Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
License:
Remove dataset script (#6)
Browse files- Remove dataset script (af77856576b07c1152878373d9365b344984f384)
- Upload 3 files (796ec97262f358ac59710620cfc6a68fc76bbcdf)
- Update README.md (b6059de032aed3fea5bfadcbef8d375559c6bfd9)
- README.md +4 -0
- rotten_tomatoes.py +0 -121
- test.parquet +3 -0
- train.parquet +3 -0
- validation.parquet +3 -0
README.md
CHANGED
@@ -173,6 +173,10 @@ The data fields are the same among all splits.
|
|
173 |
|
174 |
### Data Splits
|
175 |
|
|
|
|
|
|
|
|
|
176 |
| name |train|validation|test|
|
177 |
|-------|----:|---------:|---:|
|
178 |
|default| 8530| 1066|1066|
|
|
|
173 |
|
174 |
### Data Splits
|
175 |
|
176 |
+
Reads Rotten Tomatoes sentences and splits into 80% train, 10% validation, and 10% test, as is the practice set out in
|
177 |
+
|
178 |
+
Jinfeng Li, ``TEXTBUGGER: Generating Adversarial Text Against Real-world Applications.''
|
179 |
+
|
180 |
| name |train|validation|test|
|
181 |
|-------|----:|---------:|---:|
|
182 |
|default| 8530| 1066|1066|
|
rotten_tomatoes.py
DELETED
@@ -1,121 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""Rotten tomatoes movie reviews dataset."""
|
18 |
-
|
19 |
-
import datasets
|
20 |
-
from datasets.tasks import TextClassification
|
21 |
-
|
22 |
-
|
23 |
-
_DESCRIPTION = """\
|
24 |
-
Movie Review Dataset.
|
25 |
-
This is a dataset of containing 5,331 positive and 5,331 negative processed
|
26 |
-
sentences from Rotten Tomatoes movie reviews. This data was first used in Bo
|
27 |
-
Pang and Lillian Lee, ``Seeing stars: Exploiting class relationships for
|
28 |
-
sentiment categorization with respect to rating scales.'', Proceedings of the
|
29 |
-
ACL, 2005.
|
30 |
-
"""
|
31 |
-
|
32 |
-
_CITATION = """\
|
33 |
-
@InProceedings{Pang+Lee:05a,
|
34 |
-
author = {Bo Pang and Lillian Lee},
|
35 |
-
title = {Seeing stars: Exploiting class relationships for sentiment
|
36 |
-
categorization with respect to rating scales},
|
37 |
-
booktitle = {Proceedings of the ACL},
|
38 |
-
year = 2005
|
39 |
-
}
|
40 |
-
"""
|
41 |
-
|
42 |
-
_DOWNLOAD_URL = "https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz"
|
43 |
-
|
44 |
-
|
45 |
-
class RottenTomatoesMovieReview(datasets.GeneratorBasedBuilder):
|
46 |
-
"""Cornell Rotten Tomatoes movie reviews dataset."""
|
47 |
-
|
48 |
-
VERSION = datasets.Version("1.0.0")
|
49 |
-
|
50 |
-
def _info(self):
|
51 |
-
return datasets.DatasetInfo(
|
52 |
-
description=_DESCRIPTION,
|
53 |
-
features=datasets.Features(
|
54 |
-
{"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["neg", "pos"])}
|
55 |
-
),
|
56 |
-
supervised_keys=[""],
|
57 |
-
homepage="http://www.cs.cornell.edu/people/pabo/movie-review-data/",
|
58 |
-
citation=_CITATION,
|
59 |
-
task_templates=[TextClassification(text_column="text", label_column="label")],
|
60 |
-
)
|
61 |
-
|
62 |
-
def _split_generators(self, dl_manager):
|
63 |
-
"""Downloads Rotten Tomatoes sentences."""
