/* * Copyright (C) 2018 Intel Corporation. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include /* * Check if the IRQ is single-destination and return the destination vCPU if so. * * VT-d PI (posted mode) cannot support multicast/broadcast IRQs. * If returns NULL, this means it is multicast/broadcast IRQ and * we can only handle it in remapped mode. * If returns non-NULL, the destination vCPU is returned, which means it is * single-destination IRQ and we can handle it in posted mode. * * @pre (vm != NULL) && (info != NULL) */ static struct acrn_vcpu *is_single_destination(struct acrn_vm *vm, const struct msi_info *info) { uint64_t vdmask; uint16_t vid; struct acrn_vcpu *vcpu = NULL; vdmask = vlapic_calc_dest_noshort(vm, false, (uint32_t)(info->addr.bits.dest_field), (bool)(info->addr.bits.dest_mode == MSI_ADDR_DESTMODE_PHYS), (bool)(info->data.bits.delivery_mode == MSI_DATA_DELMODE_LOPRI)); vid = ffs64(vdmask); /* Can only post fixed and Lowpri IRQs */ if ((info->data.bits.delivery_mode == MSI_DATA_DELMODE_FIXED) || (info->data.bits.delivery_mode == MSI_DATA_DELMODE_LOPRI)) { /* Can only post single-destination IRQs */ if (vdmask == (1UL << vid)) { vcpu = vcpu_from_vid(vm, vid); } } return vcpu; } static uint32_t calculate_logical_dest_mask(uint64_t pdmask) { uint32_t dest_mask = 0UL; uint64_t pcpu_mask = pdmask; uint16_t pcpu_id; pcpu_id = ffs64(pcpu_mask); while (pcpu_id < MAX_PCPU_NUM) { bitmap_clear_nolock(pcpu_id, &pcpu_mask); dest_mask |= per_cpu(lapic_ldr, pcpu_id); pcpu_id = ffs64(pcpu_mask); } return dest_mask; } /** * @pre entry != NULL */ static void ptirq_free_irte(const struct ptirq_remapping_info *entry) { struct intr_source intr_src; if (entry->intr_type == PTDEV_INTR_MSI) { intr_src.is_msi = true; intr_src.src.msi.value = entry->phys_sid.msi_id.bdf; } else { intr_src.is_msi = false; intr_src.src.ioapic_id = ioapic_irq_to_ioapic_id(entry->allocated_pirq); } dmar_free_irte(&intr_src, entry->irte_idx); } /* * pid_paddr = 0: invalid address, indicate that remapped mode shall be used * * pid_paddr != 0: physical address of posted interrupt descriptor, indicate * that posted mode shall be used */ static void ptirq_build_physical_msi(struct acrn_vm *vm, struct ptirq_remapping_info *entry, uint32_t vector, uint64_t pid_paddr, uint16_t irte_idx) { uint64_t vdmask, pdmask; uint32_t dest, delmode, dest_mask; bool phys; union dmar_ir_entry irte; union irte_index ir_index; int32_t ret; struct intr_source intr_src; /* get physical destination cpu mask */ dest = entry->vmsi.addr.bits.dest_field; phys = (entry->vmsi.addr.bits.dest_mode == MSI_ADDR_DESTMODE_PHYS); vdmask = vlapic_calc_dest_noshort(vm, false, dest, phys, false); pdmask = vcpumask2pcpumask(vm, vdmask); /* get physical delivery mode */ delmode = entry->vmsi.data.bits.delivery_mode; if ((delmode != MSI_DATA_DELMODE_FIXED) && (delmode != MSI_DATA_DELMODE_LOPRI)) { delmode = MSI_DATA_DELMODE_LOPRI; } dest_mask = calculate_logical_dest_mask(pdmask); /* Using phys_irq as index in the corresponding IOMMU */ irte.value.lo_64 = 0UL; irte.value.hi_64 = 0UL; irte.bits.remap.vector = vector; irte.bits.remap.delivery_mode = delmode; irte.bits.remap.dest_mode = MSI_ADDR_DESTMODE_LOGICAL; irte.bits.remap.rh = MSI_ADDR_RH; irte.bits.remap.dest = dest_mask; intr_src.is_msi = true; intr_src.pid_paddr = pid_paddr; intr_src.src.msi.value = entry->phys_sid.msi_id.bdf; if (entry->irte_idx == INVALID_IRTE_ID) { entry->irte_idx = irte_idx; } ret = dmar_assign_irte(&intr_src, &irte, entry->irte_idx, &ir_index.index); if (ret == 0) { entry->pmsi.data.full = 0U; entry->pmsi.addr.full = 0UL; entry->irte_idx = ir_index.index; if (ir_index.index != INVALID_IRTE_ID) { /* * Update the MSI interrupt source to point to the IRTE * SHV is set to 0 as ACRN disables MMC (Multi-Message Capable * for MSI devices. */ entry->pmsi.addr.ir_bits.intr_index_high = ir_index.bits.index_high; entry->pmsi.addr.ir_bits.shv = 0U; entry->pmsi.addr.ir_bits.intr_format = 0x1U; entry->pmsi.addr.ir_bits.intr_index_low = ir_index.bits.index_low; entry->pmsi.addr.ir_bits.constant = 0xFEEU; } } else { /* In case there is no corresponding IOMMU, for example, if the * IOMMU is ignored, pass the MSI info in Compatibility Format */ entry->pmsi.data = entry->vmsi.data; entry->pmsi.data.bits.delivery_mode = delmode; entry->pmsi.data.bits.vector = vector; entry->pmsi.addr = entry->vmsi.addr; entry->pmsi.addr.bits.dest_field = dest_mask; entry->pmsi.addr.bits.rh = MSI_ADDR_RH; entry->pmsi.addr.bits.dest_mode = MSI_ADDR_DESTMODE_LOGICAL; } dev_dbg(DBG_LEVEL_IRQ, "MSI %s addr:data = 0x%lx:%x(V) -> 0x%lx:%x(P)", (entry->pmsi.addr.ir_bits.intr_format != 0U) ? " Remappable Format" : "Compatibility Format", entry->vmsi.addr.full, entry->vmsi.data.full, entry->pmsi.addr.full, entry->pmsi.data.full); } static union ioapic_rte ptirq_build_physical_rte(struct acrn_vm *vm, struct ptirq_remapping_info *entry) { union ioapic_rte rte; uint32_t phys_irq = entry->allocated_pirq; union source_id *virt_sid = &entry->virt_sid; union irte_index ir_index; union dmar_ir_entry irte; struct intr_source intr_src; int32_t ret; if (virt_sid->intx_id.ctlr == INTX_CTLR_IOAPIC) { uint64_t vdmask, pdmask; uint32_t dest, delmode, dest_mask, vector; union ioapic_rte virt_rte; bool phys; vioapic_get_rte(vm, virt_sid->intx_id.gsi, &virt_rte); rte = virt_rte; /* init polarity & pin state */ if (rte.bits.intr_polarity == IOAPIC_RTE_INTPOL_ALO) { if (entry->polarity == 0U) { vioapic_set_irqline_nolock(vm, virt_sid->intx_id.gsi, GSI_SET_HIGH); } entry->polarity = 1U; } else { if (entry->polarity == 1U) { vioapic_set_irqline_nolock(vm, virt_sid->intx_id.gsi, GSI_SET_LOW); } entry->polarity = 0U; } /* physical destination cpu mask */ phys = (virt_rte.bits.dest_mode == IOAPIC_RTE_DESTMODE_PHY); dest = (uint32_t)virt_rte.bits.dest_field; vdmask = vlapic_calc_dest_noshort(vm, false, dest, phys, false); pdmask = vcpumask2pcpumask(vm, vdmask); /* physical delivery mode */ delmode = virt_rte.bits.delivery_mode; if ((delmode != IOAPIC_RTE_DELMODE_FIXED) && (delmode != IOAPIC_RTE_DELMODE_LOPRI)) { delmode = IOAPIC_RTE_DELMODE_LOPRI; } /* update physical delivery mode, dest mode(logical) & vector */ vector = irq_to_vector(phys_irq); dest_mask = calculate_logical_dest_mask(pdmask); irte.value.lo_64 = 0UL; irte.value.hi_64 = 0UL; irte.bits.remap.vector = vector; irte.bits.remap.delivery_mode = delmode; irte.bits.remap.dest_mode = IOAPIC_RTE_DESTMODE_LOGICAL; irte.bits.remap.dest = dest_mask; irte.bits.remap.trigger_mode = rte.bits.trigger_mode; intr_src.is_msi = false; intr_src.pid_paddr = 0UL; intr_src.src.ioapic_id = ioapic_irq_to_ioapic_id(phys_irq); ret = dmar_assign_irte(&intr_src, &irte, entry->irte_idx, &ir_index.index); if (ret == 0) { entry->irte_idx = ir_index.index; if (ir_index.index != INVALID_IRTE_ID) { rte.ir_bits.vector = vector; rte.ir_bits.constant = 0U; rte.ir_bits.intr_index_high = ir_index.bits.index_high; rte.ir_bits.intr_format = 1U; rte.ir_bits.intr_index_low = ir_index.bits.index_low; } else { rte.bits.intr_mask = 1; } } else { rte.bits.dest_mode = IOAPIC_RTE_DESTMODE_LOGICAL; rte.bits.delivery_mode = delmode; rte.bits.vector = vector; rte.bits.dest_field = dest_mask; } dev_dbg(DBG_LEVEL_IRQ, "IOAPIC RTE %s = 0x%x:%x(V) -> 0x%x:%x(P)", (rte.ir_bits.intr_format != 0U) ? "Remappable Format" : "Compatibility Format", virt_rte.u.hi_32, virt_rte.u.lo_32, rte.u.hi_32, rte.u.lo_32); } else { enum vpic_trigger trigger; union ioapic_rte phys_rte; /* just update trigger mode */ ioapic_get_rte(phys_irq, &phys_rte); rte = phys_rte; rte.bits.trigger_mode = IOAPIC_RTE_TRGRMODE_EDGE; vpic_get_irqline_trigger_mode(vm_pic(vm), (uint32_t)virt_sid->intx_id.gsi, &trigger); if (trigger == LEVEL_TRIGGER) { rte.bits.trigger_mode = IOAPIC_RTE_TRGRMODE_LEVEL; } dev_dbg(DBG_LEVEL_IRQ, "IOAPIC RTE %s = 0x%x:%x(P) -> 0x%x:%x(P)", (rte.ir_bits.intr_format != 0U) ? "Remappable Format" : "Compatibility Format", phys_rte.u.hi_32, phys_rte.u.lo_32, rte.u.hi_32, rte.u.lo_32); } return rte; } /* add msix entry for a vm, based on msi id (phys_bdf+msix_index) * - if the entry not be added by any vm, allocate it * - if the entry already be added by sos_vm, then change the owner to current vm * - if the entry already be added by other vm, return NULL */ static struct ptirq_remapping_info *add_msix_remapping(struct acrn_vm *vm, uint16_t virt_bdf, uint16_t phys_bdf, uint32_t entry_nr) { struct ptirq_remapping_info *entry; DEFINE_MSI_SID(phys_sid, phys_bdf, entry_nr); DEFINE_MSI_SID(virt_sid, virt_bdf, entry_nr); entry = find_ptirq_entry(PTDEV_INTR_MSI, &phys_sid, NULL); if (entry == NULL) { entry = ptirq_alloc_entry(vm, PTDEV_INTR_MSI); if (entry != NULL) { entry->phys_sid.value = phys_sid.value; entry->virt_sid.value = virt_sid.value; entry->release_cb = ptirq_free_irte; /* update msi source and active entry */ if (ptirq_activate_entry(entry, IRQ_INVALID) < 0) { ptirq_release_entry(entry); entry = NULL; } } dev_dbg(DBG_LEVEL_IRQ, "VM%d MSIX add vector mapping vbdf%x:pbdf%x idx=%d", vm->vm_id, virt_bdf, phys_bdf, entry_nr); } return entry; } /* deactive & remove mapping entry of vbdf:entry_nr for vm */ static void remove_msix_remapping(const struct acrn_vm *vm, uint16_t phys_bdf, uint32_t entry_nr) { struct ptirq_remapping_info *entry; DEFINE_MSI_SID(phys_sid, phys_bdf, entry_nr); struct intr_source intr_src; entry = find_ptirq_entry(PTDEV_INTR_MSI, &phys_sid, NULL); if ((entry != NULL) && (entry->vm == vm)) { if (is_entry_active(entry)) { /*TODO: disable MSIX device when HV can in future */ ptirq_deactivate_entry(entry); } intr_src.is_msi = true; intr_src.src.msi.value = entry->phys_sid.msi_id.bdf; dmar_free_irte(&intr_src, entry->irte_idx); dev_dbg(DBG_LEVEL_IRQ, "VM%d MSIX remove vector mapping vbdf-pbdf:0x%x-0x%x idx=%d", vm->vm_id, entry->virt_sid.msi_id.bdf, phys_bdf, entry_nr); ptirq_release_entry(entry); } } /* add intx entry for a vm, based on intx id (phys_pin) * - if the entry not be added by any vm, allocate it * - if the entry already be added by sos_vm, then change the owner to current vm * - if the entry already be added by other vm, return NULL */ static struct ptirq_remapping_info *add_intx_remapping(struct acrn_vm *vm, uint32_t virt_gsi, uint32_t phys_gsi, enum intx_ctlr vgsi_ctlr) { struct ptirq_remapping_info *entry = NULL; DEFINE_INTX_SID(phys_sid, phys_gsi, INTX_CTLR_IOAPIC); DEFINE_INTX_SID(virt_sid, virt_gsi, vgsi_ctlr); uint32_t phys_irq = ioapic_gsi_to_irq(phys_gsi); entry = find_ptirq_entry(PTDEV_INTR_INTX, &phys_sid, NULL); if (entry == NULL) { if (find_ptirq_entry(PTDEV_INTR_INTX, &virt_sid, vm) == NULL) { entry = ptirq_alloc_entry(vm, PTDEV_INTR_INTX); if (entry != NULL) { entry->phys_sid.value = phys_sid.value; entry->virt_sid.value = virt_sid.value; entry->release_cb = ptirq_free_irte; /* activate entry */ if (ptirq_activate_entry(entry, phys_irq) < 0) { ptirq_release_entry(entry); entry = NULL; } } } else { pr_err("INTX re-add vpin %d", virt_gsi); } } else if (entry->vm != vm) { if (is_sos_vm(entry->vm)) { entry->vm = vm; entry->virt_sid.value = virt_sid.value; entry->polarity = 0U; } else { pr_err("INTX gsi%d already in vm%d with vgsi%d, not able to add into vm%d with vgsi%d", phys_gsi, entry->vm->vm_id, entry->virt_sid.intx_id.gsi, vm->vm_id, virt_gsi); entry = NULL; } } else { /* The mapping has already been added to the VM. No action * required. */ } /* * ptirq entry is either created or transferred from SOS VM to Post-launched VM */ if (entry != NULL) { dev_dbg(DBG_LEVEL_IRQ, "VM%d INTX add pin mapping vgsi%d:pgsi%d", entry->vm->vm_id, virt_gsi, phys_gsi); } return