|
--- |
|
task_categories: |
|
- text-classification |
|
|
|
--- |
|
# AutoTrain Dataset for project: massive-4-catalan |
|
|
|
## Dataset Description |
|
|
|
This dataset has been automatically processed by AutoTrain for project massive-4-catalan. |
|
|
|
### Languages |
|
|
|
The BCP-47 code for the dataset's language is unk. |
|
|
|
## Dataset Structure |
|
|
|
### Data Instances |
|
|
|
A sample from this dataset looks as follows: |
|
|
|
```json |
|
[ |
|
{ |
|
"feat_id": "1", |
|
"feat_locale": "ca-ES", |
|
"feat_partition": "train", |
|
"feat_scenario": 0, |
|
"target": 2, |
|
"text": "desperta'm a les nou a. m. del divendres", |
|
"feat_annot_utt": "desperta'm a les [time : nou a. m.] del [date : divendres]", |
|
"feat_worker_id": "42", |
|
"feat_slot_method.slot": [ |
|
"time", |
|
"date" |
|
], |
|
"feat_slot_method.method": [ |
|
"translation", |
|
"translation" |
|
], |
|
"feat_judgments.worker_id": [ |
|
"42", |
|
"30", |
|
"3" |
|
], |
|
"feat_judgments.intent_score": [ |
|
1, |
|
1, |
|
1 |
|
], |
|
"feat_judgments.slots_score": [ |
|
1, |
|
1, |
|
1 |
|
], |
|
"feat_judgments.grammar_score": [ |
|
4, |
|
3, |
|
4 |
|
], |
|
"feat_judgments.spelling_score": [ |
|
2, |
|
2, |
|
2 |
|
], |
|
"feat_judgments.language_identification": [ |
|
"target", |
|
"target|english", |
|
"target" |
|
] |
|
}, |
|
{ |
|
"feat_id": "2", |
|
"feat_locale": "ca-ES", |
|
"feat_partition": "train", |
|
"feat_scenario": 0, |
|
"target": 2, |
|
"text": "posa una alarma per d\u2019aqu\u00ed a dues hores", |
|
"feat_annot_utt": "posa una alarma per [time : d\u2019aqu\u00ed a dues hores]", |
|
"feat_worker_id": "15", |
|
"feat_slot_method.slot": [ |
|
"time" |
|
], |
|
"feat_slot_method.method": [ |
|
"translation" |
|
], |
|
"feat_judgments.worker_id": [ |
|
"42", |
|
"30", |
|
"24" |
|
], |
|
"feat_judgments.intent_score": [ |
|
1, |
|
1, |
|
1 |
|
], |
|
"feat_judgments.slots_score": [ |
|
1, |
|
1, |
|
1 |
|
], |
|
"feat_judgments.grammar_score": [ |
|
4, |
|
4, |
|
4 |
|
], |
|
"feat_judgments.spelling_score": [ |
|
2, |
|
2, |
|
2 |
|
], |
|
"feat_judgments.language_identification": [ |
|
"target", |
|
"target", |
|
"target" |
|
] |
|
} |
|
] |
|
``` |
|
|
|
### Dataset Fields |
|
|
|
The dataset has the following fields (also called "features"): |
|
|
|
```json |
|
{ |
|
"feat_id": "Value(dtype='string', id=None)", |
|
"feat_locale": "Value(dtype='string', id=None)", |
|
"feat_partition": "Value(dtype='string', id=None)", |
|
"feat_scenario": "ClassLabel(num_classes=18, names=['alarm', 'audio', 'calendar', 'cooking', 'datetime', 'email', 'general', 'iot', 'lists', 'music', 'news', 'play', 'qa', 'recommendation', 'social', 'takeaway', 'transport', 'weather'], id=None)", |
|
"target": "ClassLabel(num_classes=60, names=['alarm_query', 'alarm_remove', 'alarm_set', 'audio_volume_down', 'audio_volume_mute', 'audio_volume_other', 'audio_volume_up', 'calendar_query', 'calendar_remove', 'calendar_set', 'cooking_query', 'cooking_recipe', 'datetime_convert', 'datetime_query', 'email_addcontact', 'email_query', 'email_querycontact', 'email_sendemail', 'general_greet', 'general_joke', 'general_quirky', 'iot_cleaning', 'iot_coffee', 'iot_hue_lightchange', 'iot_hue_lightdim', 'iot_hue_lightoff', 'iot_hue_lighton', 'iot_hue_lightup', 'iot_wemo_off', 'iot_wemo_on', 'lists_createoradd', 'lists_query', 'lists_remove', 'music_dislikeness', 'music_likeness', 'music_query', 'music_settings', 'news_query', 'play_audiobook', 'play_game', 'play_music', 'play_podcasts', 'play_radio', 'qa_currency', 'qa_definition', 'qa_factoid', 'qa_maths', 'qa_stock', 'recommendation_events', 'recommendation_locations', 'recommendation_movies', 'social_post', 'social_query', 'takeaway_order', 'takeaway_query', 'transport_query', 'transport_taxi', 'transport_ticket', 'transport_traffic', 'weather_query'], id=None)", |
|
"text": "Value(dtype='string', id=None)", |
|
"feat_annot_utt": "Value(dtype='string', id=None)", |
|
"feat_worker_id": "Value(dtype='string', id=None)", |
|
"feat_slot_method.slot": "Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)", |
|
"feat_slot_method.method": "Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)", |
|
"feat_judgments.worker_id": "Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)", |
|
"feat_judgments.intent_score": "Sequence(feature=Value(dtype='int8', id=None), length=-1, id=None)", |
|
"feat_judgments.slots_score": "Sequence(feature=Value(dtype='int8', id=None), length=-1, id=None)", |
|
"feat_judgments.grammar_score": "Sequence(feature=Value(dtype='int8', id=None), length=-1, id=None)", |
|
"feat_judgments.spelling_score": "Sequence(feature=Value(dtype='int8', id=None), length=-1, id=None)", |
|
"feat_judgments.language_identification": "Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)" |
|
} |
|
``` |
|
|
|
### Dataset Splits |
|
|
|
This dataset is split into a train and validation split. The split sizes are as follow: |
|
|
|
| Split name | Num samples | |
|
| ------------ | ------------------- | |
|
| train | 11514 | |
|
| valid | 2033 | |
|
|