|
64 |
-
archive = dl_manager.download(_DOWNLOAD_URL)
|
65 |
-
return [
|
66 |
-
datasets.SplitGenerator(
|
67 |
-
name=datasets.Split.TRAIN,
|
68 |
-
gen_kwargs={"split_key": "train", "files": dl_manager.iter_archive(archive)},
|
69 |
-
),
|
70 |
-
datasets.SplitGenerator(
|
71 |
-
name=datasets.Split.VALIDATION,
|
72 |
-
gen_kwargs={"split_key": "validation", "files": dl_manager.iter_archive(archive)},
|
73 |
-
),
|
74 |
-
datasets.SplitGenerator(
|
75 |
-
name=datasets.Split.TEST,
|
76 |
-
gen_kwargs={"split_key": "test", "files": dl_manager.iter_archive(archive)},
|
77 |
-
),
|
78 |
-
]
|
79 |
-
|
80 |
-
def _get_examples_from_split(self, split_key, files):
|
81 |
-
"""Reads Rotten Tomatoes sentences and splits into 80% train,
|
82 |
-
10% validation, and 10% test, as is the practice set out in Jinfeng
|
83 |
-
Li, ``TEXTBUGGER: Generating Adversarial Text Against Real-world
|
84 |
-
Applications.''
|
85 |
-
"""
|
86 |
-
data_dir = "rt-polaritydata/"
|
87 |
-
pos_samples, neg_samples = None, None
|
88 |
-
for path, f in files:
|
89 |
-
if path == data_dir + "rt-polarity.pos":
|
90 |
-
pos_samples = [line.decode("latin-1").strip() for line in f]
|
91 |
-
elif path == data_dir + "rt-polarity.neg":
|
92 |
-
neg_samples = [line.decode("latin-1").strip() for line in f]
|
93 |
-
if pos_samples is not None and neg_samples is not None:
|
94 |
-
break
|
95 |
-
|
96 |
-
# 80/10/10 split
|
97 |
-
i1 = int(len(pos_samples) * 0.8 + 0.5)
|
98 |
-
i2 = int(len(pos_samples) * 0.9 + 0.5)
|
99 |
-
train_samples = pos_samples[:i1] + neg_samples[:i1]
|
100 |
-
train_labels = (["pos"] * i1) + (["neg"] * i1)
|
101 |
-
validation_samples = pos_samples[i1:i2] + neg_samples[i1:i2]
|
102 |
-
validation_labels = (["pos"] * (i2 - i1)) + (["neg"] * (i2 - i1))
|
103 |
-
test_samples = pos_samples[i2:] + neg_samples[i2:]
|
104 |
-
test_labels = (["pos"] * (len(pos_samples) - i2)) + (["neg"] * (len(pos_samples) - i2))
|
105 |
-
|
106 |
-
if split_key == "train":
|
107 |
-
return (train_samples, train_labels)
|
108 |
-
if split_key == "validation":
|
109 |
-
return (validation_samples, validation_labels)
|
110 |
-
if split_key == "test":
|
111 |
-
return (test_samples, test_labels)
|
112 |
-
else:
|
113 |
-
raise ValueError(f"Invalid split key {split_key}")
|
114 |
-
|
115 |
-
def _generate_examples(self, split_key, files):
|
116 |
-
"""Yields examples for a given split of MR."""
|
117 |
-
split_text, split_labels = self._get_examples_from_split(split_key, files)
|
118 |
-
for text, label in zip(split_text, split_labels):
|
119 |
-
data_key = split_key + "_" + text
|
120 |
-
feature_dict = {"text": text, "label": label}
|
121 |
-
yield data_key, feature_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5427a2b59d1b9bed1ea5cc3f963843bd13ea7443f32d27e74a957a3d181cc545
|
3 |
+
size 92206
|
train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f899e3cb8124a12b7d82c30ba5cd35d27eb6575d1b10d65f731a60348454a959
|
3 |
+
size 698845
|
validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ea894e394cd24413b781790683924a2598507d146da9b4ad0a2a01830c77b00
|
3 |
+
size 90001
|