File size: 74,190 Bytes
1ba389d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 |
# mostly from https://github.com/kohya-ss/sd-scripts/blob/main/library/model_util.py
# I am infinitely grateful to @kohya-ss for their amazing work in this field.
# This version is updated to handle the latest version of the diffusers library.
import json
# v1: split from train_db_fixed.py.
# v2: support safetensors
import math
import os
import re
import torch
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextConfig, logging
from diffusers import AutoencoderKL, DDIMScheduler, StableDiffusionPipeline, UNet2DConditionModel
from safetensors.torch import load_file, save_file
from collections import OrderedDict
# DiffUsers版StableDiffusionのモデルパラメータ
NUM_TRAIN_TIMESTEPS = 1000
BETA_START = 0.00085
BETA_END = 0.0120
UNET_PARAMS_MODEL_CHANNELS = 320
UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4]
UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1]
UNET_PARAMS_IMAGE_SIZE = 64 # fixed from old invalid value `32`
UNET_PARAMS_IN_CHANNELS = 4
UNET_PARAMS_OUT_CHANNELS = 4
UNET_PARAMS_NUM_RES_BLOCKS = 2
UNET_PARAMS_CONTEXT_DIM = 768
UNET_PARAMS_NUM_HEADS = 8
# UNET_PARAMS_USE_LINEAR_PROJECTION = False
VAE_PARAMS_Z_CHANNELS = 4
VAE_PARAMS_RESOLUTION = 256
VAE_PARAMS_IN_CHANNELS = 3
VAE_PARAMS_OUT_CH = 3
VAE_PARAMS_CH = 128
VAE_PARAMS_CH_MULT = [1, 2, 4, 4]
VAE_PARAMS_NUM_RES_BLOCKS = 2
# V2
V2_UNET_PARAMS_ATTENTION_HEAD_DIM = [5, 10, 20, 20]
V2_UNET_PARAMS_CONTEXT_DIM = 1024
# V2_UNET_PARAMS_USE_LINEAR_PROJECTION = True
# Diffusersの設定を読み込むための参照モデル
DIFFUSERS_REF_MODEL_ID_V1 = "runwayml/stable-diffusion-v1-5"
DIFFUSERS_REF_MODEL_ID_V2 = "stabilityai/stable-diffusion-2-1"
# region StableDiffusion->Diffusersの変換コード
# convert_original_stable_diffusion_to_diffusers をコピーして修正している(ASL 2.0)
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split(".")[n_shave_prefix_segments:])
else:
return ".".join(path.split(".")[:n_shave_prefix_segments])
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item.replace("in_layers.0", "norm1")
new_item = new_item.replace("in_layers.2", "conv1")
new_item = new_item.replace("out_layers.0", "norm2")
new_item = new_item.replace("out_layers.3", "conv2")
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
new_item = new_item.replace("skip_connection", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
# updated for latest diffusers
new_item = new_item.replace("norm.weight", "group_norm.weight")
new_item = new_item.replace("norm.bias", "group_norm.bias")
new_item = new_item.replace("q.weight", "to_q.weight")
new_item = new_item.replace("q.bias", "to_q.bias")
new_item = new_item.replace("k.weight", "to_k.weight")
new_item = new_item.replace("k.bias", "to_k.bias")
new_item = new_item.replace("v.weight", "to_v.weight")
new_item = new_item.replace("v.bias", "to_v.bias")
new_item = new_item.replace("proj_out.weight", "to_out.0.weight")
new_item = new_item.replace("proj_out.bias", "to_out.0.bias")
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def assign_to_checkpoint(
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
):
"""
This does the final conversion step: take locally converted weights and apply a global renaming
to them. It splits attention layers, and takes into account additional replacements
that may arise.
Assigns the weights to the new checkpoint.
