File size: 70,149 Bytes
1ba389d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 |
import base64
import hashlib
import json
import math
import os
import random
from collections import OrderedDict
from typing import TYPE_CHECKING, List, Dict, Union
import cv2
import numpy as np
import torch
from safetensors.torch import load_file, save_file
from tqdm import tqdm
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from toolkit.basic import flush, value_map
from toolkit.buckets import get_bucket_for_image_size, get_resolution
from toolkit.metadata import get_meta_for_safetensors
from toolkit.prompt_utils import inject_trigger_into_prompt
from torchvision import transforms
from PIL import Image, ImageFilter, ImageOps
from PIL.ImageOps import exif_transpose
import albumentations as A
from toolkit.train_tools import get_torch_dtype
if TYPE_CHECKING:
from toolkit.data_loader import AiToolkitDataset
from toolkit.data_transfer_object.data_loader import FileItemDTO
from toolkit.stable_diffusion_model import StableDiffusion
# def get_associated_caption_from_img_path(img_path):
# https://demo.albumentations.ai/
class Augments:
def __init__(self, **kwargs):
self.method_name = kwargs.get('method', None)
self.params = kwargs.get('params', {})
# convert kwargs enums for cv2
for key, value in self.params.items():
if isinstance(value, str):
# split the string
split_string = value.split('.')
if len(split_string) == 2 and split_string[0] == 'cv2':
if hasattr(cv2, split_string[1]):
self.params[key] = getattr(cv2, split_string[1].upper())
else:
raise ValueError(f"invalid cv2 enum: {split_string[1]}")
transforms_dict = {
'ColorJitter': transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.03),
'RandomEqualize': transforms.RandomEqualize(p=0.2),
}
caption_ext_list = ['txt', 'json', 'caption']
def standardize_images(images):
"""
Standardize the given batch of images using the specified mean and std.
Expects values of 0 - 1
Args:
images (torch.Tensor): A batch of images in the shape of (N, C, H, W),
where N is the number of images, C is the number of channels,
H is the height, and W is the width.
Returns:
torch.Tensor: Standardized images.
"""
mean = [0.48145466, 0.4578275, 0.40821073]
std = [0.26862954, 0.26130258, 0.27577711]
# Define the normalization transform
normalize = transforms.Normalize(mean=mean, std=std)
# Apply normalization to each image in the batch
standardized_images = torch.stack([normalize(img) for img in images])
return standardized_images
def clean_caption(caption):
# remove any newlines
caption = caption.replace('\n', ', ')
# remove new lines for all operating systems
caption = caption.replace('\r', ', ')
caption_split = caption.split(',')
# remove empty strings
caption_split = [p.strip() for p in caption_split if p.strip()]
# join back together
caption = ', '.join(caption_split)
return caption
class CaptionMixin:
def get_caption_item(self: 'AiToolkitDataset', index):
if not hasattr(self, 'caption_type'):
raise Exception('caption_type not found on class instance')
if not hasattr(self, 'file_list'):
raise Exception('file_list not found on class instance')
img_path_or_tuple = self.file_list[index]
if isinstance(img_path_or_tuple, tuple):
img_path = img_path_or_tuple[0] if isinstance(img_path_or_tuple[0], str) else img_path_or_tuple[0].path
# check if either has a prompt file
path_no_ext = os.path.splitext(img_path)[0]
prompt_path = None
for ext in caption_ext_list:
prompt_path = path_no_ext + '.' + ext
if os.path.exists(prompt_path):
break
else:
img_path = img_path_or_tuple if isinstance(img_path_or_tuple, str) else img_path_or_tuple.path
# see if prompt file exists
path_no_ext = os.path.splitext(img_path)[0]
prompt_path = None
for ext in caption_ext_list:
prompt_path = path_no_ext + '.' + ext
if os.path.exists(prompt_path):
break
if os.path.exists(prompt_path):
with open(prompt_path, 'r', encoding='utf-8') as f:
prompt = f.read()
# check if is json
if prompt_path.endswith('.json'):
prompt = json.loads(prompt)
if 'caption' in prompt:
prompt = prompt['caption']
prompt = clean_caption(prompt)
else:
prompt = ''
# get default_prompt if it exists on the class instance
if hasattr(self, 'default_prompt'):
prompt = self.default_prompt
if hasattr(self, 'default_caption'):
prompt = self.default_caption
# handle replacements
replacement_list = self.dataset_config.replacements if isinstance(self.dataset_config.replacements, list) else []
for replacement in replacement_list:
from_string, to_string = replacement.split('|')
prompt = prompt.replace(from_string, to_string)
return prompt
if TYPE_CHECKING:
from toolkit.config_modules import DatasetConfig
from toolkit.data_transfer_object.data_loader import FileItemDTO
class Bucket:
def __init__(self, width: int, height: int):
self.width = width
self.height = height
self.file_list_idx: List[int] = []
class BucketsMixin:
def __init__(self):
self.buckets: Dict[str, Bucket] = {}
self.batch_indices: List[List[int]] = []
def build_batch_indices(self: 'AiToolkitDataset'):
self.batch_indices = []
for key, bucket in self.buckets.items():
for start_idx in range(0, len(bucket.file_list_idx), self.batch_size):
end_idx = min(start_idx + self.batch_size, len(bucket.file_list_idx))
batch = bucket.file_list_idx[start_idx:end_idx]
self.batch_indices.append(batch)
def shuffle_buckets(self: 'AiToolkitDataset'):
for key, bucket in self.buckets.items():
random.shuffle(bucket.file_list_idx)
def setup_buckets(self: 'AiToolkitDataset', quiet=False):
if not hasattr(self, 'file_list'):
raise Exception(f'file_list not found on class instance {self.__class__.__name__}')
if not hasattr(self, 'dataset_config'):
raise Exception(f'dataset_config not found on class instance {self.__class__.__name__}')
if self.epoch_num > 0 and self.dataset_config.poi is None:
# no need to rebuild buckets for now
# todo handle random cropping for buckets
return
self.buckets = {} # clear it
config: 'DatasetConfig' = self.dataset_config
resolution = config.resolution
bucket_tolerance = config.bucket_tolerance
file_list: List['FileItemDTO'] = self.file_list
# for file_item in enumerate(file_list):
for idx, file_item in enumerate(file_list):
file_item: 'FileItemDTO' = file_item
width = int(file_item.width * file_item.dataset_config.scale)
height = int(file_item.height * file_item.dataset_config.scale)
did_process_poi = False
if file_item.has_point_of_interest:
# Attempt to process the poi if we can. It wont process if the image is smaller than the resolution
did_process_poi = file_item.setup_poi_bucket()
if self.dataset_config.square_crop:
# we scale first so smallest size matches resolution
scale_factor_x = resolution / width
scale_factor_y = resolution / height
scale_factor = max(scale_factor_x, scale_factor_y)
file_item.scale_to_width = math.ceil(width * scale_factor)
