDS:%d\n", iommu_ecap_pds(dmar_unit->ecap)); } #endif static inline uint8_t width_to_level(uint32_t width) { return (uint8_t)(((width - 12U) + (LEVEL_WIDTH)-1U) / (LEVEL_WIDTH)); } static inline uint8_t width_to_agaw(uint32_t width) { return width_to_level(width) - 2U; } static uint8_t dmar_unit_get_msagw(const struct dmar_drhd_rt *dmar_unit) { uint8_t i; uint8_t sgaw = iommu_cap_sagaw(dmar_unit->cap); for (i = 5U; i > 0U; ) { i--; if (((1U << i) & sgaw) != 0U) { break; } } return i; } static bool dmar_unit_support_aw(const struct dmar_drhd_rt *dmar_unit, uint32_t addr_width) { uint8_t aw; aw = width_to_agaw(addr_width); return (((1U << aw) & iommu_cap_sagaw(dmar_unit->cap)) != 0U); } static void dmar_enable_intr_remapping(struct dmar_drhd_rt *dmar_unit) { uint32_t status = 0; spinlock_obtain(&(dmar_unit->lock)); if ((dmar_unit->gcmd & DMA_GCMD_IRE) == 0U) { dmar_unit->gcmd |= DMA_GCMD_IRE; iommu_write32(dmar_unit, DMAR_GCMD_REG, dmar_unit->gcmd); /* 32-bit register */ dmar_wait_completion(dmar_unit, DMAR_GSTS_REG, DMA_GSTS_IRES, 0U, &status); #if DBG_IOMMU status = iommu_read32(dmar_unit, DMAR_GSTS_REG); #endif } spinlock_release(&(dmar_unit->lock)); dev_dbg(DBG_LEVEL_IOMMU, "%s: gsr:0x%x", __func__, status); } static void dmar_enable_translation(struct dmar_drhd_rt *dmar_unit) { uint32_t status = 0; spinlock_obtain(&(dmar_unit->lock)); if ((dmar_unit->gcmd & DMA_GCMD_TE) == 0U) { dmar_unit->gcmd |= DMA_GCMD_TE; iommu_write32(dmar_unit, DMAR_GCMD_REG, dmar_unit->gcmd); /* 32-bit register */ dmar_wait_completion(dmar_unit, DMAR_GSTS_REG, DMA_GSTS_TES, 0U, &status); #if DBG_IOMMU status = iommu_read32(dmar_unit, DMAR_GSTS_REG); #endif } spinlock_release(&(dmar_unit->lock)); dev_dbg(DBG_LEVEL_IOMMU, "%s: gsr:0x%x", __func__, status); } static void dmar_disable_intr_remapping(struct dmar_drhd_rt *dmar_unit) { uint32_t status; spinlock_obtain(&(dmar_unit->lock)); if ((dmar_unit->gcmd & DMA_GCMD_IRE) != 0U) { dmar_unit->gcmd &= ~DMA_GCMD_IRE; iommu_write32(dmar_unit, DMAR_GCMD_REG, dmar_unit->gcmd); /* 32-bit register */ dmar_wait_completion(dmar_unit, DMAR_GSTS_REG, DMA_GSTS_IRES, DMA_GSTS_IRES, &status); } spinlock_release(&(dmar_unit->lock)); } static void dmar_disable_translation(struct dmar_drhd_rt *dmar_unit) { uint32_t status; spinlock_obtain(&(dmar_unit->lock)); if ((dmar_unit->gcmd & DMA_GCMD_TE) != 0U) { dmar_unit->gcmd &= ~DMA_GCMD_TE; iommu_write32(dmar_unit, DMAR_GCMD_REG, dmar_unit->gcmd); /* 32-bit register */ dmar_wait_completion(dmar_unit, DMAR_GSTS_REG, DMA_GSTS_TES, DMA_GSTS_TES, &status); } spinlock_release(&(dmar_unit->lock)); } static int32_t dmar_register_hrhd(struct dmar_drhd_rt *dmar_unit) { int32_t ret = 0; dev_dbg(DBG_LEVEL_IOMMU, "Register dmar uint [%d] @0x%lx", dmar_unit->index, dmar_unit->drhd->reg_base_addr); spinlock_init(&dmar_unit->lock); dmar_unit->cap = iommu_read64(dmar_unit, DMAR_CAP_REG); dmar_unit->ecap = iommu_read64(dmar_unit, DMAR_ECAP_REG); /* * The initialization of "dmar_unit->gcmd" shall be done via reading from Global Status Register rather than * Global Command Register. * According to Chapter 10.4.4 Global Command Register in VT-d spec, Global Command Register is a write-only * register to control remapping hardware. Global Status Register is the corresponding read-only register to * report remapping hardware status. */ dmar_unit->gcmd = iommu_read32(dmar_unit, DMAR_GSTS_REG); dmar_unit->cap_msagaw = dmar_unit_get_msagw(dmar_unit); dmar_unit->cap_num_fault_regs = iommu_cap_num_fault_regs(dmar_unit->cap); dmar_unit->cap_fault_reg_offset = iommu_cap_fault_reg_offset(dmar_unit->cap); dmar_unit->ecap_iotlb_offset = iommu_ecap_iro(dmar_unit->ecap) * 16U; dmar_unit->root_table_addr = hva2hpa(get_root_table(dmar_unit->index)); dmar_unit->ir_table_addr = hva2hpa(get_ir_table(dmar_unit->index)); #if DBG_IOMMU pr_info("version:0x%x, cap:0x%lx, ecap:0x%lx", iommu_read32(dmar_unit, DMAR_VER_REG), dmar_unit->cap, dmar_unit->ecap); pr_info("sagaw:0x%x, msagaw:0x%x, iotlb offset 0x%x", iommu_cap_sagaw(dmar_unit->cap), dmar_unit->cap_msagaw, dmar_unit->ecap_iotlb_offset); dmar_unit_show_capability(dmar_unit); #endif /* check capability */ if ((iommu_cap_super_page_val(dmar_unit->cap) & 0x1U) == 0U) { pr_fatal("%s: dmar uint doesn't support 2MB page!