system HF staff commited on
Commit
4463af2
1 Parent(s): 50dfe6e

Update files from the datasets library (from 1.8.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.8.0

Files changed (3) hide show
  1. README.md +2 -0
  2. dataset_infos.json +1 -1
  3. rotten_tomatoes.py +2 -0
README.md CHANGED
@@ -1,4 +1,6 @@
1
  ---
 
 
2
  paperswithcode_id: null
3
  ---
4
 
 
1
  ---
2
+ languages:
3
+ - en
4
  paperswithcode_id: null
5
  ---
6
 
dataset_infos.json CHANGED
@@ -1 +1 @@
1
- {"default": {"description": "Movie Review Dataset.\nThis is a dataset of containing 5,331 positive and 5,331 negative processed \nsentences from Rotten Tomatoes movie reviews. This data was first used in Bo \nPang and Lillian Lee, ``Seeing stars: Exploiting class relationships for \nsentiment categorization with respect to rating scales.'', Proceedings of the \nACL, 2005.\n", "citation": "@InProceedings{Pang+Lee:05a,\n author = {Bo Pang and Lillian Lee},\n title = {Seeing stars: Exploiting class relationships for sentiment\n categorization with respect to rating scales},\n booktitle = {Proceedings of the ACL},\n year = 2005\n}\n", "homepage": "http://www.cs.cornell.edu/people/pabo/movie-review-data/", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["neg", "pos"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "supervised_keys": {"input": "", "output": ""}, "builder_name": "rotten_tomatoes_movie_review", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1074810, "num_examples": 8530, "dataset_name": "rotten_tomatoes_movie_review"}, "validation": {"name": "validation", "num_bytes": 134679, "num_examples": 1066, "dataset_name": "rotten_tomatoes_movie_review"}, "test": {"name": "test", "num_bytes": 135972, "num_examples": 1066, "dataset_name": "rotten_tomatoes_movie_review"}}, "download_checksums": {"https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz": {"num_bytes": 487770, "checksum": "a05befe52aafda71d458d188a1c54506a998b1308613ba76bbda2e5029409ce9"}}, "download_size": 487770, "dataset_size": 1345461, "size_in_bytes": 1833231}}
 
1
+ {"default": {"description": "Movie Review Dataset.\nThis is a dataset of containing 5,331 positive and 5,331 negative processed\nsentences from Rotten Tomatoes movie reviews. This data was first used in Bo\nPang and Lillian Lee, ``Seeing stars: Exploiting class relationships for\nsentiment categorization with respect to rating scales.'', Proceedings of the\nACL, 2005.\n", "citation": "@InProceedings{Pang+Lee:05a,\n author = {Bo Pang and Lillian Lee},\n title = {Seeing stars: Exploiting class relationships for sentiment\n categorization with respect to rating scales},\n booktitle = {Proceedings of the ACL},\n year = 2005\n}\n", "homepage": "http://www.cs.cornell.edu/people/pabo/movie-review-data/", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["neg", "pos"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": {"input": "", "output": ""}, "task_templates": [{"task": "text-classification", "text_column": "text", "label_column": "label", "labels": ["neg", "pos"]}], "builder_name": "rotten_tomatoes_movie_review", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1074810, "num_examples": 8530, "dataset_name": "rotten_tomatoes_movie_review"}, "validation": {"name": "validation", "num_bytes": 134679, "num_examples": 1066, "dataset_name": "rotten_tomatoes_movie_review"}, "test": {"name": "test", "num_bytes": 135972, "num_examples": 1066, "dataset_name": "rotten_tomatoes_movie_review"}}, "download_checksums": {"https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz": {"num_bytes": 487770, "checksum": "a05befe52aafda71d458d188a1c54506a998b1308613ba76bbda2e5029409ce9"}}, "download_size": 487770, "post_processing_size": null, "dataset_size": 1345461, "size_in_bytes": 1833231}}
rotten_tomatoes.py CHANGED
@@ -20,6 +20,7 @@
20
  import os
21
 
22
  import datasets
 
23
 
24
 
25
  _DESCRIPTION = """\
@@ -58,6 +59,7 @@ class RottenTomatoesMovieReview(datasets.GeneratorBasedBuilder):
58
  supervised_keys=[""],
59
  homepage="http://www.cs.cornell.edu/people/pabo/movie-review-data/",
60
  citation=_CITATION,
 
61
  )
62
 
63
  def _vocab_text_gen(self, train_file):
 
20
  import os
21
 
22
  import datasets
23
+ from datasets.tasks import TextClassification
24
 
25
 
26
  _DESCRIPTION = """\
 
59
  supervised_keys=[""],
60
  homepage="http://www.cs.cornell.edu/people/pabo/movie-review-data/",
61
  citation=_CITATION,
62
+ task_templates=[TextClassification(text_column="text", label_column="label")],
63
  )
64
 
65
  def _vocab_text_gen(self, train_file):