"""
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
old_tensor = old_checkpoint[path]
channels = old_tensor.shape[0] // 3
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
query, key, value = old_tensor.split(channels // num_heads, dim=1)
checkpoint[path_map["query"]] = query.reshape(target_shape)
checkpoint[path_map["key"]] = key.reshape(target_shape)
checkpoint[path_map["value"]] = value.reshape(target_shape)
for path in paths:
new_path = path["new"]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
if additional_replacements is not None:
for replacement in additional_replacements:
new_path = new_path.replace(replacement["old"], replacement["new"])
# proj_attn.weight has to be converted from conv 1D to linear
is_attn_weight = "proj_attn.weight" in new_path or ("attentions" in new_path and "to_" in new_path)
shape = old_checkpoint[path["old"]].shape
if is_attn_weight and len(shape) == 3:
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
elif is_attn_weight and len(shape) == 4:
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0]
else:
checkpoint[new_path] = old_checkpoint[path["old"]]
def conv_attn_to_linear(checkpoint):
keys = list(checkpoint.keys())
attn_keys = ["query.weight", "key.weight", "value.weight"]
for key in keys:
if ".".join(key.split(".")[-2:]) in attn_keys:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0, 0]
elif "proj_attn.weight" in key:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0]
def linear_transformer_to_conv(checkpoint):
keys = list(checkpoint.keys())
tf_keys = ["proj_in.weight", "proj_out.weight"]
for key in keys:
if ".".join(key.split(".")[-2:]) in tf_keys:
if checkpoint[key].ndim == 2:
checkpoint[key] = checkpoint[key].unsqueeze(2).unsqueeze(2)
def convert_ldm_unet_checkpoint(v2, checkpoint, config):
mapping = {}
"""
Takes a state dict and a config, and returns a converted checkpoint.
"""
# extract state_dict for UNet
unet_state_dict = {}
unet_key = "model.diffusion_model."
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(unet_key):
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
new_checkpoint = {}
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
# Retrieves the keys for the input blocks only
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
input_blocks = {
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}." in key] for layer_id in
range(num_input_blocks)
}
# Retrieves the keys for the middle blocks only
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
middle_blocks = {
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}." in key] for layer_id in
range(num_middle_blocks)
}
# Retrieves the keys for the output blocks only
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
output_blocks = {
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}." in key] for layer_id in
range(num_output_blocks)
}
for i in range(1, num_input_blocks):
block_id = (i - 1) // (config["layers_per_block"] + 1)
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
resnets = [key for key in input_blocks[i] if
f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key]
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.weight"
)
mapping[f'input_blocks.{i}.0.op.weight'] = f"down_blocks.{block_id}.downsamplers.0.conv.weight"
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
f"input_blocks.{i}.0.op.bias")
mapping[f'input_blocks.{i}.0.op.bias'] = f"down_blocks.{block_id}.downsamplers.0.conv.bias"
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config)
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path],
config=config)
resnet_0 = middle_blocks[0]
attentions = middle_blocks[1]
resnet_1 = middle_blocks[2]
resnet_0_paths = renew_resnet_paths(resnet_0)
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
resnet_1_paths = renew_resnet_paths(resnet_1)
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
attentions_paths = renew_attention_paths(attentions)
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path],
config=config)
for i in range(num_output_blocks):
block_id = i // (config["layers_per_block"] + 1)
layer_in_block_id = i % (config["layers_per_block"] + 1)
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
output_block_list = {}
for layer in output_block_layers:
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
if layer_id in output_block_list:
output_block_list[layer_id].append(layer_name)
else:
output_block_list[layer_id] = [layer_name]
if len(output_block_list) > 1:
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
resnet_0_paths = renew_resnet_paths(resnets)
paths = renew_resnet_paths(resnets)
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path],
config=config)
# オリジナル:
# if ["conv.weight", "conv.bias"] in output_block_list.values():
# index = list(output_block_list.values()).index(["conv.weight", "conv.bias"])
# biasとweightの順番に依存しないようにする:もっといいやり方がありそうだが
for l in output_block_list.values():
l.sort()
if ["conv.bias", "conv.weight"] in output_block_list.values():
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.bias"
]
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
f"output_blocks.{i}.{index}.conv.weight"
]