\n", __func__); ret = -ENODEV; } else if ((iommu_cap_super_page_val(dmar_unit->cap) & 0x2U) == 0U) { pr_fatal("%s: dmar uint doesn't support 1GB page!\n", __func__); ret = -ENODEV; } else if (iommu_ecap_qi(dmar_unit->ecap) == 0U) { pr_fatal("%s: dmar unit doesn't support Queued Invalidation!", __func__); ret = -ENODEV; } else if (iommu_ecap_ir(dmar_unit->ecap) == 0U) { pr_fatal("%s: dmar unit doesn't support Interrupt Remapping!", __func__); ret = -ENODEV; } else if (iommu_ecap_eim(dmar_unit->ecap) == 0U) { pr_fatal("%s: dmar unit doesn't support Extended Interrupt Mode!", __func__); ret = -ENODEV; } else { if ((iommu_ecap_c(dmar_unit->ecap) == 0U) && (!dmar_unit->drhd->ignore)) { iommu_page_walk_coherent = false; } dmar_disable_translation(dmar_unit); } return ret; } static struct dmar_drhd_rt *ioapic_to_dmaru(uint16_t ioapic_id, union pci_bdf *sid) { struct dmar_drhd_rt *dmar_unit = NULL; uint32_t i, j; bool found = false; for (j = 0U; j < platform_dmar_info->drhd_count; j++) { dmar_unit = &dmar_drhd_units[j]; for (i = 0U; i < dmar_unit->drhd->dev_cnt; i++) { if ((dmar_unit->drhd->devices[i].type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) && (dmar_unit->drhd->devices[i].id == ioapic_id)) { sid->fields.devfun = dmar_unit->drhd->devices[i].devfun; sid->fields.bus = dmar_unit->drhd->devices[i].bus; found = true; break; } } if (found) { break; } } if (j == platform_dmar_info->drhd_count) { dmar_unit = NULL; } return dmar_unit; } static struct dmar_drhd_rt *device_to_dmaru(uint8_t bus, uint8_t devfun) { struct dmar_drhd_rt *dmaru = NULL; uint16_t bdf = ((uint16_t)bus << 8U) | devfun; uint32_t index = pci_lookup_drhd_for_pbdf(bdf); if (index == INVALID_DRHD_INDEX) { pr_fatal("BDF %02x:%02x:%x has no IOMMU\n", bus, devfun >> 3U, devfun & 7U); /* * pci_lookup_drhd_for_pbdf would return -1U for any of the reasons * 1) PCI device with bus, devfun does not exist on platform * 2) ACRN had issues finding the device with bus, devfun during init * 3) DMAR tables provided by ACPI for this platform are incorrect */ } else { dmaru = &dmar_drhd_units[index]; } return dmaru; } static void dmar_issue_qi_request(struct dmar_drhd_rt *dmar_unit, struct dmar_entry invalidate_desc) { struct dmar_entry *invalidate_desc_ptr; uint32_t qi_status = 0U; uint64_t start; spinlock_obtain(&(dmar_unit->lock)); invalidate_desc_ptr = (struct dmar_entry *)(dmar_unit->qi_queue + dmar_unit->qi_tail); invalidate_desc_ptr->hi_64 = invalidate_desc.hi_64; invalidate_desc_ptr->lo_64 = invalidate_desc.lo_64; dmar_unit->qi_tail = (dmar_unit->qi_tail + DMAR_QI_INV_ENTRY_SIZE) % DMAR_INVALIDATION_QUEUE_SIZE; invalidate_desc_ptr++; invalidate_desc_ptr->hi_64 = hva2hpa(&qi_status); invalidate_desc_ptr->lo_64 = DMAR_INV_WAIT_DESC_LOWER; dmar_unit->qi_tail = (dmar_unit->qi_tail + DMAR_QI_INV_ENTRY_SIZE) % DMAR_INVALIDATION_QUEUE_SIZE; qi_status = DMAR_INV_STATUS_INCOMPLETE; iommu_write32(dmar_unit, DMAR_IQT_REG, dmar_unit->qi_tail); start = cpu_ticks(); while (qi_status != DMAR_INV_STATUS_COMPLETED) { if ((cpu_ticks() - start) > TICKS_PER_MS) { pr_err("DMAR OP Timeout! @ %s", __func__); break; } asm_pause(); } spinlock_release(&(dmar_unit->lock)); } /* * did: domain id * sid: source id * fm: function mask * cirg: cache-invalidation request granularity */ static void dmar_invalid_context_cache(struct