entry; } /* deactive & remove mapping entry of vpin for vm */ static void remove_intx_remapping(const struct acrn_vm *vm, uint32_t virt_gsi, enum intx_ctlr vgsi_ctlr) { uint32_t phys_irq; struct ptirq_remapping_info *entry; struct intr_source intr_src; DEFINE_INTX_SID(virt_sid, virt_gsi, vgsi_ctlr); entry = find_ptirq_entry(PTDEV_INTR_INTX, &virt_sid, vm); if (entry != NULL) { if (is_entry_active(entry)) { phys_irq = entry->allocated_pirq; /* disable interrupt */ ioapic_gsi_mask_irq(phys_irq); ptirq_deactivate_entry(entry); intr_src.is_msi = false; intr_src.src.ioapic_id = ioapic_irq_to_ioapic_id(phys_irq); dmar_free_irte(&intr_src, entry->irte_idx); dev_dbg(DBG_LEVEL_IRQ, "deactive %s intx entry:pgsi=%d, pirq=%d ", (vgsi_ctlr == INTX_CTLR_PIC) ? "vPIC" : "vIOAPIC", entry->phys_sid.intx_id.gsi, phys_irq); dev_dbg(DBG_LEVEL_IRQ, "from vm%d vgsi=%d\n", entry->vm->vm_id, virt_gsi); } ptirq_release_entry(entry); } } static void ptirq_handle_intx(struct acrn_vm *vm, const struct ptirq_remapping_info *entry) { const union source_id *virt_sid = &entry->virt_sid; switch (virt_sid->intx_id.ctlr) { case INTX_CTLR_IOAPIC: { union ioapic_rte rte; bool trigger_lvl = false; /* INTX_CTLR_IOAPIC means we have vioapic enabled */ vioapic_get_rte(vm, (uint32_t)virt_sid->intx_id.gsi, &rte); if (rte.bits.trigger_mode == IOAPIC_RTE_TRGRMODE_LEVEL) { trigger_lvl = true; } if (trigger_lvl) { if (entry->polarity != 0U) { vioapic_set_irqline_lock(vm, virt_sid->intx_id.gsi, GSI_SET_LOW); } else { vioapic_set_irqline_lock(vm, virt_sid->intx_id.gsi, GSI_SET_HIGH); } } else { if (entry->polarity != 0U) { vioapic_set_irqline_lock(vm, virt_sid->intx_id.gsi, GSI_FALLING_PULSE); } else { vioapic_set_irqline_lock(vm, virt_sid->intx_id.gsi, GSI_RAISING_PULSE); } } dev_dbg(DBG_LEVEL_PTIRQ, "dev-assign: irq=0x%x assert vr: 0x%x vRTE=0x%lx", entry->allocated_pirq, irq_to_vector(entry->allocated_pirq), rte.full); break; } case INTX_CTLR_PIC: { enum vpic_trigger trigger; /* INTX_CTLR_PIC means we have vpic enabled */ vpic_get_irqline_trigger_mode(vm_pic(vm), virt_sid->intx_id.gsi, &trigger); if (trigger == LEVEL_TRIGGER) { vpic_set_irqline(vm_pic(vm), virt_sid->intx_id.gsi, GSI_SET_HIGH); } else { vpic_set_irqline(vm_pic(vm), virt_sid->intx_id.gsi, GSI_RAISING_PULSE); } break; } default: /* * In this switch statement, virt_sid->intx_id.ctlr shall * either be INTX_CTLR_IOAPIC or INTX_CTLR_PIC. * Gracefully return if prior case clauses have not been met. */ break; } } void ptirq_softirq(uint16_t pcpu_id) { while (1) { struct ptirq_remapping_info *entry = ptirq_dequeue_softirq(pcpu_id); struct msi_info *vmsi; if (entry == NULL) { break; } vmsi = &entry->vmsi; /* skip any inactive entry */ if (!is_entry_active(entry)) { /* service next item */ continue; } /* handle real request */ if (entry->intr_type == PTDEV_INTR_INTX) { ptirq_handle_intx(entry->vm, entry); } else { if (vmsi != NULL) { /* TODO: vmsi destmode check required */ (void)vlapic_inject_msi(entry->vm, vmsi->addr.full, vmsi->data.full); dev_dbg(DBG_LEVEL_PTIRQ, "dev-assign: irq=0x%x MSI VR: 0x%x-0x%x", entry->allocated_pirq, vmsi->data.bits.vector, irq_to_vector(entry->allocated_pirq)); dev_dbg(DBG_LEVEL_PTIRQ, " vmsi_addr: 0x%lx vmsi_data: 0x%x", vmsi->addr.full, vmsi->data.full); } } } } void ptirq_intx_ack(struct acrn_vm *vm, uint32_t virt_gsi, enum intx_ctlr vgsi_ctlr) { uint32_t phys_irq; struct ptirq_remapping_info *entry; DEFINE_INTX_SID(virt_sid, virt_gsi, vgsi_ctlr); entry = find_ptirq_entry(PTDEV_INTR_INTX, &virt_sid, vm); if (entry != NULL) { phys_irq = entry->allocated_pirq; /* NOTE: only Level trigger will process EOI/ACK and if we got here * means we have this vioapic or vpic or both enabled */ switch (vgsi_ctlr) { case INTX_CTLR_IOAPIC: if (entry->polarity != 0U) { vioapic_set_irqline_lock(vm, virt_gsi, GSI_SET_HIGH); } else { vioapic_set_irqline_lock(vm, virt_gsi, GSI_SET_LOW); } break; case INTX_CTLR_PIC: vpic_set_irqline(vm_pic(vm), virt_gsi, GSI_SET_LOW); break; default: /* * In this switch statement, vgsi_ctlr shall either be * INTX_CTLR_IOAPIC or INTX_CTLR_PIC. * Gracefully return if prior case clauses have not been met. */ break; } dev_dbg(DBG_LEVEL_PTIRQ, "dev-assign: irq=0x%x acked vr: 0x%x", phys_irq, irq_to_vector(phys_irq)); ioapic_gsi_unmask_irq(phys_irq); } } /* Main entry for PCI device assignment with MSI and MSI-X * MSI can up to 8 vectors and MSI-X can up to 1024 Vectors * We use entry_nr to indicate coming vectors * entry_nr = 0 means first vector * user must provide bdf and entry_nr */ int32_t ptirq_prepare_msix_remap(struct acrn_vm *vm, uint16_t virt_bdf, uint16_t phys_bdf, uint16_t entry_nr, struct msi_info *info, uint16_t irte_idx) { struct ptirq_remapping_info *entry; int32_t ret = -ENODEV; union pci_bdf vbdf; /* * adds the mapping entries at runtime, if the * entry already be held by others, return error. */ spinlock_obtain(&ptdev_lock); entry = add_msix_remapping(vm, virt_bdf, phys_bdf, entry_nr); spinlock_release(&ptdev_lock); if (entry != NULL) { ret = 0; entry->vmsi = *info; /* build physical config MSI, update to info->pmsi_xxx */ if (is_lapic_pt_configured(vm)) { enum vm_vlapic_mode vlapic_mode = check_vm_vlapic_mode(vm); if (vlapic_mode == VM_VLAPIC_X2APIC) { /* * All the vCPUs are in x2APIC mode and LAPIC is Pass-through * Use guest vector to program the interrupt source */ ptirq_build_physical_msi(vm, entry, (uint32_t)info->data.bits.vector, 0UL, irte_idx); } else if (vlapic_mode == VM_VLAPIC_XAPIC) { /* * All the vCPUs are in xAPIC mode and LAPIC is emulated * Use host vector to program the interrupt source */ ptirq_build_physical_msi(vm, entry, irq_to_vector(entry->allocated_pirq), 0UL, irte_idx); } else if (vlapic_mode == VM_VLAPIC_TRANSITION) { /* * vCPUs are in middle of transition, so do not program interrupt source * TODO: Devices programmed during transistion do not work after transition * as device is not programmed with interrupt info. Need to implement a * method to get interrupts working after transition. */ ret = -EFAULT; } else { /* Do nothing for VM_VLAPIC_DISABLED */ ret = -EFAULT; } } else { struct acrn_vcpu *vcpu = is_single_destination(vm, info); if (is_pi_capable(vm) && (vcpu != NULL)) { ptirq_build_physical_msi(vm, entry, (uint32_t)info->data.bits.vector, hva2hpa(get_pi_desc(vcpu)), irte_idx); } else { /* Go with remapped mode if we cannot handle it in posted mode */ ptirq_build_physical_msi(vm, entry, irq_to_vector(entry->allocated_pirq), 0UL, irte_idx); } } if (ret == 0) { *info = entry->pmsi; vbdf.value = virt_bdf; dev_dbg(DBG_LEVEL_IRQ, "PCI %x:%x.%x MSI VR[%d] 0x%x->0x%x assigned to vm%d", vbdf.bits.b, vbdf.bits.d, vbdf.bits.f, entry_nr, entry->vmsi.data.bits.vector, irq_to_vector(entry->allocated_pirq), entry->vm->vm_id); } } return ret; } static void activate_physical_ioapic(struct acrn_vm *vm, struct ptirq_remapping_info *entry) { union ioapic_rte rte; uint32_t phys_irq = entry->allocated_pirq; uint64_t intr_mask; bool is_lvl_trigger = false; /* disable interrupt */ ioapic_gsi_mask_irq(phys_irq); /* build physical IOAPIC RTE */ rte = ptirq_build_physical_rte(vm, entry); intr_mask = rte.bits.intr_mask; /* update irq trigger mode according to info in guest */ if (rte.bits.trigger_mode == IOAPIC_RTE_TRGRMODE_LEVEL) { is_lvl_trigger = true; } set_irq_trigger_mode(phys_irq, is_lvl_trigger); /* set rte entry when masked */ rte.bits.intr_mask = IOAPIC_RTE_MASK_SET; ioapic_set_rte(phys_irq, rte); if (intr_mask == IOAPIC_RTE_MASK_CLR) { ioapic_gsi_unmask_irq(phys_irq); } } /* Main entry for PCI/Legacy device assignment with INTx, calling from vIOAPIC * or vPIC */ int32_t ptirq_intx_pin_remap(struct acrn_vm *vm, uint32_t virt_gsi, enum intx_ctlr vgsi_ctlr) { int32_t status = 0; struct ptirq_remapping_info *entry = NULL; DEFINE_INTX_SID(virt_sid, virt_gsi, vgsi_ctlr); DEFINE_INTX_SID(alt_virt_sid, virt_gsi, vgsi_ctlr); /* * virt pin could come from primary vPIC, secondary vPIC or vIOAPIC * while phys pin is always means for physical IOAPIC. * * Device Model should pre-hold the mapping entries by calling * ptirq_add_intx_remapping for UOS. * * For SOS(sos_vm), it adds the mapping entries at runtime, if the * entry already be held by others, return error. */ /* no remap for vuart intx */ if (!is_vuart_intx(vm, virt_sid.intx_id.gsi)) { /* query if we have virt to phys mapping */ spinlock_obtain(&ptdev_lock); entry = find_ptirq_entry(PTDEV_INTR_INTX, &virt_sid, vm); if (entry == NULL) { if (is_sos_vm(vm)) { /* for sos_vm, there is chance of vpin source switch * between vPIC & vIOAPIC for one legacy phys_pin. * * here checks if there is already mapping entry from * the other vpin source for legacy pin. If yes, then * switch vpin source is needed */ if (virt_gsi < NR_LEGACY_PIN) { if (vgsi_ctlr == INTX_CTLR_PIC) { alt_virt_sid.intx_id.ctlr = INTX_CTLR_IOAPIC; } else { alt_virt_sid.intx_id.ctlr = INTX_CTLR_PIC; } entry = find_ptirq_entry(PTDEV_INTR_INTX, &alt_virt_sid, vm); if (entry != NULL) { uint32_t phys_gsi = virt_gsi; remove_intx_remapping(vm, alt_virt_sid.intx_id.gsi, alt_virt_sid.intx_id.ctlr); entry = add_intx_remapping(vm, virt_gsi, phys_gsi, vgsi_ctlr); if (entry == NULL) { pr_err("%s, add intx remapping failed", __func__); status = -ENODEV; } else { dev_dbg(DBG_LEVEL_IRQ, "IOAPIC gsi=%hhu pirq=%u vgsi=%d from %s to %s for vm%d", entry->phys_sid.intx_id.gsi, entry->allocated_pirq, entry->virt_sid.intx_id.gsi, (vgsi_ctlr == INTX_CTLR_IOAPIC) ? "vPIC" : "vIOAPIC", (vgsi_ctlr == INTX_CTLR_IOAPIC) ? "vIOPIC" : "vPIC", entry->vm->vm_id); } } } /* entry could be updated by above switch check */ if (entry == NULL) { uint32_t phys_gsi = virt_gsi; entry = add_intx_remapping(vm, virt_gsi, phys_gsi, vgsi_ctlr); if (entry == NULL) { pr_err("%s, add intx remapping failed", __func__); status = -ENODEV; } } } else { /* ptirq_intx_pin_remap is triggered by vPIC/vIOAPIC * everytime a pin get unmask, here filter out pins * not get mapped. */ status = -ENODEV; } } spinlock_release(&ptdev_lock); } else { status = -EINVAL; } if (status == 0) { activate_physical_ioapic(vm, entry); } return status; } /* @pre vm != NULL * except sos_vm, Device Model should call this function to pre-hold ptdev intx * entries: * - the entry is identified by phys_pin: * one entry vs. one phys_pin * - currently, one phys_pin can only be held by one pin source (vPIC or * vIOAPIC) */ int32_t ptirq_add_intx_remapping(struct acrn_vm *vm, uint32_t virt_gsi, uint32_t phys_gsi, bool pic_pin) { struct ptirq_remapping_info *entry; enum intx_ctlr vgsi_ctlr = pic_pin ? INTX_CTLR_PIC : INTX_CTLR_IOAPIC; spinlock_obtain(&ptdev_lock); entry = add_intx_remapping(vm, virt_gsi, phys_gsi, vgsi_ctlr); spinlock_release(&ptdev_lock); return (entry != NULL) ? 0 : -ENODEV; } /* * @pre vm != NULL */ void ptirq_remove_intx_remapping(const struct acrn_vm *vm, uint32_t virt_gsi, bool pic_pin) { enum intx_ctlr vgsi_ctlr = pic_pin ? INTX_CTLR_PIC : INTX_CTLR_IOAPIC; spinlock_obtain(&ptdev_lock); remove_intx_remapping(vm, virt_gsi, vgsi_ctlr); spinlock_release(&ptdev_lock); } /* * @pre vm != NULL */ void ptirq_remove_msix_remapping(const struct acrn_vm *vm, uint16_t phys_bdf, uint32_t vector_count) { uint32_t i; for (i = 0U; i < vector_count; i++) { spinlock_obtain(&ptdev_lock); remove_msix_remapping(vm, phys_bdf, i); spinlock_release(&ptdev_lock); } } /* * @pre vm != NULL */ void ptirq_remove_configured_intx_remappings(const struct acrn_vm *vm) { const struct acrn_vm_config *vm_config = get_vm_config(vm->vm_id); uint32_t i; for (i = 0; i < vm_config->pt_intx_num; i++) { ptirq_remove_intx_remapping(vm, vm_config->pt_intx[i].virt_gsi, false); } }