file_item.scale_to_height = math.ceil(height * scale_factor)
file_item.crop_width = resolution
file_item.crop_height = resolution
if width > height:
file_item.crop_x = int(file_item.scale_to_width / 2 - resolution / 2)
file_item.crop_y = 0
else:
file_item.crop_x = 0
file_item.crop_y = int(file_item.scale_to_height / 2 - resolution / 2)
elif not did_process_poi:
bucket_resolution = get_bucket_for_image_size(
width, height,
resolution=resolution,
divisibility=bucket_tolerance
)
# Calculate scale factors for width and height
width_scale_factor = bucket_resolution["width"] / width
height_scale_factor = bucket_resolution["height"] / height
# Use the maximum of the scale factors to ensure both dimensions are scaled above the bucket resolution
max_scale_factor = max(width_scale_factor, height_scale_factor)
# round up
file_item.scale_to_width = int(math.ceil(width * max_scale_factor))
file_item.scale_to_height = int(math.ceil(height * max_scale_factor))
file_item.crop_height = bucket_resolution["height"]
file_item.crop_width = bucket_resolution["width"]
new_width = bucket_resolution["width"]
new_height = bucket_resolution["height"]
if self.dataset_config.random_crop:
# random crop
crop_x = random.randint(0, file_item.scale_to_width - new_width)
crop_y = random.randint(0, file_item.scale_to_height - new_height)
file_item.crop_x = crop_x
file_item.crop_y = crop_y
else:
# do central crop
file_item.crop_x = int((file_item.scale_to_width - new_width) / 2)
file_item.crop_y = int((file_item.scale_to_height - new_height) / 2)
if file_item.crop_y < 0 or file_item.crop_x < 0:
print('debug')
# check if bucket exists, if not, create it
bucket_key = f'{file_item.crop_width}x{file_item.crop_height}'
if bucket_key not in self.buckets:
self.buckets[bucket_key] = Bucket(file_item.crop_width, file_item.crop_height)
self.buckets[bucket_key].file_list_idx.append(idx)
# print the buckets
self.shuffle_buckets()
self.build_batch_indices()
if not quiet:
print(f'Bucket sizes for {self.dataset_path}:')
for key, bucket in self.buckets.items():
print(f'{key}: {len(bucket.file_list_idx)} files')
print(f'{len(self.buckets)} buckets made')
class CaptionProcessingDTOMixin:
def __init__(self: 'FileItemDTO', *args, **kwargs):
if hasattr(super(), '__init__'):
super().__init__(*args, **kwargs)
self.raw_caption: str = None
self.raw_caption_short: str = None
self.caption: str = None
self.caption_short: str = None
dataset_config: DatasetConfig = kwargs.get('dataset_config', None)
self.extra_values: List[float] = dataset_config.extra_values
# todo allow for loading from sd-scripts style dict
def load_caption(self: 'FileItemDTO', caption_dict: Union[dict, None]):
if self.raw_caption is not None:
# we already loaded it
pass
elif caption_dict is not None and self.path in caption_dict and "caption" in caption_dict[self.path]:
self.raw_caption = caption_dict[self.path]["caption"]
if 'caption_short' in caption_dict[self.path]:
self.raw_caption_short = caption_dict[self.path]["caption_short"]
else:
# see if prompt file exists
path_no_ext = os.path.splitext(self.path)[0]
prompt_ext = self.dataset_config.caption_ext
prompt_path = f"{path_no_ext}.{prompt_ext}"
short_caption = None
if os.path.exists(prompt_path):
with open(prompt_path, 'r', encoding='utf-8') as f:
prompt = f.read()
short_caption = None
if prompt_path.endswith('.json'):
# replace any line endings with commas for \n \r \r\n
prompt = prompt.replace('\r\n', ' ')
prompt = prompt.replace('\n', ' ')
prompt = prompt.replace('\r', ' ')
prompt_json = json.loads(prompt)
if 'caption' in prompt_json:
prompt = prompt_json['caption']
if 'caption_short' in prompt_json:
short_caption = prompt_json['caption_short']
if 'extra_values' in prompt_json:
self.extra_values = prompt_json['extra_values']
prompt = clean_caption(prompt)
if short_caption is not None:
short_caption = clean_caption(short_caption)
else:
prompt = ''
if self.dataset_config.default_caption is not None:
prompt = self.dataset_config.default_caption
if short_caption is None:
short_caption = self.dataset_config.default_caption
self.raw_caption = prompt
self.raw_caption_short = short_caption
self.caption = self.get_caption()
if self.raw_caption_short is not None:
self.caption_short = self.get_caption(short_caption=True)
def get_caption(
self: 'FileItemDTO',
trigger=None,
to_replace_list=None,
add_if_not_present=False,
short_caption=False
):
if short_caption:
raw_caption = self.raw_caption_short
else:
raw_caption = self.raw_caption
if raw_caption is None:
raw_caption = ''
# handle dropout
if self.dataset_config.caption_dropout_rate > 0 and not short_caption:
# get a random float form 0 to 1
rand = random.random()
if rand < self.dataset_config.caption_dropout_rate:
# drop the caption
return ''
# get tokens
token_list = raw_caption.split(',')
# trim whitespace
token_list = [x.strip() for x in token_list]
# remove empty strings
token_list = [x for x in token_list if x]
# handle token dropout
if self.dataset_config.token_dropout_rate > 0 and not short_caption:
new_token_list = []
keep_tokens: int = self.dataset_config.keep_tokens
for idx, token in enumerate(token_list):
if idx < keep_tokens:
new_token_list.append(token)
elif self.dataset_config.token_dropout_rate >= 1.0:
# drop the token
pass
else:
# get a random float form 0 to 1
rand = random.random()
if rand > self.dataset_config.token_dropout_rate:
# keep the token
new_token_list.append(token)
token_list = new_token_list
if self.dataset_config.shuffle_tokens:
random.shuffle(token_list)
# join back together
caption = ', '.join(token_list)
# caption = inject_trigger_into_prompt(caption, trigger, to_replace_list, add_if_not_present)
if self.dataset_config.random_triggers:
num_triggers = self.dataset_config.random_triggers_max
if num_triggers > 1:
num_triggers = random.randint(0, num_triggers)
if num_triggers > 0:
triggers = random.sample(self.dataset_config.random_triggers, num_triggers)
caption = caption + ', ' + ', '.join(triggers)
# add random triggers
# for i in range(num_triggers):
# # fastest method
# trigger = self.dataset_config.random_triggers[int(random.random() * (len(self.dataset_config.random_triggers)))]
# caption = caption + ', ' + trigger
if self.dataset_config.shuffle_tokens:
# shuffle again
token_list = caption.split(',')
# trim whitespace
token_list = [x.strip() for x in token_list]
# remove empty strings
token_list = [x for x in token_list if x]
random.shuffle(token_list)
caption = ', '.join(token_list)
return caption
class ImageProcessingDTOMixin:
def load_and_process_image(
self: 'FileItemDTO',
transform: Union[None, transforms.Compose],
only_load_latents=False
):
# if we are caching latents, just do that
if self.is_latent_cached:
self.get_latent()
if self.has_control_image:
self.load_control_image()
if self.has_clip_image:
