File size: 26,046 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
import copy
import glob
import os
import shutil
import time
from collections import OrderedDict

from PIL import Image
from PIL.ImageOps import exif_transpose
from safetensors.torch import save_file, load_file
from torch.utils.data import DataLoader, ConcatDataset
import torch
from torch import nn
from torchvision.transforms import transforms

from jobs.process import BaseTrainProcess
from toolkit.image_utils import show_tensors
from toolkit.kohya_model_util import load_vae, convert_diffusers_back_to_ldm
from toolkit.data_loader import ImageDataset
from toolkit.losses import ComparativeTotalVariation, get_gradient_penalty, PatternLoss
from toolkit.metadata import get_meta_for_safetensors
from toolkit.optimizer import get_optimizer
from toolkit.style import get_style_model_and_losses
from toolkit.train_tools import get_torch_dtype
from diffusers import AutoencoderKL
from tqdm import tqdm
import time
import numpy as np
from .models.vgg19_critic import Critic
from torchvision.transforms import Resize
import lpips

IMAGE_TRANSFORMS = transforms.Compose(
    [
        transforms.ToTensor(),
        transforms.Normalize([0.5], [0.5]),
    ]
)


def unnormalize(tensor):
    return (tensor / 2 + 0.5).clamp(0, 1)


class TrainVAEProcess(BaseTrainProcess):
    def __init__(self, process_id: int, job, config: OrderedDict):
        super().__init__(process_id, job, config)
        self.data_loader = None
        self.vae = None
        self.device = self.get_conf('device', self.job.device)
        self.vae_path = self.get_conf('vae_path', required=True)
        self.datasets_objects = self.get_conf('datasets', required=True)
        self.batch_size = self.get_conf('batch_size', 1, as_type=int)
        self.resolution = self.get_conf('resolution', 256, as_type=int)
        self.learning_rate = self.get_conf('learning_rate', 1e-6, as_type=float)
        self.sample_every = self.get_conf('sample_every', None)
        self.optimizer_type = self.get_conf('optimizer', 'adam')
        self.epochs = self.get_conf('epochs', None, as_type=int)
        self.max_steps = self.get_conf('max_steps', None, as_type=int)
        self.save_every = self.get_conf('save_every', None)
        self.dtype = self.get_conf('dtype', 'float32')
        self.sample_sources = self.get_conf('sample_sources', None)
        self.log_every = self.get_conf('log_every', 100, as_type=int)
        self.style_weight = self.get_conf('style_weight', 0, as_type=float)
        self.content_weight = self.get_conf('content_weight', 0, as_type=float)
        self.kld_weight = self.get_conf('kld_weight', 0, as_type=float)
        self.mse_weight = self.get_conf('mse_weight', 1e0, as_type=float)
        self.tv_weight = self.get_conf('tv_weight', 1e0, as_type=float)
        self.lpips_weight = self.get_conf('lpips_weight', 1e0, as_type=float)
        self.critic_weight = self.get_conf('critic_weight', 1, as_type=float)
        self.pattern_weight = self.get_conf('pattern_weight', 1, as_type=float)
        self.optimizer_params = self.get_conf('optimizer_params', {})

        self.blocks_to_train = self.get_conf('blocks_to_train', ['all'])
        self.torch_dtype = get_torch_dtype(self.dtype)
        self.vgg_19 = None
        self.style_weight_scalers = []
        self.content_weight_scalers = []
        self.lpips_loss:lpips.LPIPS = None

        self.vae_scale_factor = 8

        self.step_num = 0
        self.epoch_num = 0

        self.use_critic = self.get_conf('use_critic', False, as_type=bool)
        self.critic = None

        if self.use_critic:
            self.critic = Critic(
                device=self.device,
                dtype=self.dtype,
                process=self,
                **self.get_conf('critic', {})  # pass any other params
            )

        if self.sample_every is not None and self.sample_sources is None:
            raise ValueError('sample_every is specified but sample_sources is not')

        if self.epochs is None and self.max_steps is None:
            raise ValueError('epochs or max_steps must be specified')

        self.data_loaders = []
        # check datasets
        assert isinstance(self.datasets_objects, list)
        for dataset in self.datasets_objects:
            if 'path' not in dataset:
                raise ValueError('dataset must have a path')
            # check if is dir
            if not os.path.isdir(dataset['path']):
                raise ValueError(f"dataset path does is not a directory: {dataset['path']}")