dmar_drhd_rt *dmar_unit, uint16_t did, uint16_t sid, uint8_t fm, enum dmar_cirg_type cirg) { struct dmar_entry invalidate_desc; invalidate_desc.hi_64 = 0UL; invalidate_desc.lo_64 = DMAR_INV_CONTEXT_CACHE_DESC; switch (cirg) { case DMAR_CIRG_GLOBAL: invalidate_desc.lo_64 |= DMA_CONTEXT_GLOBAL_INVL; break; case DMAR_CIRG_DOMAIN: invalidate_desc.lo_64 |= DMA_CONTEXT_DOMAIN_INVL | dma_ccmd_did(did); break; case DMAR_CIRG_DEVICE: invalidate_desc.lo_64 |= DMA_CONTEXT_DEVICE_INVL | dma_ccmd_did(did) | dma_ccmd_sid(sid) | dma_ccmd_fm(fm); break; default: invalidate_desc.lo_64 = 0UL; pr_err("unknown CIRG type"); break; } if (invalidate_desc.lo_64 != 0UL) { dmar_issue_qi_request(dmar_unit, invalidate_desc); } } static void dmar_invalid_context_cache_global(struct dmar_drhd_rt *dmar_unit) { dmar_invalid_context_cache(dmar_unit, 0U, 0U, 0U, DMAR_CIRG_GLOBAL); } static void dmar_invalid_iotlb(struct dmar_drhd_rt *dmar_unit, uint16_t did, uint64_t address, uint8_t am, bool hint, enum dmar_iirg_type iirg) { /* set Drain Reads & Drain Writes, * if hardware doesn't support it, will be ignored by hardware */ struct dmar_entry invalidate_desc; uint64_t addr = 0UL; invalidate_desc.hi_64 = 0UL; invalidate_desc.lo_64 = DMA_IOTLB_DR | DMA_IOTLB_DW | DMAR_INV_IOTLB_DESC; switch (iirg) { case DMAR_IIRG_GLOBAL: invalidate_desc.lo_64 |= DMA_IOTLB_GLOBAL_INVL; break; case DMAR_IIRG_DOMAIN: invalidate_desc.lo_64 |= DMA_IOTLB_DOMAIN_INVL | dma_iotlb_did(did); break; case DMAR_IIRG_PAGE: invalidate_desc.lo_64 |= DMA_IOTLB_PAGE_INVL | dma_iotlb_did(did); addr = address | dma_iotlb_invl_addr_am(am); if (hint) { addr |= DMA_IOTLB_INVL_ADDR_IH_UNMODIFIED; } invalidate_desc.hi_64 |= addr; break; default: invalidate_desc.lo_64 = 0UL; pr_err("unknown IIRG type"); } if (invalidate_desc.lo_64 != 0UL) { dmar_issue_qi_request(dmar_unit, invalidate_desc); } } /* Invalidate IOTLB globally, * all iotlb entries are invalidated, * all PASID-cache entries are invalidated, * all paging-structure-cache entries are invalidated. */ static void dmar_invalid_iotlb_global(struct dmar_drhd_rt *dmar_unit) { dmar_invalid_iotlb(dmar_unit, 0U, 0UL, 0U, false, DMAR_IIRG_GLOBAL); } /* @pre dmar_unit->ir_table_addr != NULL */ static void dmar_set_intr_remap_table(struct dmar_drhd_rt *dmar_unit) { uint64_t address; uint32_t status; uint8_t size; spinlock_obtain(&(dmar_unit->lock)); /* Set number of bits needed to represent the entries minus 1 */ size = (uint8_t) fls32(CONFIG_MAX_IR_ENTRIES) - 1U; address = dmar_unit->ir_table_addr | DMAR_IR_ENABLE_EIM | size; iommu_write64(dmar_unit, DMAR_IRTA_REG, address); iommu_write32(dmar_unit, DMAR_GCMD_REG, dmar_unit->gcmd | DMA_GCMD_SIRTP); dmar_wait_completion(dmar_unit, DMAR_GSTS_REG, DMA_GSTS_IRTPS, 0U, &status); spinlock_release(&(dmar_unit->lock)); } static void dmar_invalid_iec(struct dmar_drhd_rt *dmar_unit, uint16_t intr_index, uint8_t index_mask, bool is_global) { struct dmar_entry invalidate_desc; invalidate_desc.hi_64 = 0UL; invalidate_desc.lo_64 = DMAR_INV_IEC_DESC; if (is_global) { invalidate_desc.lo_64 |= DMAR_IEC_GLOBAL_INVL; } else { invalidate_desc.lo_64 |= DMAR_IECI_INDEXED | dma_iec_index(intr_index, index_mask); } if (invalidate_desc.lo_64 != 0UL) { dmar_issue_qi_request(dmar_unit, invalidate_desc); } } static void dmar_invalid_iec_global(struct dmar_drhd_rt *dmar_unit) { dmar_invalid_iec(dmar_unit, 0U, 0U, true); } /* @pre dmar_unit->root_table_addr != NULL */ static void dmar_set_root_table(struct dmar_drhd_rt *dmar_unit) { uint32_t status; spinlock_obtain(&(dmar_unit->lock)); iommu_write64(dmar_unit, DMAR_RTADDR_REG, dmar_unit->root_table_addr); iommu_write32(dmar_unit, DMAR_GCMD_REG, dmar_unit->gcmd | DMA_GCMD_SRTP); /* 32-bit register */ dmar_wait_completion(dmar_unit, DMAR_GSTS_REG, DMA_GSTS_RTPS, 