self.load_clip_image()
if self.has_mask_image:
self.load_mask_image()
if self.has_unconditional:
self.load_unconditional_image()
return
try:
img = Image.open(self.path)
img = exif_transpose(img)
except Exception as e:
print(f"Error: {e}")
print(f"Error loading image: {self.path}")
if self.use_alpha_as_mask:
# we do this to make sure it does not replace the alpha with another color
# we want the image just without the alpha channel
np_img = np.array(img)
# strip off alpha
np_img = np_img[:, :, :3]
img = Image.fromarray(np_img)
img = img.convert('RGB')
w, h = img.size
if w > h and self.scale_to_width < self.scale_to_height:
# throw error, they should match
print(
f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}")
elif h > w and self.scale_to_height < self.scale_to_width:
# throw error, they should match
print(
f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}")
if self.flip_x:
# do a flip
img = img.transpose(Image.FLIP_LEFT_RIGHT)
if self.flip_y:
# do a flip
img = img.transpose(Image.FLIP_TOP_BOTTOM)
if self.dataset_config.buckets:
# scale and crop based on file item
img = img.resize((self.scale_to_width, self.scale_to_height), Image.BICUBIC)
# crop to x_crop, y_crop, x_crop + crop_width, y_crop + crop_height
if img.width < self.crop_x + self.crop_width or img.height < self.crop_y + self.crop_height:
# todo look into this. This still happens sometimes
print('size mismatch')
img = img.crop((
self.crop_x,
self.crop_y,
self.crop_x + self.crop_width,
self.crop_y + self.crop_height
))
# img = transforms.CenterCrop((self.crop_height, self.crop_width))(img)
else:
# Downscale the source image first
# TODO this is nto right
img = img.resize(
(int(img.size[0] * self.dataset_config.scale), int(img.size[1] * self.dataset_config.scale)),
Image.BICUBIC)
min_img_size = min(img.size)
if self.dataset_config.random_crop:
if self.dataset_config.random_scale and min_img_size > self.dataset_config.resolution:
if min_img_size < self.dataset_config.resolution:
print(
f"Unexpected values: min_img_size={min_img_size}, self.resolution={self.dataset_config.resolution}, image file={self.path}")
scale_size = self.dataset_config.resolution
else:
scale_size = random.randint(self.dataset_config.resolution, int(min_img_size))
scaler = scale_size / min_img_size
scale_width = int((img.width + 5) * scaler)
scale_height = int((img.height + 5) * scaler)
img = img.resize((scale_width, scale_height), Image.BICUBIC)
img = transforms.RandomCrop(self.dataset_config.resolution)(img)
else:
img = transforms.CenterCrop(min_img_size)(img)
img = img.resize((self.dataset_config.resolution, self.dataset_config.resolution), Image.BICUBIC)
if self.augments is not None and len(self.augments) > 0:
# do augmentations
for augment in self.augments:
if augment in transforms_dict:
img = transforms_dict[augment](img)
if self.has_augmentations:
# augmentations handles transforms
img = self.augment_image(img, transform=transform)
elif transform:
img = transform(img)
self.tensor = img
if not only_load_latents:
if self.has_control_image:
self.load_control_image()
if self.has_clip_image:
self.load_clip_image()
if self.has_mask_image:
self.load_mask_image()
if self.has_unconditional:
self.load_unconditional_image()
class ControlFileItemDTOMixin:
def __init__(self: 'FileItemDTO', *args, **kwargs):
if hasattr(super(), '__init__'):
super().__init__(*args, **kwargs)
self.has_control_image = False
self.control_path: Union[str, None] = None
self.control_tensor: Union[torch.Tensor, None] = None
dataset_config: 'DatasetConfig' = kwargs.get('dataset_config', None)
self.full_size_control_images = False
if dataset_config.control_path is not None:
# find the control image path
control_path = dataset_config.control_path
self.full_size_control_images = dataset_config.full_size_control_images
# we are using control images
img_path = kwargs.get('path', None)
img_ext_list = ['.jpg', '.jpeg', '.png', '.webp']
file_name_no_ext = os.path.splitext(os.path.basename(img_path))[0]
for ext in img_ext_list:
if os.path.exists(os.path.join(control_path, file_name_no_ext + ext)):
self.control_path = os.path.join(control_path, file_name_no_ext + ext)
self.has_control_image = True
break
def load_control_image(self: 'FileItemDTO'):
try:
img = Image.open(self.control_path).convert('RGB')
img = exif_transpose(img)
except Exception as e:
print(f"Error: {e}")
print(f"Error loading image: {self.control_path}")
if self.full_size_control_images:
# we just scale them to 512x512:
w, h = img.size
img = img.resize((512, 512), Image.BICUBIC)
else:
w, h = img.size
if w > h and self.scale_to_width < self.scale_to_height:
# throw error, they should match
raise ValueError(
f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}")
elif h > w and self.scale_to_height < self.scale_to_width:
# throw error, they should match
raise ValueError(
f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}")
if self.flip_x:
# do a flip
img = img.transpose(Image.FLIP_LEFT_RIGHT)
if self.flip_y:
# do a flip
img = img.transpose(Image.FLIP_TOP_BOTTOM)
if self.dataset_config.buckets:
# scale and crop based on file item
img = img.resize((self.scale_to_width, self.scale_to_height), Image.BICUBIC)
# img = transforms.CenterCrop((self.crop_height, self.crop_width))(img)
# crop
img = img.crop((
self.crop_x,
self.crop_y,
self.crop_x + self.crop_width,
self.crop_y + self.crop_height
))
else:
raise Exception("Control images not supported for non-bucket datasets")
transform = transforms.Compose([
transforms.ToTensor(),
])
if self.aug_replay_spatial_transforms:
self.control_tensor = self.augment_spatial_control(img, transform=transform)
else:
self.control_tensor = transform(img)
def cleanup_control(self: 'FileItemDTO'):
self.control_tensor = None
class ClipImageFileItemDTOMixin:
def __init__(self: 'FileItemDTO', *args, **kwargs):
if hasattr(super(), '__init__'):
super().__init__(*args, **kwargs)
self.has_clip_image = False
self.clip_image_path: Union[str, None] = None
self.clip_image_tensor: Union[torch.Tensor, None] = None
self.clip_image_embeds: Union[dict, None] = None
self.clip_image_embeds_unconditional: Union[dict, None] = None
self.has_clip_augmentations = False
self.clip_image_aug_transform: Union[None, A.Compose] = None
self.clip_image_processor: Union[None, CLIPImageProcessor] = None
self.clip_image_encoder_path: Union[str, None] = None
self.is_caching_clip_vision_to_disk = False
self.is_vision_clip_cached = False
self.clip_vision_is_quad = False
self.clip_vision_load_device = 'cpu'
self.clip_vision_unconditional_paths: Union[List[str], None] = None
self._clip_vision_embeddings_path: Union[str, None] = None
dataset_config: 'DatasetConfig' = kwargs.get('dataset_config', None)
if dataset_config.clip_image_path is not None:
# copy the clip image processor so the dataloader can do it
sd = kwargs.get('sd', None)