        # make training folder
        if not os.path.exists(self.save_root):
            os.makedirs(self.save_root, exist_ok=True)

        self._pattern_loss = None

    def update_training_metadata(self):
        self.add_meta(OrderedDict({"training_info": self.get_training_info()}))

    def get_training_info(self):
        info = OrderedDict({
            'step': self.step_num,
            'epoch': self.epoch_num,
        })
        return info

    def load_datasets(self):
        if self.data_loader is None:
            print(f"Loading datasets")
            datasets = []
            for dataset in self.datasets_objects:
                print(f" - Dataset: {dataset['path']}")
                ds = copy.copy(dataset)
                ds['resolution'] = self.resolution
                image_dataset = ImageDataset(ds)
                datasets.append(image_dataset)

            concatenated_dataset = ConcatDataset(datasets)
            self.data_loader = DataLoader(
                concatenated_dataset,
                batch_size=self.batch_size,
                shuffle=True,
                num_workers=6
            )

    def remove_oldest_checkpoint(self):
        max_to_keep = 4
        folders = glob.glob(os.path.join(self.save_root, f"{self.job.name}*_diffusers"))
        if len(folders) > max_to_keep:
            folders.sort(key=os.path.getmtime)
            for folder in folders[:-max_to_keep]:
                print(f"Removing {folder}")
                shutil.rmtree(folder)

    def setup_vgg19(self):
        if self.vgg_19 is None:
            self.vgg_19, self.style_losses, self.content_losses, self.vgg19_pool_4 = get_style_model_and_losses(
                single_target=True,
                device=self.device,
                output_layer_name='pool_4',
                dtype=self.torch_dtype
            )
            self.vgg_19.to(self.device, dtype=self.torch_dtype)
            self.vgg_19.requires_grad_(False)

            # we run random noise through first to get layer scalers to normalize the loss per layer
            # bs of 2 because we run pred and target through stacked
            noise = torch.randn((2, 3, self.resolution, self.resolution), device=self.device, dtype=self.torch_dtype)
            self.vgg_19(noise)
            for style_loss in self.style_losses:
                # get a scaler  to normalize to 1
                scaler = 1 / torch.mean(style_loss.loss).item()
                self.style_weight_scalers.append(scaler)
            for content_loss in self.content_losses:
                # get a scaler  to normalize to 1
                scaler = 1 / torch.mean(content_loss.loss).item()
                self.content_weight_scalers.append(scaler)

            self.print(f"Style weight scalers: {self.style_weight_scalers}")
            self.print(f"Content weight scalers: {self.content_weight_scalers}")

    def get_style_loss(self):
        if self.style_weight > 0:
            # scale all losses with loss scalers
            loss = torch.sum(
                torch.stack([loss.loss * scaler for loss, scaler in zip(self.style_losses, self.style_weight_scalers)]))
            return loss
        else:
            return torch.tensor(0.0, device=self.device)

    def get_content_loss(self):
        if self.content_weight > 0:
            # scale all losses with loss scalers
            loss = torch.sum(torch.stack(
                [loss.loss * scaler for loss, scaler in zip(self.content_losses, self.content_weight_scalers)]))
            return loss
        else:
            return torch.tensor(0.0, device=self.device)

    def get_mse_loss(self, pred, target):
        if self.mse_weight > 0:
            loss_fn = nn.MSELoss()
            loss = loss_fn(pred, target)
            return loss
        else:
            return torch.tensor(0.0, device=self.device)