# Clear attentions as they have been attributed above.
if len(attentions) == 2:
attentions = []
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {
"old": f"output_blocks.{i}.1",
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
}
assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path],
config=config)
else:
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
for path in resnet_0_paths:
old_path = ".".join(["output_blocks", str(i), path["old"]])
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
new_checkpoint[new_path] = unet_state_dict[old_path]
# SDのv2では1*1のconv2dがlinearに変わっている
# 誤って Diffusers 側を conv2d のままにしてしまったので、変換必要
if v2 and not config.get('use_linear_projection', False):
linear_transformer_to_conv(new_checkpoint)
# print("mapping: ", json.dumps(mapping, indent=4))
return new_checkpoint
# ldm key: diffusers key
vae_ldm_to_diffusers_dict = {
"decoder.conv_in.bias": "decoder.conv_in.bias",
"decoder.conv_in.weight": "decoder.conv_in.weight",
"decoder.conv_out.bias": "decoder.conv_out.bias",
"decoder.conv_out.weight": "decoder.conv_out.weight",
"decoder.mid.attn_1.k.bias": "decoder.mid_block.attentions.0.to_k.bias",
"decoder.mid.attn_1.k.weight": "decoder.mid_block.attentions.0.to_k.weight",
"decoder.mid.attn_1.norm.bias": "decoder.mid_block.attentions.0.group_norm.bias",
"decoder.mid.attn_1.norm.weight": "decoder.mid_block.attentions.0.group_norm.weight",
"decoder.mid.attn_1.proj_out.bias": "decoder.mid_block.attentions.0.to_out.0.bias",
"decoder.mid.attn_1.proj_out.weight": "decoder.mid_block.attentions.0.to_out.0.weight",
"decoder.mid.attn_1.q.bias": "decoder.mid_block.attentions.0.to_q.bias",
"decoder.mid.attn_1.q.weight": "decoder.mid_block.attentions.0.to_q.weight",
"decoder.mid.attn_1.v.bias": "decoder.mid_block.attentions.0.to_v.bias",
"decoder.mid.attn_1.v.weight": "decoder.mid_block.attentions.0.to_v.weight",
"decoder.mid.block_1.conv1.bias": "decoder.mid_block.resnets.0.conv1.bias",
"decoder.mid.block_1.conv1.weight": "decoder.mid_block.resnets.0.conv1.weight",
"decoder.mid.block_1.conv2.bias": "decoder.mid_block.resnets.0.conv2.bias",
"decoder.mid.block_1.conv2.weight": "decoder.mid_block.resnets.0.conv2.weight",
"decoder.mid.block_1.norm1.bias": "decoder.mid_block.resnets.0.norm1.bias",
"decoder.mid.block_1.norm1.weight": "decoder.mid_block.resnets.0.norm1.weight",
"decoder.mid.block_1.norm2.bias": "decoder.mid_block.resnets.0.norm2.bias",
"decoder.mid.block_1.norm2.weight": "decoder.mid_block.resnets.0.norm2.weight",
"decoder.mid.block_2.conv1.bias": "decoder.mid_block.resnets.1.conv1.bias",
"decoder.mid.block_2.conv1.weight": "decoder.mid_block.resnets.1.conv1.weight",
"decoder.mid.block_2.conv2.bias": "decoder.mid_block.resnets.1.conv2.bias",
"decoder.mid.block_2.conv2.weight": "decoder.mid_block.resnets.1.conv2.weight",