if hasattr(sd.adapter, 'clip_image_processor'):
self.clip_image_processor = sd.adapter.clip_image_processor
# find the control image path
clip_image_path = dataset_config.clip_image_path
# we are using control images
img_path = kwargs.get('path', None)
img_ext_list = ['.jpg', '.jpeg', '.png', '.webp']
file_name_no_ext = os.path.splitext(os.path.basename(img_path))[0]
for ext in img_ext_list:
if os.path.exists(os.path.join(clip_image_path, file_name_no_ext + ext)):
self.clip_image_path = os.path.join(clip_image_path, file_name_no_ext + ext)
self.has_clip_image = True
break
self.build_clip_imag_augmentation_transform()
def build_clip_imag_augmentation_transform(self: 'FileItemDTO'):
if self.dataset_config.clip_image_augmentations is not None and len(self.dataset_config.clip_image_augmentations) > 0:
self.has_clip_augmentations = True
augmentations = [Augments(**aug) for aug in self.dataset_config.clip_image_augmentations]
if self.dataset_config.clip_image_shuffle_augmentations:
random.shuffle(augmentations)
augmentation_list = []
for aug in augmentations:
# make sure method name is valid
assert hasattr(A, aug.method_name), f"invalid augmentation method: {aug.method_name}"
# get the method
method = getattr(A, aug.method_name)
# add the method to the list
augmentation_list.append(method(**aug.params))
self.clip_image_aug_transform = A.Compose(augmentation_list)
def augment_clip_image(self: 'FileItemDTO', img: Image, transform: Union[None, transforms.Compose], ):
if self.dataset_config.clip_image_shuffle_augmentations:
self.build_clip_imag_augmentation_transform()
open_cv_image = np.array(img)
# Convert RGB to BGR
open_cv_image = open_cv_image[:, :, ::-1].copy()
if self.clip_vision_is_quad:
# image is in a 2x2 gris. split, run augs, and recombine
# split
img1, img2 = np.hsplit(open_cv_image, 2)
img1_1, img1_2 = np.vsplit(img1, 2)
img2_1, img2_2 = np.vsplit(img2, 2)
# apply augmentations
img1_1 = self.clip_image_aug_transform(image=img1_1)["image"]
img1_2 = self.clip_image_aug_transform(image=img1_2)["image"]
img2_1 = self.clip_image_aug_transform(image=img2_1)["image"]
img2_2 = self.clip_image_aug_transform(image=img2_2)["image"]
# recombine
augmented = np.vstack((np.hstack((img1_1, img1_2)), np.hstack((img2_1, img2_2))))
else:
# apply augmentations
augmented = self.clip_image_aug_transform(image=open_cv_image)["image"]
# convert back to RGB tensor
augmented = cv2.cvtColor(augmented, cv2.COLOR_BGR2RGB)
# convert to PIL image
augmented = Image.fromarray(augmented)
augmented_tensor = transforms.ToTensor()(augmented) if transform is None else transform(augmented)
return augmented_tensor
def get_clip_vision_info_dict(self: 'FileItemDTO'):
item = OrderedDict([
("image_encoder_path", self.clip_image_encoder_path),
("filename", os.path.basename(self.clip_image_path)),
("is_quad", self.clip_vision_is_quad)
])
# when adding items, do it after so we dont change old latents
if self.flip_x:
item["flip_x"] = True
if self.flip_y:
item["flip_y"] = True
return item
def get_clip_vision_embeddings_path(self: 'FileItemDTO', recalculate=False):
if self._clip_vision_embeddings_path is not None and not recalculate:
return self._clip_vision_embeddings_path
else:
# we store latents in a folder in same path as image called _latent_cache
img_dir = os.path.dirname(self.clip_image_path)
latent_dir = os.path.join(img_dir, '_clip_vision_cache')
hash_dict = self.get_clip_vision_info_dict()
filename_no_ext = os.path.splitext(os.path.basename(self.clip_image_path))[0]
# get base64 hash of md5 checksum of hash_dict
hash_input = json.dumps(hash_dict, sort_keys=True).encode('utf-8')
hash_str = base64.urlsafe_b64encode(hashlib.md5(hash_input).digest()).decode('ascii')
hash_str = hash_str.replace('=', '')
self._clip_vision_embeddings_path = os.path.join(latent_dir, f'{filename_no_ext}_{hash_str}.safetensors')
return self._clip_vision_embeddings_path
def load_clip_image(self: 'FileItemDTO'):
if self.is_vision_clip_cached:
self.clip_image_embeds = load_file(self.get_clip_vision_embeddings_path())
# get a random unconditional image
if self.clip_vision_unconditional_paths is not None:
unconditional_path = random.choice(self.clip_vision_unconditional_paths)
self.clip_image_embeds_unconditional = load_file(unconditional_path)
return
try:
img = Image.open(self.clip_image_path).convert('RGB')
img = exif_transpose(img)
except Exception as e:
# make a random noise image
img = Image.new('RGB', (self.dataset_config.resolution, self.dataset_config.resolution))
print(f"Error: {e}")
print(f"Error loading image: {self.clip_image_path}")
img = img.convert('RGB')
if self.flip_x:
# do a flip
img = img.transpose(Image.FLIP_LEFT_RIGHT)
if self.flip_y:
# do a flip
img = img.transpose(Image.FLIP_TOP_BOTTOM)
if img.width != img.height:
min_size = min(img.width, img.height)
if self.dataset_config.square_crop:
# center crop to a square
img = transforms.CenterCrop(min_size)(img)
else:
# image must be square. If it is not, we will resize/squish it so it is, that way we don't crop out data
# resize to the smallest dimension
img = img.resize((min_size, min_size), Image.BICUBIC)
if self.has_clip_augmentations:
self.clip_image_tensor = self.augment_clip_image(img, transform=None)
else:
self.clip_image_tensor = transforms.ToTensor()(img)
# random crop
# if self.dataset_config.clip_image_random_crop:
# # crop up to 20% on all sides. Keep is square
# crop_percent = random.randint(0, 20) / 100
# crop_width = int(self.clip_image_tensor.shape[2] * crop_percent)
# crop_height = int(self.clip_image_tensor.shape[1] * crop_percent)
# crop_left = random.randint(0, crop_width)
# crop_top = random.randint(0, crop_height)
# crop_right = self.clip_image_tensor.shape[2] - crop_width - crop_left
# crop_bottom = self.clip_image_tensor.shape[1] - crop_height - crop_top
# if len(self.clip_image_tensor.shape) == 3:
# self.clip_image_tensor = self.clip_image_tensor[:, crop_top:-crop_bottom, crop_left:-crop_right]
# elif len(self.clip_image_tensor.shape) == 4:
# self.clip_image_tensor = self.clip_image_tensor[:, :, crop_top:-crop_bottom, crop_left:-crop_right]
if self.clip_image_processor is not None:
# run it
tensors_0_1 = self.clip_image_tensor.to(dtype=torch.float16)
clip_out = self.clip_image_processor(
images=tensors_0_1,
return_tensors="pt",
do_resize=True,
do_rescale=False,
).pixel_values
self.clip_image_tensor = clip_out.squeeze(0).clone().detach()
def cleanup_clip_image(self: 'FileItemDTO'):
self.clip_image_tensor = None
self.clip_image_embeds = None
class AugmentationFileItemDTOMixin:
def __init__(self: 'FileItemDTO', *args, **kwargs):
if hasattr(super(), '__init__'):
super().__init__(*args, **kwargs)
self.has_augmentations = False
self.unaugmented_tensor: Union[torch.Tensor, None] = None