    def get_kld_loss(self, mu, log_var):
        if self.kld_weight > 0:
            # Kullback-Leibler divergence
            # added here for full training (not implemented). Not needed for only decoder
            # as we are not changing the distribution of the latent space
            # normally it would help keep a normal distribution for latents
            KLD = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())  # KL divergence
            return KLD
        else:
            return torch.tensor(0.0, device=self.device)

    def get_tv_loss(self, pred, target):
        if self.tv_weight > 0:
            get_tv_loss = ComparativeTotalVariation()
            loss = get_tv_loss(pred, target)
            return loss
        else:
            return torch.tensor(0.0, device=self.device)

    def get_pattern_loss(self, pred, target):
        if self._pattern_loss is None:
            self._pattern_loss = PatternLoss(pattern_size=16, dtype=self.torch_dtype).to(self.device,
                                                                                        dtype=self.torch_dtype)
        loss = torch.mean(self._pattern_loss(pred, target))
        return loss

    def save(self, step=None):
        if not os.path.exists(self.save_root):
            os.makedirs(self.save_root, exist_ok=True)

        step_num = ''
        if step is not None:
            # zeropad 9 digits
            step_num = f"_{str(step).zfill(9)}"

        self.update_training_metadata()
        filename = f'{self.job.name}{step_num}_diffusers'

        self.vae = self.vae.to("cpu", dtype=torch.float16)
        self.vae.save_pretrained(
            save_directory=os.path.join(self.save_root, filename)
        )
        self.vae = self.vae.to(self.device, dtype=self.torch_dtype)

        self.print(f"Saved to {os.path.join(self.save_root, filename)}")

        if self.use_critic:
            self.critic.save(step)

        self.remove_oldest_checkpoint()

    def sample(self, step=None):
        sample_folder = os.path.join(self.save_root, 'samples')
        if not os.path.exists(sample_folder):
            os.makedirs(sample_folder, exist_ok=True)

        with torch.no_grad():
            for i, img_url in enumerate(self.sample_sources):
                img = exif_transpose(Image.open(img_url))
                img = img.convert('RGB')
                # crop if not square
                if img.width != img.height:
                    min_dim = min(img.width, img.height)
                    img = img.crop((0, 0, min_dim, min_dim))
                # resize
                img = img.resize((self.resolution, self.resolution))

                input_img = img
                img = IMAGE_TRANSFORMS(img).unsqueeze(0).to(self.device, dtype=self.torch_dtype)
                img = img
                decoded = self.vae(img).sample
                decoded = (decoded / 2 + 0.5).clamp(0, 1)
                # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
                decoded = decoded.cpu().permute(0, 2, 3, 1).squeeze(0).float().numpy()

                # convert to pillow image
                decoded = Image.fromarray((decoded * 255).astype(np.uint8))

                # stack input image and decoded image
                input_img = input_img.resize((self.resolution, self.resolution))
                decoded = decoded.resize((self.resolution, self.resolution))

                output_img = Image.new('RGB', (self.resolution * 2, self.resolution))
                output_img.paste(input_img, (0, 0))
                output_img.paste(decoded, (self.resolution, 0))

                scale_up = 2
                if output_img.height <= 300:
                    scale_up = 4

                # scale up using nearest neighbor
                output_img = output_img.resize((output_img.width * scale_up, output_img.height * scale_up), Image.NEAREST)

                step_num = ''
                if step is not None:
                    # zero-pad 9 digits
                    step_num = f"_{str(step).zfill(9)}"
                seconds_since_epoch = int(time.time())
                # zero-pad 2 digits
                i_str = str(i).zfill(2)
                filename = f"{seconds_since_epoch}{step_num}_{i_str}.png"
                output_img.save(os.path.join(sample_folder, filename))

