File size: 9,831 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import copy
import random
from collections import OrderedDict
import os
from contextlib import nullcontext
from typing import Optional, Union, List
from torch.utils.data import ConcatDataset, DataLoader

from toolkit.config_modules import ReferenceDatasetConfig
from toolkit.data_loader import PairedImageDataset
from toolkit.prompt_utils import concat_prompt_embeds, split_prompt_embeds
from toolkit.stable_diffusion_model import StableDiffusion, PromptEmbeds
from toolkit.train_tools import get_torch_dtype, apply_snr_weight
import gc
from toolkit import train_tools
import torch
from jobs.process import BaseSDTrainProcess
import random
from toolkit.basic import value_map


def flush():
    torch.cuda.empty_cache()
    gc.collect()


class ReferenceSliderConfig:
    def __init__(self, **kwargs):
        self.additional_losses: List[str] = kwargs.get('additional_losses', [])
        self.weight_jitter: float = kwargs.get('weight_jitter', 0.0)
        self.datasets: List[ReferenceDatasetConfig] = [ReferenceDatasetConfig(**d) for d in kwargs.get('datasets', [])]


class ImageReferenceSliderTrainerProcess(BaseSDTrainProcess):
    sd: StableDiffusion
    data_loader: DataLoader = None

    def __init__(self, process_id: int, job, config: OrderedDict, **kwargs):
        super().__init__(process_id, job, config, **kwargs)
        self.prompt_txt_list = None
        self.step_num = 0
        self.start_step = 0
        self.device = self.get_conf('device', self.job.device)
        self.device_torch = torch.device(self.device)
        self.slider_config = ReferenceSliderConfig(**self.get_conf('slider', {}))

    def load_datasets(self):
        if self.data_loader is None:
            print(f"Loading datasets")
            datasets = []
            for dataset in self.slider_config.datasets:
                print(f" - Dataset: {dataset.pair_folder}")
                config = {
                    'path': dataset.pair_folder,
                    'size': dataset.size,
                    'default_prompt': dataset.target_class,
                    'network_weight': dataset.network_weight,
                    'pos_weight': dataset.pos_weight,
                    'neg_weight': dataset.neg_weight,
                    'pos_folder': dataset.pos_folder,
                    'neg_folder': dataset.neg_folder,
                }
                image_dataset = PairedImageDataset(config)
                datasets.append(image_dataset)

            concatenated_dataset = ConcatDataset(datasets)
            self.data_loader = DataLoader(
                concatenated_dataset,
                batch_size=self.train_config.batch_size,
                shuffle=True,
                num_workers=2
            )

    def before_model_load(self):
        pass

    def hook_before_train_loop(self):
        self.sd.vae.eval()
        self.sd.vae.to(self.device_torch)
        self.load_datasets()

        pass

    def hook_train_loop(self, batch):
        with torch.no_grad():
            imgs, prompts, network_weights = batch
            network_pos_weight, network_neg_weight = network_weights

            if isinstance(network_pos_weight, torch.Tensor):
                network_pos_weight = network_pos_weight.item()
            if isinstance(network_neg_weight, torch.Tensor):
                network_neg_weight = network_neg_weight.item()

            # get an array of random floats between -weight_jitter and weight_jitter
            loss_jitter_multiplier = 1.0
            weight_jitter = self.slider_config.weight_jitter
            if weight_jitter > 0.0:
                jitter_list = random.uniform(-weight_jitter, weight_jitter)
                orig_network_pos_weight = network_pos_weight
                network_pos_weight += jitter_list
                network_neg_weight += (jitter_list * -1.0)
                # penalize the loss for its distance from network_pos_weight
                # a jitter_list of abs(3.0) on a weight of 5.0 is a 60% jitter
                # so the loss_jitter_multiplier needs to be 0.4
                loss_jitter_multiplier = value_map(abs(jitter_list), 0.0, weight_jitter, 1.0, 0.0)


            # if items in network_weight list are tensors, convert them to floats

            dtype = get_torch_dtype(self.train_config.dtype)
            imgs: torch.Tensor = imgs.to(self.device_torch, dtype=dtype)
            # split batched images in half so left is negative and right is positive
            negative_images, positive_images = torch.chunk(imgs, 2, dim=3)

            positive_latents = self.sd.encode_images(positive_images)
            negative_latents = self.sd.encode_images(negative_images)

            height = positive_images.shape[2]
            width = positive_images.shape[3]
            batch_size = positive_images.shape[0]

            if self.train_config.gradient_checkpointing:
                # may get disabled elsewhere
                self.sd.unet.enable_gradient_checkpointing()

            noise_scheduler = self.sd.noise_scheduler
            optimizer = self.optimizer
            lr_scheduler = self.lr_scheduler

            self.sd.noise_scheduler.set_timesteps(
                self.train_config.max_denoising_steps, device=self.device_torch
            )

            timesteps = torch.randint(0, self.train_config.max_denoising_steps, (1,), device=self.device_torch)
            timesteps = timesteps.long()