# self.augmentations: Union[None, List[Augments]] = None
self.dataset_config: 'DatasetConfig' = kwargs.get('dataset_config', None)
self.aug_transform: Union[None, A.Compose] = None
self.aug_replay_spatial_transforms = None
self.build_augmentation_transform()
def build_augmentation_transform(self: 'FileItemDTO'):
if self.dataset_config.augmentations is not None and len(self.dataset_config.augmentations) > 0:
self.has_augmentations = True
augmentations = [Augments(**aug) for aug in self.dataset_config.augmentations]
if self.dataset_config.shuffle_augmentations:
random.shuffle(augmentations)
augmentation_list = []
for aug in augmentations:
# make sure method name is valid
assert hasattr(A, aug.method_name), f"invalid augmentation method: {aug.method_name}"
# get the method
method = getattr(A, aug.method_name)
# add the method to the list
augmentation_list.append(method(**aug.params))
# add additional targets so we can augment the control image
self.aug_transform = A.ReplayCompose(augmentation_list, additional_targets={'image2': 'image'})
def augment_image(self: 'FileItemDTO', img: Image, transform: Union[None, transforms.Compose], ):
# rebuild each time if shuffle
if self.dataset_config.shuffle_augmentations:
self.build_augmentation_transform()
# save the original tensor
self.unaugmented_tensor = transforms.ToTensor()(img) if transform is None else transform(img)
open_cv_image = np.array(img)
# Convert RGB to BGR
open_cv_image = open_cv_image[:, :, ::-1].copy()
# apply augmentations
transformed = self.aug_transform(image=open_cv_image)
augmented = transformed["image"]
# save just the spatial transforms for controls and masks
augmented_params = transformed["replay"]
spatial_transforms = ['Rotate', 'Flip', 'HorizontalFlip', 'VerticalFlip', 'Resize', 'Crop', 'RandomCrop',
'ElasticTransform', 'GridDistortion', 'OpticalDistortion']
# only store the spatial transforms
augmented_params['transforms'] = [t for t in augmented_params['transforms'] if t['__class_fullname__'].split('.')[-1] in spatial_transforms]
if self.dataset_config.replay_transforms:
self.aug_replay_spatial_transforms = augmented_params
# convert back to RGB tensor
augmented = cv2.cvtColor(augmented, cv2.COLOR_BGR2RGB)
# convert to PIL image
augmented = Image.fromarray(augmented)
augmented_tensor = transforms.ToTensor()(augmented) if transform is None else transform(augmented)
return augmented_tensor
# augment control images spatially consistent with transforms done to the main image
def augment_spatial_control(self: 'FileItemDTO', img: Image, transform: Union[None, transforms.Compose] ):
if self.aug_replay_spatial_transforms is None:
# no transforms
return transform(img)
# save colorspace to convert back to
colorspace = img.mode
# convert to rgb
img = img.convert('RGB')
open_cv_image = np.array(img)
# Convert RGB to BGR
open_cv_image = open_cv_image[:, :, ::-1].copy()
# Replay transforms
transformed = A.ReplayCompose.replay(self.aug_replay_spatial_transforms, image=open_cv_image)
augmented = transformed["image"]
# convert back to RGB tensor
augmented = cv2.cvtColor(augmented, cv2.COLOR_BGR2RGB)
# convert to PIL image
augmented = Image.fromarray(augmented)
# convert back to original colorspace
augmented = augmented.convert(colorspace)
augmented_tensor = transforms.ToTensor()(augmented) if transform is None else transform(augmented)
return augmented_tensor
def cleanup_control(self: 'FileItemDTO'):
self.unaugmented_tensor = None
class MaskFileItemDTOMixin:
def __init__(self: 'FileItemDTO', *args, **kwargs):
if hasattr(super(), '__init__'):
super().__init__(*args, **kwargs)
self.has_mask_image = False
self.mask_path: Union[str, None] = None
self.mask_tensor: Union[torch.Tensor, None] = None
self.use_alpha_as_mask: bool = False
dataset_config: 'DatasetConfig' = kwargs.get('dataset_config', None)
self.mask_min_value = dataset_config.mask_min_value
if dataset_config.alpha_mask:
self.use_alpha_as_mask = True
self.mask_path = kwargs.get('path', None)
self.has_mask_image = True
elif dataset_config.mask_path is not None:
# find the control image path
mask_path = dataset_config.mask_path if dataset_config.mask_path is not None else dataset_config.alpha_mask
# we are using control images
img_path = kwargs.get('path', None)
img_ext_list = ['.jpg', '.jpeg', '.png', '.webp']
file_name_no_ext = os.path.splitext(os.path.basename(img_path))[0]
for ext in img_ext_list:
if os.path.exists(os.path.join(mask_path, file_name_no_ext + ext)):
self.mask_path = os.path.join(mask_path, file_name_no_ext + ext)
self.has_mask_image = True
break
def load_mask_image(self: 'FileItemDTO'):
try:
img = Image.open(self.mask_path)
img = exif_transpose(img)
except Exception as e:
print(f"Error: {e}")
print(f"Error loading image: {self.mask_path}")
if self.use_alpha_as_mask:
# pipeline expectws an rgb image so we need to put alpha in all channels
np_img = np.array(img)
np_img[:, :, :3] = np_img[:, :, 3:]
np_img = np_img[:, :, :3]
img = Image.fromarray(np_img)
img = img.convert('RGB')
if self.dataset_config.invert_mask:
img = ImageOps.invert(img)
w, h = img.size
fix_size = False
if w > h and self.scale_to_width < self.scale_to_height:
# throw error, they should match
print(f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}")
fix_size = True
elif h > w and self.scale_to_height < self.scale_to_width:
# throw error, they should match
print(f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}")
fix_size = True
if fix_size:
# swap all the sizes
self.scale_to_width, self.scale_to_height = self.scale_to_height, self.scale_to_width
self.crop_width, self.crop_height = self.crop_height, self.crop_width
self.crop_x, self.crop_y = self.crop_y, self.crop_x
if self.flip_x:
# do a flip
img = img.transpose(Image.FLIP_LEFT_RIGHT)
if self.flip_y:
# do a flip
img = img.transpose(Image.FLIP_TOP_BOTTOM)
# randomly apply a blur up to 0.5% of the size of the min (width, height)
min_size = min(img.width, img.height)
blur_radius = int(min_size * random.random() * 0.005)
img = img.filter(ImageFilter.GaussianBlur(radius=blur_radius))
# make grayscale
img = img.convert('L')
if self.dataset_config.buckets:
# scale and crop based on file item
img = img.resize((self.scale_to_width, self.scale_to_height), Image.BICUBIC)
# img = transforms.CenterCrop((self.crop_height, self.crop_width))(img)
# crop
img = img.crop((
self.crop_x,
self.crop_y,
self.crop_x + self.crop_width,
self.crop_y + self.crop_height
))
else:
raise Exception("Mask images not supported for non-bucket datasets")
transform = transforms.Compose([
transforms.ToTensor(),
])
if self.aug_replay_spatial_transforms:
self.mask_tensor = self.augment_spatial_control(img, transform=transform)
else:
self.mask_tensor = transform(img)
self.mask_tensor = value_map(self.mask_tensor, 0, 1.0, self.mask_min_value, 1.0)