"decoder.mid.block_2.norm1.bias": "decoder.mid_block.resnets.1.norm1.bias",
"decoder.mid.block_2.norm1.weight": "decoder.mid_block.resnets.1.norm1.weight",
"decoder.mid.block_2.norm2.bias": "decoder.mid_block.resnets.1.norm2.bias",
"decoder.mid.block_2.norm2.weight": "decoder.mid_block.resnets.1.norm2.weight",
"decoder.norm_out.bias": "decoder.conv_norm_out.bias",
"decoder.norm_out.weight": "decoder.conv_norm_out.weight",
"decoder.up.0.block.0.conv1.bias": "decoder.up_blocks.3.resnets.0.conv1.bias",
"decoder.up.0.block.0.conv1.weight": "decoder.up_blocks.3.resnets.0.conv1.weight",
"decoder.up.0.block.0.conv2.bias": "decoder.up_blocks.3.resnets.0.conv2.bias",
"decoder.up.0.block.0.conv2.weight": "decoder.up_blocks.3.resnets.0.conv2.weight",
"decoder.up.0.block.0.nin_shortcut.bias": "decoder.up_blocks.3.resnets.0.conv_shortcut.bias",
"decoder.up.0.block.0.nin_shortcut.weight": "decoder.up_blocks.3.resnets.0.conv_shortcut.weight",
"decoder.up.0.block.0.norm1.bias": "decoder.up_blocks.3.resnets.0.norm1.bias",
"decoder.up.0.block.0.norm1.weight": "decoder.up_blocks.3.resnets.0.norm1.weight",
"decoder.up.0.block.0.norm2.bias": "decoder.up_blocks.3.resnets.0.norm2.bias",
"decoder.up.0.block.0.norm2.weight": "decoder.up_blocks.3.resnets.0.norm2.weight",
"decoder.up.0.block.1.conv1.bias": "decoder.up_blocks.3.resnets.1.conv1.bias",
"decoder.up.0.block.1.conv1.weight": "decoder.up_blocks.3.resnets.1.conv1.weight",
"decoder.up.0.block.1.conv2.bias": "decoder.up_blocks.3.resnets.1.conv2.bias",
"decoder.up.0.block.1.conv2.weight": "decoder.up_blocks.3.resnets.1.conv2.weight",
"decoder.up.0.block.1.norm1.bias": "decoder.up_blocks.3.resnets.1.norm1.bias",
"decoder.up.0.block.1.norm1.weight": "decoder.up_blocks.3.resnets.1.norm1.weight",
"decoder.up.0.block.1.norm2.bias": "decoder.up_blocks.3.resnets.1.norm2.bias",
"decoder.up.0.block.1.norm2.weight": "decoder.up_blocks.3.resnets.1.norm2.weight",
"decoder.up.0.block.2.conv1.bias": "decoder.up_blocks.3.resnets.2.conv1.bias",
"decoder.up.0.block.2.conv1.weight": "decoder.up_blocks.3.resnets.2.conv1.weight",
"decoder.up.0.block.2.conv2.bias": "decoder.up_blocks.3.resnets.2.conv2.bias",
"decoder.up.0.block.2.conv2.weight": "decoder.up_blocks.3.resnets.2.conv2.weight",
"decoder.up.0.block.2.norm1.bias": "decoder.up_blocks.3.resnets.2.norm1.bias",
"decoder.up.0.block.2.norm1.weight": "decoder.up_blocks.3.resnets.2.norm1.weight",
"decoder.up.0.block.2.norm2.bias": "decoder.up_blocks.3.resnets.2.norm2.bias",
"decoder.up.0.block.2.norm2.weight": "decoder.up_blocks.3.resnets.2.norm2.weight",
"decoder.up.1.block.0.conv1.bias": "decoder.up_blocks.2.resnets.0.conv1.bias",
"decoder.up.1.block.0.conv1.weight": "decoder.up_blocks.2.resnets.0.conv1.weight",
"decoder.up.1.block.0.conv2.bias": "decoder.up_blocks.2.resnets.0.conv2.bias",