    def load_vae(self):
        path_to_load = self.vae_path
        # see if we have a checkpoint in out output to resume from
        self.print(f"Looking for latest checkpoint in {self.save_root}")
        files = glob.glob(os.path.join(self.save_root, f"{self.job.name}*_diffusers"))
        if files and len(files) > 0:
            latest_file = max(files, key=os.path.getmtime)
            print(f" - Latest checkpoint is: {latest_file}")
            path_to_load = latest_file
            # todo update step and epoch count
        else:
            self.print(f" - No checkpoint found, starting from scratch")
        # load vae
        self.print(f"Loading VAE")
        self.print(f" - Loading VAE: {path_to_load}")
        if self.vae is None:
            self.vae = AutoencoderKL.from_pretrained(path_to_load)

        # set decoder to train
        self.vae.to(self.device, dtype=self.torch_dtype)
        self.vae.requires_grad_(False)
        self.vae.eval()
        self.vae.decoder.train()
        self.vae_scale_factor = 2 ** (len(self.vae.config['block_out_channels']) - 1)

    def run(self):
        super().run()
        self.load_datasets()

        max_step_epochs = self.max_steps // len(self.data_loader)
        num_epochs = self.epochs
        if num_epochs is None or num_epochs > max_step_epochs:
            num_epochs = max_step_epochs

        max_epoch_steps = len(self.data_loader) * num_epochs
        num_steps = self.max_steps
        if num_steps is None or num_steps > max_epoch_steps:
            num_steps = max_epoch_steps
        self.max_steps = num_steps
        self.epochs = num_epochs
        start_step = self.step_num
        self.first_step = start_step

        self.print(f"Training VAE")
        self.print(f" - Training folder: {self.training_folder}")
        self.print(f" - Batch size: {self.batch_size}")
        self.print(f" - Learning rate: {self.learning_rate}")
        self.print(f" - Epochs: {num_epochs}")
        self.print(f" - Max steps: {self.max_steps}")

        # load vae
        self.load_vae()

        params = []

        # only set last 2 layers to trainable
        for param in self.vae.decoder.parameters():
            param.requires_grad = False

        train_all = 'all' in self.blocks_to_train

        if train_all:
            params = list(self.vae.decoder.parameters())
            self.vae.decoder.requires_grad_(True)
        else:
            # mid_block
            if train_all or 'mid_block' in self.blocks_to_train:
                params += list(self.vae.decoder.mid_block.parameters())
                self.vae.decoder.mid_block.requires_grad_(True)
            # up_blocks
            if train_all or 'up_blocks' in self.blocks_to_train:
                params += list(self.vae.decoder.up_blocks.parameters())
                self.vae.decoder.up_blocks.requires_grad_(True)
            # conv_out (single conv layer output)
            if train_all or 'conv_out' in self.blocks_to_train:
                params += list(self.vae.decoder.conv_out.parameters())
                self.vae.decoder.conv_out.requires_grad_(True)

        if self.style_weight > 0 or self.content_weight > 0 or self.use_critic:
            self.setup_vgg19()
            self.vgg_19.requires_grad_(False)
            self.vgg_19.eval()
            if self.use_critic:
                self.critic.setup()

        if self.lpips_weight > 0 and self.lpips_loss is None:
            # self.lpips_loss = lpips.LPIPS(net='vgg')
            self.lpips_loss = lpips.LPIPS(net='vgg').to(self.device, dtype=self.torch_dtype)

        optimizer = get_optimizer(params, self.optimizer_type, self.learning_rate,
                                  optimizer_params=self.optimizer_params)

        # setup scheduler
        # todo allow other schedulers
        scheduler = torch.optim.lr_scheduler.ConstantLR(
            optimizer,
            total_iters=num_steps,
            factor=1,
            verbose=False
        )

        # setup tqdm progress bar
        self.progress_bar = tqdm(
            total=num_steps,
            desc='Training VAE',
            leave=True
        )