            # get noise
            noise_positive = self.sd.get_latent_noise(
                pixel_height=height,
                pixel_width=width,
                batch_size=batch_size,
                noise_offset=self.train_config.noise_offset,
            ).to(self.device_torch, dtype=dtype)

            noise_negative = noise_positive.clone()

            # Add noise to the latents according to the noise magnitude at each timestep
            # (this is the forward diffusion process)
            noisy_positive_latents = noise_scheduler.add_noise(positive_latents, noise_positive, timesteps)
            noisy_negative_latents = noise_scheduler.add_noise(negative_latents, noise_negative, timesteps)

            noisy_latents = torch.cat([noisy_positive_latents, noisy_negative_latents], dim=0)
            noise = torch.cat([noise_positive, noise_negative], dim=0)
            timesteps = torch.cat([timesteps, timesteps], dim=0)
            network_multiplier = [network_pos_weight * 1.0, network_neg_weight * -1.0]

        self.optimizer.zero_grad()
        noisy_latents.requires_grad = False

        # if training text encoder enable grads, else do context of no grad
        with torch.set_grad_enabled(self.train_config.train_text_encoder):
            # fix issue with them being tuples sometimes
            prompt_list = []
            for prompt in prompts:
                if isinstance(prompt, tuple):
                    prompt = prompt[0]
                prompt_list.append(prompt)
            conditional_embeds = self.sd.encode_prompt(prompt_list).to(self.device_torch, dtype=dtype)
            conditional_embeds = concat_prompt_embeds([conditional_embeds, conditional_embeds])

        # if self.model_config.is_xl:
        #     # todo also allow for setting this for low ram in general, but sdxl spikes a ton on back prop
        #     network_multiplier_list = network_multiplier
        #     noisy_latent_list = torch.chunk(noisy_latents, 2, dim=0)
        #     noise_list = torch.chunk(noise, 2, dim=0)
        #     timesteps_list = torch.chunk(timesteps, 2, dim=0)
        #     conditional_embeds_list = split_prompt_embeds(conditional_embeds)
        # else:
        network_multiplier_list = [network_multiplier]
        noisy_latent_list = [noisy_latents]
        noise_list = [noise]
        timesteps_list = [timesteps]
        conditional_embeds_list = [conditional_embeds]

        losses = []
        # allow to chunk it out to save vram
        for network_multiplier, noisy_latents, noise, timesteps, conditional_embeds in zip(
                network_multiplier_list, noisy_latent_list, noise_list, timesteps_list, conditional_embeds_list
        ):
            with self.network:
                assert self.network.is_active

                self.network.multiplier = network_multiplier

                noise_pred = self.sd.predict_noise(
                    latents=noisy_latents.to(self.device_torch, dtype=dtype),
                    conditional_embeddings=conditional_embeds.to(self.device_torch, dtype=dtype),
                    timestep=timesteps,
                )
                noise = noise.to(self.device_torch, dtype=dtype)

                if self.sd.prediction_type == 'v_prediction':
                    # v-parameterization training
                    target = noise_scheduler.get_velocity(noisy_latents, noise, timesteps)
                else:
                    target = noise

                loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
                loss = loss.mean([1, 2, 3])

                if self.train_config.min_snr_gamma is not None and self.train_config.min_snr_gamma > 0.000001:
                    # add min_snr_gamma
                    loss = apply_snr_weight(loss, timesteps, noise_scheduler, self.train_config.min_snr_gamma)

                loss = loss.mean() * loss_jitter_multiplier

                loss_float = loss.item()
                losses.append(loss_float)

                # back propagate loss to free ram
                loss.backward()

        # apply gradients
        optimizer.step()
        lr_scheduler.step()

        # reset network
        self.network.multiplier = 1.0

        loss_dict = OrderedDict(
            {'loss': sum(losses) / len(losses) if len(losses) > 0 else 0.0}
        )

        return loss_dict
        # end hook_train_loop