"decoder.up.1.block.0.conv2.weight": "decoder.up_blocks.2.resnets.0.conv2.weight",
"decoder.up.1.block.0.nin_shortcut.bias": "decoder.up_blocks.2.resnets.0.conv_shortcut.bias",
"decoder.up.1.block.0.nin_shortcut.weight": "decoder.up_blocks.2.resnets.0.conv_shortcut.weight",
"decoder.up.1.block.0.norm1.bias": "decoder.up_blocks.2.resnets.0.norm1.bias",
"decoder.up.1.block.0.norm1.weight": "decoder.up_blocks.2.resnets.0.norm1.weight",
"decoder.up.1.block.0.norm2.bias": "decoder.up_blocks.2.resnets.0.norm2.bias",
"decoder.up.1.block.0.norm2.weight": "decoder.up_blocks.2.resnets.0.norm2.weight",
"decoder.up.1.block.1.conv1.bias": "decoder.up_blocks.2.resnets.1.conv1.bias",
"decoder.up.1.block.1.conv1.weight": "decoder.up_blocks.2.resnets.1.conv1.weight",
"decoder.up.1.block.1.conv2.bias": "decoder.up_blocks.2.resnets.1.conv2.bias",
"decoder.up.1.block.1.conv2.weight": "decoder.up_blocks.2.resnets.1.conv2.weight",
"decoder.up.1.block.1.norm1.bias": "decoder.up_blocks.2.resnets.1.norm1.bias",
"decoder.up.1.block.1.norm1.weight": "decoder.up_blocks.2.resnets.1.norm1.weight",
"decoder.up.1.block.1.norm2.bias": "decoder.up_blocks.2.resnets.1.norm2.bias",
"decoder.up.1.block.1.norm2.weight": "decoder.up_blocks.2.resnets.1.norm2.weight",
"decoder.up.1.block.2.conv1.bias": "decoder.up_blocks.2.resnets.2.conv1.bias",
"decoder.up.1.block.2.conv1.weight": "decoder.up_blocks.2.resnets.2.conv1.weight",
"decoder.up.1.block.2.conv2.bias": "decoder.up_blocks.2.resnets.2.conv2.bias",
"decoder.up.1.block.2.conv2.weight": "decoder.up_blocks.2.resnets.2.conv2.weight",
"decoder.up.1.block.2.norm1.bias": "decoder.up_blocks.2.resnets.2.norm1.bias",
"decoder.up.1.block.2.norm1.weight": "decoder.up_blocks.2.resnets.2.norm1.weight",
"decoder.up.1.block.2.norm2.bias": "decoder.up_blocks.2.resnets.2.norm2.bias",
"decoder.up.1.block.2.norm2.weight": "decoder.up_blocks.2.resnets.2.norm2.weight",
"decoder.up.1.upsample.conv.bias": "decoder.up_blocks.2.upsamplers.0.conv.bias",
"decoder.up.1.upsample.conv.weight": "decoder.up_blocks.2.upsamplers.0.conv.weight",
"decoder.up.2.block.0.conv1.bias": "decoder.up_blocks.1.resnets.0.conv1.bias",
"decoder.up.2.block.0.conv1.weight": "decoder.up_blocks.1.resnets.0.conv1.weight",
"decoder.up.2.block.0.conv2.bias": "decoder.up_blocks.1.resnets.0.conv2.bias",
"decoder.up.2.block.0.conv2.weight": "decoder.up_blocks.1.resnets.0.conv2.weight",
"decoder.up.2.block.0.norm1.bias": "decoder.up_blocks.1.resnets.0.norm1.bias",
"decoder.up.2.block.0.norm1.weight": "decoder.up_blocks.1.resnets.0.norm1.weight",
"decoder.up.2.block.0.norm2.bias": "decoder.up_blocks.1.resnets.0.norm2.bias",
"decoder.up.2.block.0.norm2.weight": "decoder.up_blocks.1.resnets.0.norm2.weight",
"decoder.up.2.block.1.conv1.bias": "decoder.up_blocks.1.resnets.1.conv1.bias",