        # sample first
        self.sample()
        blank_losses = OrderedDict({
            "total": [],
            "lpips": [],
            "style": [],
            "content": [],
            "mse": [],
            "kl": [],
            "tv": [],
            "ptn": [],
            "crD": [],
            "crG": [],
        })
        epoch_losses = copy.deepcopy(blank_losses)
        log_losses = copy.deepcopy(blank_losses)
        # range start at self.epoch_num go to self.epochs
        for epoch in range(self.epoch_num, self.epochs, 1):
            if self.step_num >= self.max_steps:
                break
            for batch in self.data_loader:
                if self.step_num >= self.max_steps:
                    break
                with torch.no_grad():

                    batch = batch.to(self.device, dtype=self.torch_dtype)

                    # resize so it matches size of vae evenly
                    if batch.shape[2] % self.vae_scale_factor != 0 or batch.shape[3] % self.vae_scale_factor != 0:
                        batch = Resize((batch.shape[2] // self.vae_scale_factor * self.vae_scale_factor,
                                                batch.shape[3] // self.vae_scale_factor * self.vae_scale_factor))(batch)

                    # forward pass
                    dgd = self.vae.encode(batch).latent_dist
                    mu, logvar = dgd.mean, dgd.logvar
                    latents = dgd.sample()
                    latents.detach().requires_grad_(True)

                pred = self.vae.decode(latents).sample

                with torch.no_grad():
                    show_tensors(
                        pred.clamp(-1, 1).clone(),
                        "combined tensor"
                    )

                # Run through VGG19
                if self.style_weight > 0 or self.content_weight > 0 or self.use_critic:
                    stacked = torch.cat([pred, batch], dim=0)
                    stacked = (stacked / 2 + 0.5).clamp(0, 1)
                    self.vgg_19(stacked)

                if self.use_critic:
                    critic_d_loss = self.critic.step(self.vgg19_pool_4.tensor.detach())
                else:
                    critic_d_loss = 0.0

                style_loss = self.get_style_loss() * self.style_weight
                content_loss = self.get_content_loss() * self.content_weight
                kld_loss = self.get_kld_loss(mu, logvar) * self.kld_weight
                mse_loss = self.get_mse_loss(pred, batch) * self.mse_weight
                if self.lpips_weight > 0:
                    lpips_loss = self.lpips_loss(
                        pred.clamp(-1, 1),
                        batch.clamp(-1, 1)
                    ).mean() * self.lpips_weight
                else:
                    lpips_loss = torch.tensor(0.0, device=self.device, dtype=self.torch_dtype)
                tv_loss = self.get_tv_loss(pred, batch) * self.tv_weight
                pattern_loss = self.get_pattern_loss(pred, batch) * self.pattern_weight
                if self.use_critic:
                    critic_gen_loss = self.critic.get_critic_loss(self.vgg19_pool_4.tensor) * self.critic_weight

                    # do not let abs critic gen loss be higher than abs lpips * 0.1 if using it
                    if self.lpips_weight > 0:
                        max_target = lpips_loss.abs() * 0.1
                        with torch.no_grad():
                            crit_g_scaler = 1.0
                            if critic_gen_loss.abs() > max_target:
                                crit_g_scaler = max_target / critic_gen_loss.abs()

                        critic_gen_loss *= crit_g_scaler
                else:
                    critic_gen_loss = torch.tensor(0.0, device=self.device, dtype=self.torch_dtype)

                loss = style_loss + content_loss + kld_loss + mse_loss + tv_loss + critic_gen_loss + pattern_loss + lpips_loss