0U, &status); spinlock_release(&(dmar_unit->lock)); } static void dmar_fault_event_mask(struct dmar_drhd_rt *dmar_unit) { spinlock_obtain(&(dmar_unit->lock)); iommu_write32(dmar_unit, DMAR_FECTL_REG, DMA_FECTL_IM); spinlock_release(&(dmar_unit->lock)); } static void dmar_fault_event_unmask(struct dmar_drhd_rt *dmar_unit) { spinlock_obtain(&(dmar_unit->lock)); iommu_write32(dmar_unit, DMAR_FECTL_REG, 0U); spinlock_release(&(dmar_unit->lock)); } static void dmar_fault_msi_write(struct dmar_drhd_rt *dmar_unit, uint32_t vector) { uint32_t data; uint32_t addr_low; uint32_t lapic_id = get_cur_lapic_id(); data = DMAR_MSI_DELIVERY_LOWPRI | vector; /* redirection hint: 0 * destination mode: 0 */ addr_low = 0xFEE00000U | ((uint32_t)(lapic_id) << 12U); spinlock_obtain(&(dmar_unit->lock)); iommu_write32(dmar_unit, DMAR_FEDATA_REG, data); iommu_write32(dmar_unit, DMAR_FEADDR_REG, addr_low); spinlock_release(&(dmar_unit->lock)); } #if DBG_IOMMU static void fault_status_analysis(uint32_t status) { if (dma_fsts_pfo(status)) { pr_info("Primary Fault Overflow"); } if (dma_fsts_ppf(status)) { pr_info("Primary Pending Fault"); } if (dma_fsts_afo(status)) { pr_info("Advanced Fault Overflow"); } if (dma_fsts_apf(status)) { pr_info("Advanced Pending Fault"); } if (dma_fsts_iqe(status)) { pr_info("Invalidation Queue Error"); } if (dma_fsts_ice(status)) { pr_info("Invalidation Completion Error"); } if (dma_fsts_ite(status)) { pr_info("Invalidation Time-out Error"); } if (dma_fsts_pro(status)) { pr_info("Page Request Overflow"); } } #endif static void fault_record_analysis(__unused uint64_t low, uint64_t high) { union pci_bdf dmar_bdf; if (!dma_frcd_up_f(high)) { dmar_bdf.value = dma_frcd_up_sid(high); /* currently skip PASID related parsing */ pr_info("%s, Reason: 0x%x, SID: %x.%x.%x @0x%lx", (dma_frcd_up_t(high) != 0U) ? "Read/Atomic" : "Write", dma_frcd_up_fr(high), dmar_bdf.bits.b, dmar_bdf.bits.d, dmar_bdf.bits.f, low); #if DBG_IOMMU if (iommu_ecap_dt(dmar_unit->ecap) != 0U) { pr_info("Address Type: 0x%x", dma_frcd_up_at(high)); } #endif } } static void dmar_fault_handler(uint32_t irq, void *data) { struct dmar_drhd_rt *dmar_unit = (struct dmar_drhd_rt *)data; uint32_t fsr; uint32_t index; uint32_t record_reg_offset; struct dmar_entry fault_record; int32_t loop = 0; dev_dbg(DBG_LEVEL_IOMMU, "%s: irq = %d", __func__, irq); fsr = iommu_read32(dmar_unit, DMAR_FSTS_REG); #if DBG_IOMMU fault_status_analysis(fsr); #endif while (dma_fsts_ppf(fsr)) { loop++; index = dma_fsts_fri(fsr); record_reg_offset = (uint32_t)dmar_unit->cap_fault_reg_offset + (index * 16U); if (index >= dmar_unit->cap_num_fault_regs) { dev_dbg(DBG_LEVEL_IOMMU, "%s: invalid FR Index", __func__); break; } /* read 128-bit fault recording register */ fault_record.lo_64 = iommu_read64(dmar_unit, record_reg_offset); fault_record.hi_64 = iommu_read64(dmar_unit, record_reg_offset + 8U); dev_dbg(DBG_LEVEL_IOMMU, "%s: record[%d] @0x%x: 0x%lx, 0x%lx", __func__, index, record_reg_offset, fault_record.lo_64, fault_record.hi_64); fault_record_analysis(fault_record.lo_64, fault_record.hi_64); /* write to clear */ iommu_write64(dmar_unit, record_reg_offset, fault_record.lo_64); iommu_write64(dmar_unit, record_reg_offset + 8U, fault_record.hi_64); #ifdef DMAR_FAULT_LOOP_MAX if (loop > DMAR_FAULT_LOOP_MAX) { dev_dbg(DBG_LEVEL_IOMMU, "%s: loop more than %d times", __func__, DMAR_FAULT_LOOP_MAX); break; } #endif fsr = iommu_read32(dmar_unit, DMAR_FSTS_REG); } } static void dmar_setup_interrupt(struct dmar_drhd_rt *dmar_unit) { uint32_t vector; int32_t retval = 0; spinlock_obtain(&(dmar_unit->lock)); if (dmar_unit->dmar_irq == IRQ_INVALID) { retval = request_irq(IRQ_INVALID, dmar_fault_handler, dmar_unit, IRQF_NONE); dmar_unit->dmar_irq = (uint32_t)retval; } spinlock_release(&(dmar_unit->lock)); /* the panic