"decoder.up.2.block.1.conv1.weight": "decoder.up_blocks.1.resnets.1.conv1.weight",
"decoder.up.2.block.1.conv2.bias": "decoder.up_blocks.1.resnets.1.conv2.bias",
"decoder.up.2.block.1.conv2.weight": "decoder.up_blocks.1.resnets.1.conv2.weight",
"decoder.up.2.block.1.norm1.bias": "decoder.up_blocks.1.resnets.1.norm1.bias",
"decoder.up.2.block.1.norm1.weight": "decoder.up_blocks.1.resnets.1.norm1.weight",
"decoder.up.2.block.1.norm2.bias": "decoder.up_blocks.1.resnets.1.norm2.bias",
"decoder.up.2.block.1.norm2.weight": "decoder.up_blocks.1.resnets.1.norm2.weight",
"decoder.up.2.block.2.conv1.bias": "decoder.up_blocks.1.resnets.2.conv1.bias",
"decoder.up.2.block.2.conv1.weight": "decoder.up_blocks.1.resnets.2.conv1.weight",
"decoder.up.2.block.2.conv2.bias": "decoder.up_blocks.1.resnets.2.conv2.bias",
"decoder.up.2.block.2.conv2.weight": "decoder.up_blocks.1.resnets.2.conv2.weight",
"decoder.up.2.block.2.norm1.bias": "decoder.up_blocks.1.resnets.2.norm1.bias",
"decoder.up.2.block.2.norm1.weight": "decoder.up_blocks.1.resnets.2.norm1.weight",
"decoder.up.2.block.2.norm2.bias": "decoder.up_blocks.1.resnets.2.norm2.bias",
"decoder.up.2.block.2.norm2.weight": "decoder.up_blocks.1.resnets.2.norm2.weight",
"decoder.up.2.upsample.conv.bias": "decoder.up_blocks.1.upsamplers.0.conv.bias",
"decoder.up.2.upsample.conv.weight": "decoder.up_blocks.1.upsamplers.0.conv.weight",
"decoder.up.3.block.0.conv1.bias": "decoder.up_blocks.0.resnets.0.conv1.bias",
"decoder.up.3.block.0.conv1.weight": "decoder.up_blocks.0.resnets.0.conv1.weight",
"decoder.up.3.block.0.conv2.bias": "decoder.up_blocks.0.resnets.0.conv2.bias",
"decoder.up.3.block.0.conv2.weight": "decoder.up_blocks.0.resnets.0.conv2.weight",
"decoder.up.3.block.0.norm1.bias": "decoder.up_blocks.0.resnets.0.norm1.bias",
"decoder.up.3.block.0.norm1.weight": "decoder.up_blocks.0.resnets.0.norm1.weight",
"decoder.up.3.block.0.norm2.bias": "decoder.up_blocks.0.resnets.0.norm2.bias",
"decoder.up.3.block.0.norm2.weight": "decoder.up_blocks.0.resnets.0.norm2.weight",
"decoder.up.3.block.1.conv1.bias": "decoder.up_blocks.0.resnets.1.conv1.bias",
"decoder.up.3.block.1.conv1.weight": "decoder.up_blocks.0.resnets.1.conv1.weight",
"decoder.up.3.block.1.conv2.bias": "decoder.up_blocks.0.resnets.1.conv2.bias",
"decoder.up.3.block.1.conv2.weight": "decoder.up_blocks.0.resnets.1.conv2.weight",
"decoder.up.3.block.1.norm1.bias": "decoder.up_blocks.0.resnets.1.norm1.bias",
"decoder.up.3.block.1.norm1.weight": "decoder.up_blocks.0.resnets.1.norm1.weight",
"decoder.up.3.block.1.norm2.bias": "decoder.up_blocks.0.resnets.1.norm2.bias",
"decoder.up.3.block.1.norm2.weight": "decoder.up_blocks.0.resnets.1.norm2.weight",
"decoder.up.3.block.2.conv1.bias": "decoder.up_blocks.0.resnets.2.conv1.bias",
"decoder.up.3.block.2.conv1.weight": "decoder.up_blocks.0.resnets.2.conv1.weight",