                # Backward pass and optimization
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                scheduler.step()

                # update progress bar
                loss_value = loss.item()
                # get exponent like 3.54e-4
                loss_string = f"loss: {loss_value:.2e}"
                if self.lpips_weight > 0:
                    loss_string += f" lpips: {lpips_loss.item():.2e}"
                if self.content_weight > 0:
                    loss_string += f" cnt: {content_loss.item():.2e}"
                if self.style_weight > 0:
                    loss_string += f" sty: {style_loss.item():.2e}"
                if self.kld_weight > 0:
                    loss_string += f" kld: {kld_loss.item():.2e}"
                if self.mse_weight > 0:
                    loss_string += f" mse: {mse_loss.item():.2e}"
                if self.tv_weight > 0:
                    loss_string += f" tv: {tv_loss.item():.2e}"
                if self.pattern_weight > 0:
                    loss_string += f" ptn: {pattern_loss.item():.2e}"
                if self.use_critic and self.critic_weight > 0:
                    loss_string += f" crG: {critic_gen_loss.item():.2e}"
                if self.use_critic:
                    loss_string += f" crD: {critic_d_loss:.2e}"

                if self.optimizer_type.startswith('dadaptation') or \
                        self.optimizer_type.lower().startswith('prodigy'):
                    learning_rate = (
                            optimizer.param_groups[0]["d"] *
                            optimizer.param_groups[0]["lr"]
                    )
                else:
                    learning_rate = optimizer.param_groups[0]['lr']

                lr_critic_string = ''
                if self.use_critic:
                    lr_critic = self.critic.get_lr()
                    lr_critic_string = f" lrC: {lr_critic:.1e}"

                self.progress_bar.set_postfix_str(f"lr: {learning_rate:.1e}{lr_critic_string} {loss_string}")
                self.progress_bar.set_description(f"E: {epoch}")
                self.progress_bar.update(1)

                epoch_losses["total"].append(loss_value)
                epoch_losses["lpips"].append(lpips_loss.item())
                epoch_losses["style"].append(style_loss.item())
                epoch_losses["content"].append(content_loss.item())
                epoch_losses["mse"].append(mse_loss.item())
                epoch_losses["kl"].append(kld_loss.item())
                epoch_losses["tv"].append(tv_loss.item())
                epoch_losses["ptn"].append(pattern_loss.item())
                epoch_losses["crG"].append(critic_gen_loss.item())
                epoch_losses["crD"].append(critic_d_loss)

                log_losses["total"].append(loss_value)
                log_losses["lpips"].append(lpips_loss.item())
                log_losses["style"].append(style_loss.item())
                log_losses["content"].append(content_loss.item())
                log_losses["mse"].append(mse_loss.item())
                log_losses["kl"].append(kld_loss.item())
                log_losses["tv"].append(tv_loss.item())
                log_losses["ptn"].append(pattern_loss.item())
                log_losses["crG"].append(critic_gen_loss.item())
                log_losses["crD"].append(critic_d_loss)

                # don't do on first step
                if self.step_num != start_step:
                    if self.sample_every and self.step_num % self.sample_every == 0:
                        # print above the progress bar
                        self.print(f"Sampling at step {self.step_num}")
                        self.sample(self.step_num)

                    if self.save_every and self.step_num % self.save_every == 0:
                        # print above the progress bar
                        self.print(f"Saving at step {self.step_num}")
                        self.save(self.step_num)

                    if self.log_every and self.step_num % self.log_every == 0:
                        # log to tensorboard
                        if self.writer is not None:
                            # get avg loss
                            for key in log_losses:
                                log_losses[key] = sum(log_losses[key]) / (len(log_losses[key]) + 1e-6)
                                # if log_losses[key] > 0:
                                self.writer.add_scalar(f"loss/{key}", log_losses[key], self.step_num)
                        # reset log losses
                        log_losses = copy.deepcopy(blank_losses)

                self.step_num += 1
            # end epoch
            if self.writer is not None:
                eps = 1e-6
                # get avg loss
                for key in epoch_losses:
                    epoch_losses[key] = sum(log_losses[key]) / (len(log_losses[key]) + eps)
                    if epoch_losses[key] > 0:
                        self.writer.add_scalar(f"epoch loss/{key}", epoch_losses[key], epoch)
            # reset epoch losses
            epoch_losses = copy.deepcopy(blank_losses)

        self.save()