will only happen before any VM starts running */ if (retval < 0) { panic("dmar[%d] fail to setup interrupt", dmar_unit->index); } vector = irq_to_vector(dmar_unit->dmar_irq); dev_dbg(DBG_LEVEL_IOMMU, "irq#%d vector#%d for dmar_unit", dmar_unit->dmar_irq, vector); dmar_fault_msi_write(dmar_unit, vector); dmar_fault_event_unmask(dmar_unit); } static void dmar_enable_qi(struct dmar_drhd_rt *dmar_unit) { uint32_t status = 0; spinlock_obtain(&(dmar_unit->lock)); dmar_unit->qi_queue = hva2hpa(get_qi_queue(dmar_unit->index)); iommu_write64(dmar_unit, DMAR_IQA_REG, dmar_unit->qi_queue); iommu_write32(dmar_unit, DMAR_IQT_REG, 0U); if ((dmar_unit->gcmd & DMA_GCMD_QIE) == 0U) { dmar_unit->gcmd |= DMA_GCMD_QIE; iommu_write32(dmar_unit, DMAR_GCMD_REG, dmar_unit->gcmd); dmar_wait_completion(dmar_unit, DMAR_GSTS_REG, DMA_GSTS_QIES, 0U, &status); } spinlock_release(&(dmar_unit->lock)); } static void dmar_disable_qi(struct dmar_drhd_rt *dmar_unit) { uint32_t status = 0; spinlock_obtain(&(dmar_unit->lock)); if ((dmar_unit->gcmd & DMA_GCMD_QIE) == DMA_GCMD_QIE) { dmar_unit->gcmd &= ~DMA_GCMD_QIE; iommu_write32(dmar_unit, DMAR_GCMD_REG, dmar_unit->gcmd); dmar_wait_completion(dmar_unit, DMAR_GSTS_REG, DMA_GSTS_QIES, DMA_GSTS_QIES, &status); } spinlock_release(&(dmar_unit->lock)); } static void prepare_dmar(struct dmar_drhd_rt *dmar_unit) { dev_dbg(DBG_LEVEL_IOMMU, "enable dmar uint [0x%x]", dmar_unit->drhd->reg_base_addr); dmar_setup_interrupt(dmar_unit); dmar_set_root_table(dmar_unit); dmar_enable_qi(dmar_unit); dmar_set_intr_remap_table(dmar_unit); } static void enable_dmar(struct dmar_drhd_rt *dmar_unit) { dev_dbg(DBG_LEVEL_IOMMU, "enable dmar uint [0x%x]", dmar_unit->drhd->reg_base_addr); dmar_invalid_context_cache_global(dmar_unit); dmar_invalid_iotlb_global(dmar_unit); dmar_invalid_iec_global(dmar_unit); dmar_enable_translation(dmar_unit); } static void disable_dmar(struct dmar_drhd_rt *dmar_unit) { dmar_disable_qi(dmar_unit); dmar_disable_translation(dmar_unit); dmar_fault_event_mask(dmar_unit); dmar_disable_intr_remapping(dmar_unit); } static void suspend_dmar(struct dmar_drhd_rt *dmar_unit) { uint32_t i; dmar_invalid_context_cache_global(dmar_unit); dmar_invalid_iotlb_global(dmar_unit); dmar_invalid_iec_global(dmar_unit); disable_dmar(dmar_unit); /* save IOMMU fault register state */ for (i = 0U; i < IOMMU_FAULT_REGISTER_STATE_NUM; i++) { dmar_unit->fault_state[i] = iommu_read32(dmar_unit, DMAR_FECTL_REG + (i * IOMMU_FAULT_REGISTER_SIZE)); } } static void resume_dmar(struct dmar_drhd_rt *dmar_unit) { uint32_t i; /* restore IOMMU fault register state */ for (i = 0U; i < IOMMU_FAULT_REGISTER_STATE_NUM; i++) { iommu_write32(dmar_unit, DMAR_FECTL_REG + (i * IOMMU_FAULT_REGISTER_SIZE), dmar_unit->fault_state[i]); } prepare_dmar(dmar_unit); enable_dmar(dmar_unit); dmar_enable_intr_remapping(dmar_unit); } static inline bool is_dmar_unit_ignored(const struct dmar_drhd_rt *dmar_unit) { bool ignored = false; if ((dmar_unit != NULL) && (dmar_unit->drhd->ignore)) { ignored = true; } return ignored; } static bool is_dmar_unit_valid(const struct dmar_drhd_rt *dmar_unit, union pci_bdf sid) { bool valid = false; if (dmar_unit == NULL) { pr_err("no dmar unit found for device: %x:%x.%x", sid.bits.b, sid.bits.d, sid.bits.f); } else if (dmar_unit->drhd->ignore) { dev_dbg(DBG_LEVEL_IOMMU, "device is ignored : %x:%x.