# convert to grayscale
def cleanup_mask(self: 'FileItemDTO'):
self.mask_tensor = None
class UnconditionalFileItemDTOMixin:
def __init__(self: 'FileItemDTO', *args, **kwargs):
if hasattr(super(), '__init__'):
super().__init__(*args, **kwargs)
self.has_unconditional = False
self.unconditional_path: Union[str, None] = None
self.unconditional_tensor: Union[torch.Tensor, None] = None
self.unconditional_latent: Union[torch.Tensor, None] = None
self.unconditional_transforms = self.dataloader_transforms
dataset_config: 'DatasetConfig' = kwargs.get('dataset_config', None)
if dataset_config.unconditional_path is not None:
# we are using control images
img_path = kwargs.get('path', None)
img_ext_list = ['.jpg', '.jpeg', '.png', '.webp']
file_name_no_ext = os.path.splitext(os.path.basename(img_path))[0]
for ext in img_ext_list:
if os.path.exists(os.path.join(dataset_config.unconditional_path, file_name_no_ext + ext)):
self.unconditional_path = os.path.join(dataset_config.unconditional_path, file_name_no_ext + ext)
self.has_unconditional = True
break
def load_unconditional_image(self: 'FileItemDTO'):
try:
img = Image.open(self.unconditional_path)
img = exif_transpose(img)
except Exception as e:
print(f"Error: {e}")
print(f"Error loading image: {self.mask_path}")
img = img.convert('RGB')
w, h = img.size
if w > h and self.scale_to_width < self.scale_to_height:
# throw error, they should match
raise ValueError(
f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}")
elif h > w and self.scale_to_height < self.scale_to_width:
# throw error, they should match
raise ValueError(
f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}")
if self.flip_x:
# do a flip
img = img.transpose(Image.FLIP_LEFT_RIGHT)
if self.flip_y:
# do a flip
img = img.transpose(Image.FLIP_TOP_BOTTOM)
if self.dataset_config.buckets:
# scale and crop based on file item
img = img.resize((self.scale_to_width, self.scale_to_height), Image.BICUBIC)
# img = transforms.CenterCrop((self.crop_height, self.crop_width))(img)
# crop
img = img.crop((
self.crop_x,
self.crop_y,
self.crop_x + self.crop_width,
self.crop_y + self.crop_height
))
else:
raise Exception("Unconditional images are not supported for non-bucket datasets")
if self.aug_replay_spatial_transforms:
self.unconditional_tensor = self.augment_spatial_control(img, transform=self.unconditional_transforms)
else:
self.unconditional_tensor = self.unconditional_transforms(img)
def cleanup_unconditional(self: 'FileItemDTO'):
self.unconditional_tensor = None
self.unconditional_latent = None
class PoiFileItemDTOMixin:
# Point of interest bounding box. Allows for dynamic cropping without cropping out the main subject
# items in the poi will always be inside the image when random cropping
def __init__(self: 'FileItemDTO', *args, **kwargs):
if hasattr(super(), '__init__'):
super().__init__(*args, **kwargs)
# poi is a name of the box point of interest in the caption json file
dataset_config = kwargs.get('dataset_config', None)
path = kwargs.get('path', None)
self.poi: Union[str, None] = dataset_config.poi
self.has_point_of_interest = self.poi is not None
self.poi_x: Union[int, None] = None
self.poi_y: Union[int, None] = None
self.poi_width: Union[int, None] = None
self.poi_height: Union[int, None] = None
if self.poi is not None:
# make sure latent caching is off
if dataset_config.cache_latents or dataset_config.cache_latents_to_disk:
raise Exception(
f"Error: poi is not supported when caching latents. Please set cache_latents and cache_latents_to_disk to False in the dataset config"
)
# make sure we are loading through json
if dataset_config.caption_ext != 'json':
raise Exception(
f"Error: poi is only supported when using json captions. Please set caption_ext to json in the dataset config"
)
self.poi = self.poi.strip()
# get the caption path
file_path_no_ext = os.path.splitext(path)[0]
caption_path = file_path_no_ext + '.json'
if not os.path.exists(caption_path):
raise Exception(f"Error: caption file not found for poi: {caption_path}")
with open(caption_path, 'r', encoding='utf-8') as f:
json_data = json.load(f)
if 'poi' not in json_data:
print(f"Warning: poi not found in caption file: {caption_path}")
if self.poi not in json_data['poi']:
print(f"Warning: poi not found in caption file: {caption_path}")
# poi has, x, y, width, height
# do full image if no poi
self.poi_x = 0
self.poi_y = 0
self.poi_width = self.width
self.poi_height = self.height
try:
if self.poi in json_data['poi']:
poi = json_data['poi'][self.poi]
self.poi_x = int(poi['x'])
self.poi_y = int(poi['y'])
self.poi_width = int(poi['width'])
self.poi_height = int(poi['height'])
except Exception as e:
pass
# handle flipping
if kwargs.get('flip_x', False):
# flip the poi
self.poi_x = self.width - self.poi_x - self.poi_width
if kwargs.get('flip_y', False):
# flip the poi
self.poi_y = self.height - self.poi_y - self.poi_height
def setup_poi_bucket(self: 'FileItemDTO'):
initial_width = int(self.width * self.dataset_config.scale)
initial_height = int(self.height * self.dataset_config.scale)
# we are using poi, so we need to calculate the bucket based on the poi
# if img resolution is less than dataset resolution, just return and let the normal bucketing happen
img_resolution = get_resolution(initial_width, initial_height)
if img_resolution <= self.dataset_config.resolution:
return False # will trigger normal bucketing
bucket_tolerance = self.dataset_config.bucket_tolerance
poi_x = int(self.poi_x * self.dataset_config.scale)
poi_y = int(self.poi_y * self.dataset_config.scale)
poi_width = int(self.poi_width * self.dataset_config.scale)
poi_height = int(self.poi_height * self.dataset_config.scale)
# loop to keep expanding until we are at the proper resolution. This is not ideal, we can probably handle it better
num_loops = 0
while True:
# crop left
if poi_x > 0:
poi_x = random.randint(0, poi_x)
else:
poi_x = 0
# crop right
cr_min = poi_x + poi_width
if cr_min < initial_width:
crop_right = random.randint(poi_x + poi_width, initial_width)
else:
crop_right = initial_width
poi_width = crop_right - poi_x
if poi_y > 0:
poi_y = random.randint(0, poi_y)
else:
poi_y = 0
if poi_y + poi_height < initial_height:
crop_bottom = random.randint(poi_y + poi_height, initial_height)
else:
crop_bottom = initial_height
poi_height = crop_bottom - poi_y
try:
# now we have our random crop, but it may be smaller than resolution. Check and expand if needed
current_resolution = get_resolution(poi_width, poi_height)
except Exception as e:
print(f"Error: {e}")
print(f"Error getting resolution: {self.path}")
raise e
return False
if current_resolution >= self.dataset_config.resolution:
# We can break now
break
else:
num_loops += 1
if num_loops > 100:
print(
f"Warning: poi bucketing looped too many times. This should not happen. Please report this issue.")
