Datasets:
File size: 5,172 Bytes
31db0b5 e6c9877 31db0b5 e6c9877 31db0b5 73237e3 31db0b5 e15bc37 31db0b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
---
annotations_creators:
- found
language_creators:
- found
language:
- ca
license:
- cc-by-nc-4.0
multilinguality:
- monolingual
pretty_name: TV3Parla
size_categories:
- "100K<n<1M"
source_datasets:
- original
task_categories:
- sequence-modeling
- speech-processing
task_ids:
- language-modeling
- automatic-speech-recognition
---
# Dataset Card for TV3Parla
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://collectivat.cat/asr#tv3parla
- **Repository:**
- **Paper:** [Building an Open Source Automatic Speech Recognition System for Catalan](https://www.isca-speech.org/archive/iberspeech_2018/kulebi18_iberspeech.html)
- **Point of Contact:** [Col·lectivaT](mailto:[email protected])
### Dataset Summary
This corpus includes 240 hours of Catalan speech from broadcast material.
The details of segmentation, data processing and also model training are explained in Külebi, Öktem; 2018.
The content is owned by Corporació Catalana de Mitjans Audiovisuals, SA (CCMA);
we processed their material and hereby making it available under their terms of use.
This project was supported by the Softcatalà Association.
### Supported Tasks and Leaderboards
The dataset can be used for:
- Language Modeling.
- Automatic Speech Recognition (ASR) transcribes utterances into words.
### Languages
The dataset is in Catalan (`ca`).
## Dataset Structure
### Data Instances
```
{
'path': 'tv3_0.3/wav/train/5662515_1492531876710/5662515_1492531876710_120.180_139.020.wav',
'audio': {'path': 'tv3_0.3/wav/train/5662515_1492531876710/5662515_1492531876710_120.180_139.020.wav',
'array': array([-0.01168823, 0.01229858, 0.02819824, ..., 0.015625 ,
0.01525879, 0.0145874 ]),
'sampling_rate': 16000},
'text': 'algunes montoneres que que et feien anar ben col·locat i el vent també hi jugava una mica de paper bufava vent de cantó alguns cops o de cul i el pelotón el vent el porta molt malament hi havia molts nervis'
}
```
### Data Fields
- `path` (str): Path to the audio file.
- `audio` (dict): A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling
rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and
resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might
take a significant amount of time. Thus, it is important to first query the sample index before the `"audio"` column,
*i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.
- `text` (str): Transcription of the audio file.
### Data Splits
The dataset is split into "train" and "test".
| | train | test |
|:-------------------|-------:|-----:|
| Number of examples | 159242 | 2220 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[Creative Commons Attribution-NonCommercial 4.0 International](https://creativecommons.org/licenses/by-nc/4.0/).
### Citation Information
```
@inproceedings{kulebi18_iberspeech,
author={Baybars Külebi and Alp Öktem},
title={{Building an Open Source Automatic Speech Recognition System for Catalan}},
year=2018,
booktitle={Proc. IberSPEECH 2018},
pages={25--29},
doi={10.21437/IberSPEECH.2018-6}
}
```
### Contributions
Thanks to [@albertvillanova](https://github.com/albertvillanova) for adding this dataset.
|