%x", sid.bits.b, sid.bits.d, sid.bits.f); } else { valid = true; } return valid; } /* @pre bus < CONFIG_IOMMU_BUS_NUM */ static int32_t iommu_attach_device(const struct iommu_domain *domain, uint8_t bus, uint8_t devfun) { struct dmar_drhd_rt *dmar_unit; struct dmar_entry *root_table; uint64_t context_table_addr; struct dmar_entry *context; struct dmar_entry *root_entry; struct dmar_entry *context_entry; uint64_t hi_64 = 0UL; uint64_t lo_64 = 0UL; int32_t ret = -EINVAL; /* source id */ union pci_bdf sid; sid.fields.bus = bus; sid.fields.devfun = devfun; dmar_unit = device_to_dmaru(bus, devfun); if (is_dmar_unit_valid(dmar_unit, sid) && dmar_unit_support_aw(dmar_unit, domain->addr_width)) { root_table = (struct dmar_entry *)hpa2hva(dmar_unit->root_table_addr); root_entry = root_table + bus; if (dmar_get_bitslice(root_entry->lo_64, ROOT_ENTRY_LOWER_PRESENT_MASK, ROOT_ENTRY_LOWER_PRESENT_POS) == 0UL) { /* create context table for the bus if not present */ context_table_addr = hva2hpa(get_ctx_table(dmar_unit->index, bus)); context_table_addr = context_table_addr >> PAGE_SHIFT; lo_64 = dmar_set_bitslice(lo_64, ROOT_ENTRY_LOWER_CTP_MASK, ROOT_ENTRY_LOWER_CTP_POS, context_table_addr); lo_64 = dmar_set_bitslice(lo_64, ROOT_ENTRY_LOWER_PRESENT_MASK, ROOT_ENTRY_LOWER_PRESENT_POS, 1UL); root_entry->hi_64 = 0UL; root_entry->lo_64 = lo_64; iommu_flush_cache(root_entry, sizeof(struct dmar_entry)); } else { context_table_addr = dmar_get_bitslice(root_entry->lo_64, ROOT_ENTRY_LOWER_CTP_MASK, ROOT_ENTRY_LOWER_CTP_POS); } context_table_addr = context_table_addr << PAGE_SHIFT; context = (struct dmar_entry *)hpa2hva(context_table_addr); context_entry = context + devfun; if (dmar_get_bitslice(context_entry->lo_64, CTX_ENTRY_LOWER_P_MASK, CTX_ENTRY_LOWER_P_POS) != 0UL) { /* the context entry should not be present */ pr_err("%s: context entry@0x%lx (Lower:%x) ", __func__, context_entry, context_entry->lo_64); pr_err("already present for %x:%x.%x", bus, sid.bits.d, sid.bits.f); ret = -EBUSY; } else { /* setup context entry for the devfun */ /* TODO: add Device TLB support */ hi_64 = dmar_set_bitslice(hi_64, CTX_ENTRY_UPPER_AW_MASK, CTX_ENTRY_UPPER_AW_POS, (uint64_t)width_to_agaw(domain->addr_width)); lo_64 = dmar_set_bitslice(lo_64, CTX_ENTRY_LOWER_TT_MASK, CTX_ENTRY_LOWER_TT_POS, DMAR_CTX_TT_UNTRANSLATED); hi_64 = dmar_set_bitslice(hi_64, CTX_ENTRY_UPPER_DID_MASK, CTX_ENTRY_UPPER_DID_POS, (uint64_t)vmid_to_domainid(domain->vm_id)); lo_64 = dmar_set_bitslice(lo_64, CTX_ENTRY_LOWER_SLPTPTR_MASK, CTX_ENTRY_LOWER_SLPTPTR_POS, domain->trans_table_ptr >> PAGE_SHIFT); lo_64 = dmar_set_bitslice(lo_64, CTX_ENTRY_LOWER_P_MASK, CTX_ENTRY_LOWER_P_POS, 1UL); context_entry->hi_64 = hi_64; context_entry->lo_64 = lo_64; iommu_flush_cache(context_entry, sizeof(struct dmar_entry)); ret = 0; } } else if (is_dmar_unit_ignored(dmar_unit)) { ret = 0; } return ret; } /* @pre bus < CONFIG_IOMMU_BUS_NUM */ static int32_t iommu_detach_device(const struct iommu_domain *domain, uint8_t bus, uint8_t devfun) { struct dmar_drhd_rt *dmar_unit; struct dmar_entry *root_table; uint64_t context_table_addr; struct dmar_entry *context; struct dmar_entry *root_entry; struct dmar_entry *context_entry; /* source id */ union pci_bdf sid; int32_t ret = -EINVAL; dmar_unit = device_to_dmaru(bus, devfun); sid.fields.bus = bus; sid.fields.devfun = devfun; if (is_dmar_unit_valid(dmar_unit, sid)) { root_table = (struct dmar_entry *)hpa2hva(dmar_unit->root_table_addr); root_entry = root_table + bus; ret = 0; context_table_addr = dmar_get_bitslice(root_entry->lo_64, ROOT_ENTRY_LOWER_CTP_MASK, ROOT_ENTRY_LOWER_CTP_POS); context_table_addr = context_table_addr << PAGE_SHIFT; context = (struct dmar_entry *)hpa2hva(context_table_addr); context_entry = context + devfun; if ((context == NULL) || (context_entry == NULL)) { pr_err("dmar context entry is invalid"); ret = -EINVAL; } else if ((uint16_t)dmar_get_bitslice(context_entry->hi_64, CTX_ENTRY_UPPER_DID_MASK, CTX_ENTRY_UPPER_DID_POS) != vmid_to_domainid(domain->vm_id)) { pr_err("%s: domain id mismatch", __func__); ret = -EPERM; } else { /* clear the present bit first */ context_entry->lo_64 = 0UL; context_entry->hi_64 = 0UL; iommu_flush_cache(context_entry, sizeof(struct