return False
new_width = poi_width
new_height = poi_height
bucket_resolution = get_bucket_for_image_size(
new_width, new_height,
resolution=self.dataset_config.resolution,
divisibility=bucket_tolerance
)
width_scale_factor = bucket_resolution["width"] / new_width
height_scale_factor = bucket_resolution["height"] / new_height
# Use the maximum of the scale factors to ensure both dimensions are scaled above the bucket resolution
max_scale_factor = max(width_scale_factor, height_scale_factor)
self.scale_to_width = math.ceil(initial_width * max_scale_factor)
self.scale_to_height = math.ceil(initial_height * max_scale_factor)
self.crop_width = bucket_resolution['width']
self.crop_height = bucket_resolution['height']
self.crop_x = int(poi_x * max_scale_factor)
self.crop_y = int(poi_y * max_scale_factor)
if self.scale_to_width < self.crop_x + self.crop_width or self.scale_to_height < self.crop_y + self.crop_height:
# todo look into this. This still happens sometimes
print('size mismatch')
return True
class ArgBreakMixin:
# just stops super calls form hitting object
def __init__(self, *args, **kwargs):
pass
class LatentCachingFileItemDTOMixin:
def __init__(self, *args, **kwargs):
# if we have super, call it
if hasattr(super(), '__init__'):
super().__init__(*args, **kwargs)
self._encoded_latent: Union[torch.Tensor, None] = None
self._latent_path: Union[str, None] = None
self.is_latent_cached = False
self.is_caching_to_disk = False
self.is_caching_to_memory = False
self.latent_load_device = 'cpu'
# sd1 or sdxl or others
self.latent_space_version = 'sd1'
# todo, increment this if we change the latent format to invalidate cache
self.latent_version = 1
def get_latent_info_dict(self: 'FileItemDTO'):
item = OrderedDict([
("filename", os.path.basename(self.path)),
("scale_to_width", self.scale_to_width),
("scale_to_height", self.scale_to_height),
("crop_x", self.crop_x),
("crop_y", self.crop_y),
("crop_width", self.crop_width),
("crop_height", self.crop_height),
("latent_space_version", self.latent_space_version),
("latent_version", self.latent_version),
])
# when adding items, do it after so we dont change old latents
if self.flip_x:
item["flip_x"] = True
if self.flip_y:
item["flip_y"] = True
return item
def get_latent_path(self: 'FileItemDTO', recalculate=False):
if self._latent_path is not None and not recalculate:
return self._latent_path
else:
# we store latents in a folder in same path as image called _latent_cache
img_dir = os.path.dirname(self.path)
latent_dir = os.path.join(img_dir, '_latent_cache')
hash_dict = self.get_latent_info_dict()
filename_no_ext = os.path.splitext(os.path.basename(self.path))[0]
# get base64 hash of md5 checksum of hash_dict
hash_input = json.dumps(hash_dict, sort_keys=True).encode('utf-8')
hash_str = base64.urlsafe_b64encode(hashlib.md5(hash_input).digest()).decode('ascii')
hash_str = hash_str.replace('=', '')
self._latent_path = os.path.join(latent_dir, f'{filename_no_ext}_{hash_str}.safetensors')
return self._latent_path
def cleanup_latent(self):
if self._encoded_latent is not None:
if not self.is_caching_to_memory:
# we are caching on disk, don't save in memory
self._encoded_latent = None
else:
# move it back to cpu
self._encoded_latent = self._encoded_latent.to('cpu')
def get_latent(self, device=None):
if not self.is_latent_cached:
return None
if self._encoded_latent is None:
# load it from disk
state_dict = load_file(
self.get_latent_path(),
# device=device if device is not None else self.latent_load_device
device='cpu'
)
self._encoded_latent = state_dict['latent']
return self._encoded_latent
class LatentCachingMixin:
def __init__(self: 'AiToolkitDataset', **kwargs):
# if we have super, call it
if hasattr(super(), '__init__'):
super().__init__(**kwargs)
self.latent_cache = {}
def cache_latents_all_latents(self: 'AiToolkitDataset'):
print(f"Caching latents for {self.dataset_path}")
# cache all latents to disk
to_disk = self.is_caching_latents_to_disk
to_memory = self.is_caching_latents_to_memory
if to_disk:
print(" - Saving latents to disk")
if to_memory:
print(" - Keeping latents in memory")
# move sd items to cpu except for vae
self.sd.set_device_state_preset('cache_latents')
# use tqdm to show progress
i = 0
for file_item in tqdm(self.file_list, desc=f'Caching latents{" to disk" if to_disk else ""}'):
# set latent space version
if self.sd.model_config.latent_space_version is not None:
file_item.latent_space_version = self.sd.model_config.latent_space_version
elif self.sd.is_xl:
file_item.latent_space_version = 'sdxl'
elif self.sd.is_v3:
file_item.latent_space_version = 'sd3'
elif self.sd.is_auraflow:
file_item.latent_space_version = 'sdxl'
elif self.sd.is_flux:
file_item.latent_space_version = 'flux1'
elif self.sd.model_config.is_pixart_sigma:
file_item.latent_space_version = 'sdxl'
else:
file_item.latent_space_version = 'sd1'
file_item.is_caching_to_disk = to_disk
file_item.is_caching_to_memory = to_memory
file_item.latent_load_device = self.sd.device
latent_path = file_item.get_latent_path(recalculate=True)
# check if it is saved to disk already
if os.path.exists(latent_path):
if to_memory:
# load it into memory
state_dict = load_file(latent_path, device='cpu')
file_item._encoded_latent = state_dict['latent'].to('cpu', dtype=self.sd.torch_dtype)
else:
# not saved to disk, calculate
# load the image first
file_item.load_and_process_image(self.transform, only_load_latents=True)
dtype = self.sd.torch_dtype
device = self.sd.device_torch
# add batch dimension
try:
imgs = file_item.tensor.unsqueeze(0).to(device, dtype=dtype)
latent = self.sd.encode_images(imgs).squeeze(0)
except Exception as e:
print(f"Error processing image: {file_item.path}")
print(f"Error: {str(e)}")
raise e
# save_latent
if to_disk:
state_dict = OrderedDict([
('latent', latent.clone().detach().cpu()),
])
# metadata
meta = get_meta_for_safetensors(file_item.get_latent_info_dict())
os.makedirs(os.path.dirname(latent_path), exist_ok=True)
save_file(state_dict, latent_path, metadata=meta)
if to_memory:
# keep it in memory
file_item._encoded_latent = latent.to('cpu', dtype=self.sd.torch_dtype)
del imgs
del latent