"decoder.up.3.block.2.conv2.bias": "decoder.up_blocks.0.resnets.2.conv2.bias",
"decoder.up.3.block.2.conv2.weight": "decoder.up_blocks.0.resnets.2.conv2.weight",
"decoder.up.3.block.2.norm1.bias": "decoder.up_blocks.0.resnets.2.norm1.bias",
"decoder.up.3.block.2.norm1.weight": "decoder.up_blocks.0.resnets.2.norm1.weight",
"decoder.up.3.block.2.norm2.bias": "decoder.up_blocks.0.resnets.2.norm2.bias",
"decoder.up.3.block.2.norm2.weight": "decoder.up_blocks.0.resnets.2.norm2.weight",
"decoder.up.3.upsample.conv.bias": "decoder.up_blocks.0.upsamplers.0.conv.bias",
"decoder.up.3.upsample.conv.weight": "decoder.up_blocks.0.upsamplers.0.conv.weight",
"encoder.conv_in.bias": "encoder.conv_in.bias",
"encoder.conv_in.weight": "encoder.conv_in.weight",
"encoder.conv_out.bias": "encoder.conv_out.bias",
"encoder.conv_out.weight": "encoder.conv_out.weight",
"encoder.down.0.block.0.conv1.bias": "encoder.down_blocks.0.resnets.0.conv1.bias",
"encoder.down.0.block.0.conv1.weight": "encoder.down_blocks.0.resnets.0.conv1.weight",
"encoder.down.0.block.0.conv2.bias": "encoder.down_blocks.0.resnets.0.conv2.bias",
"encoder.down.0.block.0.conv2.weight": "encoder.down_blocks.0.resnets.0.conv2.weight",
"encoder.down.0.block.0.norm1.bias": "encoder.down_blocks.0.resnets.0.norm1.bias",
"encoder.down.0.block.0.norm1.weight": "encoder.down_blocks.0.resnets.0.norm1.weight",
"encoder.down.0.block.0.norm2.bias": "encoder.down_blocks.0.resnets.0.norm2.bias",
"encoder.down.0.block.0.norm2.weight": "encoder.down_blocks.0.resnets.0.norm2.weight",
"encoder.down.0.block.1.conv1.bias": "encoder.down_blocks.0.resnets.1.conv1.bias",
"encoder.down.0.block.1.conv1.weight": "encoder.down_blocks.0.resnets.1.conv1.weight",
"encoder.down.0.block.1.conv2.bias": "encoder.down_blocks.0.resnets.1.conv2.bias",
"encoder.down.0.block.1.conv2.weight": "encoder.down_blocks.0.resnets.1.conv2.weight",
"encoder.down.0.block.1.norm1.bias": "encoder.down_blocks.0.resnets.1.norm1.bias",
"encoder.down.0.block.1.norm1.weight": "encoder.down_blocks.0.resnets.1.norm1.weight",
"encoder.down.0.block.1.norm2.bias": "encoder.down_blocks.0.resnets.1.norm2.bias",
"encoder.down.0.block.1.norm2.weight": "encoder.down_blocks.0.resnets.1.norm2.weight",
"encoder.down.0.downsample.conv.bias": "encoder.down_blocks.0.downsamplers.0.conv.bias",
"encoder.down.0.downsample.conv.weight": "encoder.down_blocks.0.downsamplers.0.conv.weight",
"encoder.down.1.block.0.conv1.bias": "encoder.down_blocks.1.resnets.0.conv1.bias",
"encoder.down.1.block.0.conv1.weight": "encoder.down_blocks.1.resnets.0.conv1.weight",
"encoder.down.1.block.0.conv2.bias": "encoder.down_blocks.1.resnets.0.conv2.bias",
"encoder.down.1.block.0.conv2.weight": "encoder.down_blocks.1.resnets.0.conv2.weight",
"encoder.down.1.block.0.nin_shortcut.bias": "encoder.down_blocks.1.resnets.0.conv_shortcut.bias",