dmar_entry)); dmar_invalid_context_cache(dmar_unit, vmid_to_domainid(domain->vm_id), sid.value, 0U, DMAR_CIRG_DEVICE); dmar_invalid_iotlb(dmar_unit, vmid_to_domainid(domain->vm_id), 0UL, 0U, false, DMAR_IIRG_DOMAIN); } } else if (is_dmar_unit_ignored(dmar_unit)) { ret = 0; } return ret; } /* * @pre action != NULL * As an internal API, VT-d code can guarantee action is not NULL. */ static void do_action_for_iommus(void (*action)(struct dmar_drhd_rt *)) { struct dmar_drhd_rt *dmar_unit; uint32_t i; for (i = 0U; i < platform_dmar_info->drhd_count; i++) { dmar_unit = &dmar_drhd_units[i]; if (!dmar_unit->drhd->ignore) { action(dmar_unit); } else { dev_dbg(DBG_LEVEL_IOMMU, "ignore dmar_unit @0x%x", dmar_unit->drhd->reg_base_addr); } } } struct iommu_domain *create_iommu_domain(uint16_t vm_id, uint64_t translation_table, uint32_t addr_width) { static struct iommu_domain iommu_domains[MAX_DOMAIN_NUM]; struct iommu_domain *domain; /* TODO: check if a domain with the vm_id exists */ if (translation_table == 0UL) { pr_err("translation table is NULL"); domain = NULL; } else { /* * A hypercall is called to create an iommu domain for a valid VM, * and hv code limit the VM number to CONFIG_MAX_VM_NUM. * So the array iommu_domains will not be accessed out of range. */ domain = &iommu_domains[vmid_to_domainid(vm_id)]; domain->vm_id = vm_id; domain->trans_table_ptr = translation_table; domain->addr_width = addr_width; dev_dbg(DBG_LEVEL_IOMMU, "create domain [%d]: vm_id = %hu, ept@0x%x", vmid_to_domainid(domain->vm_id), domain->vm_id, domain->trans_table_ptr); } return domain; } /** * @pre domain != NULL */ void destroy_iommu_domain(struct iommu_domain *domain) { /* TODO: check if any device assigned to this domain */ (void)memset(domain, 0U, sizeof(*domain)); } /* * @pre (from_domain != NULL) || (to_domain != NULL) */ int32_t move_pt_device(const struct iommu_domain *from_domain, const struct iommu_domain *to_domain, uint8_t bus, uint8_t devfun) { int32_t status = 0; uint16_t bus_local = bus; /* TODO: check if the device assigned */ if (bus_local < CONFIG_IOMMU_BUS_NUM) { if (from_domain != NULL) { status = iommu_detach_device(from_domain, bus, devfun); } if ((status == 0) && (to_domain != NULL)) { status = iommu_attach_device(to_domain, bus, devfun); } } else { status = -EINVAL; } return status; } void enable_iommu(void) { do_action_for_iommus(enable_dmar); } void suspend_iommu(void) { do_action_for_iommus(suspend_dmar); } void resume_iommu(void) { do_action_for_iommus(resume_dmar); } /** * @post return != NULL * @post return->drhd_count > 0U */ static struct dmar_info *get_dmar_info(void) { #ifdef CONFIG_ACPI_PARSE_ENABLED parse_dmar_table(&plat_dmar_info); #endif return &plat_dmar_info; } int32_t init_iommu(void) { int32_t ret = 0; platform_dmar_info = get_dmar_info(); if ((platform_dmar_info == NULL) || (platform_dmar_info->drhd_count == 0U)) { pr_fatal("%s: can't find dmar info\n", __func__); ret = -ENODEV; } else if (platform_dmar_info->drhd_count > CONFIG_MAX_IOMMU_NUM) { pr_fatal("%s: dmar count(%d) beyond the limitation(%d)\n", __func__, platform_dmar_info->drhd_count, CONFIG_MAX_IOMMU_NUM); ret = -EINVAL; } else { ret = register_hrhd_units(); if (ret == 0) { do_action_for_iommus(prepare_dmar); } } return ret; } /* Allocate continuous IRTEs specified by num, num can be 1, 2, 4, 8, 16, 32 */ static uint16_t alloc_irtes(struct dmar_drhd_rt *dmar_unit, const uint16_t num) { uint16_t irte_idx; uint64_t mask = (1UL << num) - 1U; uint64_t test_mask; ASSERT((bitmap_weight(num) == 1U) && (num <= 32U)); spinlock_obtain(&dmar_unit->lock); for (irte_idx = 0U; irte_idx < CONFIG_MAX_IR_ENTRIES; irte_idx += num) { test_mask = mask << (irte_idx & 0x3FU); if ((dmar_unit->irte_alloc_bitmap[irte_idx >> 6U] & test_mask) == 0UL) { dmar_unit->irte_alloc_bitmap[irte_idx >> 6U] |= test_mask; break; } } spinlock_release(&dmar_unit->lock); return (irte_idx < CONFIG_MAX_IR_ENTRIES) ? irte_idx: INVALID_IRTE_ID; } static bool is_irte_reserved(const struct dmar_drhd_rt *dmar_unit, uint16_t index) { return ((dmar_unit->irte_reserved_bitmap[index >> 6U] & (1UL << (index & 0x3FU))) != 0UL); } int32_t dmar_reserve_irte(const struct intr_source *intr_src, uint16_t num, uint16_t *start_id) { struct dmar_drhd_rt *dmar_unit; union pci_bdf sid; uint64_t mask = (1UL << num) - 1U; int32_t ret = -EINVAL; if (intr_src->is_msi) { dmar_unit = device_to_dmaru((uint8_t)intr_src->src.msi.bits.b, intr_src->src.msi.fields.devfun); sid.value = (uint16_t)(intr_src->src.msi.value); } else { dmar_unit = ioapic_to_dmaru(intr_src->src.ioapic_id, &sid); } if (is_dmar_unit_valid(dmar_unit, sid)) { *start_id = alloc_irtes(dmar_unit, num); if (*start_id < CONFIG_MAX_IR_ENTRIES) { dmar_unit->irte_reserved_bitmap[*start_id >> 6U] |= mask << (*start_id & 0x3FU); } ret = 0; } pr_dbg("%s: for dev 0x%x:%x.%x, reserve %u entry for MSI(%d), start from %d", __func__, sid.bits.b, sid.bits.d, sid.bits.f, num, intr_src->is_msi, *start_id); return ret; } int32_t dmar_assign_irte(const struct intr_source *intr_src, union dmar_ir_entry *irte, uint16_t idx_in, uint16_t *idx_out) { struct dmar_drhd_rt *dmar_unit; union dmar_ir_entry *ir_table, *ir_entry; union pci_bdf sid; uint64_t trigger_mode; int32_t ret = -EINVAL; if (intr_src->is_msi) { dmar_unit = device_to_dmaru((uint8_t)intr_src->src.msi.bits.b, intr_src->src.msi.fields.devfun); sid.value = (uint16_t)(intr_src->src.msi.value); trigger_mode = 0x0UL; } else { dmar_unit = ioapic_to_dmaru(intr_src->src.ioapic_id, &sid); trigger_mode = irte->bits.remap.trigger_mode; } if (is_dmar_unit_valid(dmar_unit, sid)) { dmar_enable_intr_remapping(dmar_unit); ir_table = (union dmar_ir_entry *)hpa2hva(dmar_unit->ir_table_addr); *idx_out = idx_in; if (idx_in == INVALID_IRTE_ID) { *idx_out = alloc_irtes(dmar_unit, 1U); } if (*idx_out < CONFIG_MAX_IR_ENTRIES) { ir_entry = ir_table + *idx_out; if (intr_src->pid_paddr != 0UL) { union dmar_ir_entry irte_pi; /* irte is in remapped mode format, convert to posted mode format */ irte_pi.value.lo_64 = 0UL; irte_pi.value.hi_64 = 0UL; irte_pi.bits.post.vector = irte->bits.remap.vector; irte_pi.bits.post.svt = 0x1UL; irte_pi.bits.post.sid = sid.value; irte_pi.bits.post.present = 0x1UL; irte_pi.bits.post.mode = 0x1UL; irte_pi.bits.post.pda_l = (intr_src->pid_paddr) >> 6U; irte_pi.bits.post.pda_h = (intr_src->pid_paddr) >> 32U; *ir_entry = irte_pi; } else { /* Fields that have not been initialized explicitly default to 0 */ irte->bits.remap.svt = 0x1UL; irte->bits.remap.sid = sid.value; irte->bits.remap.present = 0x1UL; irte->bits.remap.trigger_mode = trigger_mode; *ir_entry = *irte; } iommu_flush_cache(ir_entry, sizeof(union dmar_ir_entry)); dmar_invalid_iec(dmar_unit, *idx_out, 0U, false); } ret = 0; } return ret; } void dmar_free_irte(const struct intr_source *intr_src, uint16_t index) { struct dmar_drhd_rt *dmar_unit; union dmar_ir_entry *ir_table, *ir_entry; union pci_bdf sid; if (intr_src->is_msi) { dmar_unit = device_to_dmaru((uint8_t)intr_src->src.msi.bits.b, intr_src->src.msi.fields.devfun); } else { dmar_unit = ioapic_to_dmaru(intr_src->src.ioapic_id, &sid); } if (is_dmar_unit_valid(dmar_unit, sid)) { ir_table = (union dmar_ir_entry *)hpa2hva(dmar_unit->ir_table_addr); ir_entry = ir_table + index; ir_entry->bits.remap.present = 0x0UL; iommu_flush_cache(ir_entry, sizeof(union dmar_ir_entry)); dmar_invalid_iec(dmar_unit, index, 0U, false); if (!is_irte_reserved(dmar_unit, index)) { spinlock_obtain(&dmar_unit->lock); bitmap_clear_nolock(index & 0x3FU, &dmar_unit->irte_alloc_bitmap[index >> 6U]); spinlock_release(&dmar_unit->lock); } } }