del file_item.tensor
# flush(garbage_collect=False)
file_item.is_latent_cached = True
i += 1
# flush every 100
# if i % 100 == 0:
# flush()
# restore device state
self.sd.restore_device_state()
class CLIPCachingMixin:
def __init__(self: 'AiToolkitDataset', **kwargs):
# if we have super, call it
if hasattr(super(), '__init__'):
super().__init__(**kwargs)
self.clip_vision_num_unconditional_cache = 20
self.clip_vision_unconditional_cache = []
def cache_clip_vision_to_disk(self: 'AiToolkitDataset'):
if not self.is_caching_clip_vision_to_disk:
return
with torch.no_grad():
print(f"Caching clip vision for {self.dataset_path}")
print(" - Saving clip to disk")
# move sd items to cpu except for vae
self.sd.set_device_state_preset('cache_clip')
# make sure the adapter has attributes
if self.sd.adapter is None:
raise Exception("Error: must have an adapter to cache clip vision to disk")
clip_image_processor: CLIPImageProcessor = None
if hasattr(self.sd.adapter, 'clip_image_processor'):
clip_image_processor = self.sd.adapter.clip_image_processor
if clip_image_processor is None:
raise Exception("Error: must have a clip image processor to cache clip vision to disk")
vision_encoder: CLIPVisionModelWithProjection = None
if hasattr(self.sd.adapter, 'image_encoder'):
vision_encoder = self.sd.adapter.image_encoder
if hasattr(self.sd.adapter, 'vision_encoder'):
vision_encoder = self.sd.adapter.vision_encoder
if vision_encoder is None:
raise Exception("Error: must have a vision encoder to cache clip vision to disk")
# move vision encoder to device
vision_encoder.to(self.sd.device)
is_quad = self.sd.adapter.config.quad_image
image_encoder_path = self.sd.adapter.config.image_encoder_path
dtype = self.sd.torch_dtype
device = self.sd.device_torch
if hasattr(self.sd.adapter, 'clip_noise_zero') and self.sd.adapter.clip_noise_zero:
# just to do this, we did :)
# need more samples as it is random noise
self.clip_vision_num_unconditional_cache = self.clip_vision_num_unconditional_cache
else:
# only need one since it doesnt change
self.clip_vision_num_unconditional_cache = 1
# cache unconditionals
print(f" - Caching {self.clip_vision_num_unconditional_cache} unconditional clip vision to disk")
clip_vision_cache_path = os.path.join(self.dataset_config.clip_image_path, '_clip_vision_cache')
unconditional_paths = []
is_noise_zero = hasattr(self.sd.adapter, 'clip_noise_zero') and self.sd.adapter.clip_noise_zero
for i in range(self.clip_vision_num_unconditional_cache):
hash_dict = OrderedDict([
("image_encoder_path", image_encoder_path),
("is_quad", is_quad),
("is_noise_zero", is_noise_zero),
])
# get base64 hash of md5 checksum of hash_dict
hash_input = json.dumps(hash_dict, sort_keys=True).encode('utf-8')
hash_str = base64.urlsafe_b64encode(hashlib.md5(hash_input).digest()).decode('ascii')
hash_str = hash_str.replace('=', '')
uncond_path = os.path.join(clip_vision_cache_path, f'uncond_{hash_str}_{i}.safetensors')
if os.path.exists(uncond_path):
# skip it
unconditional_paths.append(uncond_path)
continue
# generate a random image
img_shape = (1, 3, self.sd.adapter.input_size, self.sd.adapter.input_size)
if is_noise_zero:
tensors_0_1 = torch.rand(img_shape).to(device, dtype=torch.float32)
else:
tensors_0_1 = torch.zeros(img_shape).to(device, dtype=torch.float32)
clip_image = clip_image_processor(
images=tensors_0_1,
return_tensors="pt",
do_resize=True,
do_rescale=False,
).pixel_values
if is_quad:
# split the 4x4 grid and stack on batch
ci1, ci2 = clip_image.chunk(2, dim=2)
ci1, ci3 = ci1.chunk(2, dim=3)
ci2, ci4 = ci2.chunk(2, dim=3)
clip_image = torch.cat([ci1, ci2, ci3, ci4], dim=0).detach()
clip_output = vision_encoder(
clip_image.to(device, dtype=dtype),
output_hidden_states=True
)
# make state_dict ['last_hidden_state', 'image_embeds', 'penultimate_hidden_states']
state_dict = OrderedDict([
('image_embeds', clip_output.image_embeds.clone().detach().cpu()),
('last_hidden_state', clip_output.hidden_states[-1].clone().detach().cpu()),
('penultimate_hidden_states', clip_output.hidden_states[-2].clone().detach().cpu()),
])
os.makedirs(os.path.dirname(uncond_path), exist_ok=True)
save_file(state_dict, uncond_path)
unconditional_paths.append(uncond_path)
self.clip_vision_unconditional_cache = unconditional_paths
# use tqdm to show progress
i = 0
for file_item in tqdm(self.file_list, desc=f'Caching clip vision to disk'):
file_item.is_caching_clip_vision_to_disk = True
file_item.clip_vision_load_device = self.sd.device
file_item.clip_vision_is_quad = is_quad
file_item.clip_image_encoder_path = image_encoder_path
file_item.clip_vision_unconditional_paths = unconditional_paths
if file_item.has_clip_augmentations:
raise Exception("Error: clip vision caching is not supported with clip augmentations")
embedding_path = file_item.get_clip_vision_embeddings_path(recalculate=True)
# check if it is saved to disk already
if not os.path.exists(embedding_path):
# load the image first
file_item.load_clip_image()
# add batch dimension
clip_image = file_item.clip_image_tensor.unsqueeze(0).to(device, dtype=dtype)
if is_quad:
# split the 4x4 grid and stack on batch
ci1, ci2 = clip_image.chunk(2, dim=2)
ci1, ci3 = ci1.chunk(2, dim=3)
ci2, ci4 = ci2.chunk(2, dim=3)
clip_image = torch.cat([ci1, ci2, ci3, ci4], dim=0).detach()
clip_output = vision_encoder(
clip_image.to(device, dtype=dtype),
output_hidden_states=True
)
# make state_dict ['last_hidden_state', 'image_embeds', 'penultimate_hidden_states']
state_dict = OrderedDict([
('image_embeds', clip_output.image_embeds.clone().detach().cpu()),
('last_hidden_state', clip_output.hidden_states[-1].clone().detach().cpu()),
('penultimate_hidden_states', clip_output.hidden_states[-2].clone().detach().cpu()),
])
# metadata
meta = get_meta_for_safetensors(file_item.get_clip_vision_info_dict())
os.makedirs(os.path.dirname(embedding_path), exist_ok=True)
save_file(state_dict, embedding_path, metadata=meta)
del clip_image
del clip_output
del file_item.clip_image_tensor
# flush(garbage_collect=False)
file_item.is_vision_clip_cached = True
i += 1
# flush every 100
# if i % 100 == 0:
# flush()
# restore device state
self.sd.restore_device_state()
|