"encoder.down.1.block.0.nin_shortcut.weight": "encoder.down_blocks.1.resnets.0.conv_shortcut.weight",
"encoder.down.1.block.0.norm1.bias": "encoder.down_blocks.1.resnets.0.norm1.bias",
"encoder.down.1.block.0.norm1.weight": "encoder.down_blocks.1.resnets.0.norm1.weight",
"encoder.down.1.block.0.norm2.bias": "encoder.down_blocks.1.resnets.0.norm2.bias",
"encoder.down.1.block.0.norm2.weight": "encoder.down_blocks.1.resnets.0.norm2.weight",
"encoder.down.1.block.1.conv1.bias": "encoder.down_blocks.1.resnets.1.conv1.bias",
"encoder.down.1.block.1.conv1.weight": "encoder.down_blocks.1.resnets.1.conv1.weight",
"encoder.down.1.block.1.conv2.bias": "encoder.down_blocks.1.resnets.1.conv2.bias",
"encoder.down.1.block.1.conv2.weight": "encoder.down_blocks.1.resnets.1.conv2.weight",
"encoder.down.1.block.1.norm1.bias": "encoder.down_blocks.1.resnets.1.norm1.bias",
"encoder.down.1.block.1.norm1.weight": "encoder.down_blocks.1.resnets.1.norm1.weight",
"encoder.down.1.block.1.norm2.bias": "encoder.down_blocks.1.resnets.1.norm2.bias",
"encoder.down.1.block.1.norm2.weight": "encoder.down_blocks.1.resnets.1.norm2.weight",
"encoder.down.1.downsample.conv.bias": "encoder.down_blocks.1.downsamplers.0.conv.bias",
"encoder.down.1.downsample.conv.weight": "encoder.down_blocks.1.downsamplers.0.conv.weight",
"encoder.down.2.block.0.conv1.bias": "encoder.down_blocks.2.resnets.0.conv1.bias",
"encoder.down.2.block.0.conv1.weight": "encoder.down_blocks.2.resnets.0.conv1.weight",
"encoder.down.2.block.0.conv2.bias": "encoder.down_blocks.2.resnets.0.conv2.bias",
"encoder.down.2.block.0.conv2.weight": "encoder.down_blocks.2.resnets.0.conv2.weight",
"encoder.down.2.block.0.nin_shortcut.bias": "encoder.down_blocks.2.resnets.0.conv_shortcut.bias",
"encoder.down.2.block.0.nin_shortcut.weight": "encoder.down_blocks.2.resnets.0.conv_shortcut.weight",
"encoder.down.2.block.0.norm1.bias": "encoder.down_blocks.2.resnets.0.norm1.bias",
"encoder.down.2.block.0.norm1.weight": "encoder.down_blocks.2.resnets.0.norm1.weight",
"encoder.down.2.block.0.norm2.bias": "encoder.down_blocks.2.resnets.0.norm2.bias",
"encoder.down.2.block.0.norm2.weight": "encoder.down_blocks.2.resnets.0.norm2.weight",
"encoder.down.2.block.1.conv1.bias": "encoder.down_blocks.2.resnets.1.conv1.bias",
"encoder.down.2.block.1.conv1.weight": "encoder.down_blocks.2.resnets.1.conv1.weight",
"encoder.down.2.block.1.conv2.bias": "encoder.down_blocks.2.resnets.1.conv2.bias",
"encoder.down.2.block.1.conv2.weight": "encoder.down_blocks.2.resnets.1.conv2.weight",
"encoder.down.2.block.1.norm1.bias": "encoder.down_blocks.2.resnets.1.norm1.bias",
"encoder.down.2.block.1.norm1.weight": "encoder.down_blocks.2.resnets.1.norm1.weight",
"encoder.down.2.block.1.norm2.bias": "encoder.down_blocks.2.resnets.1.norm2.bias",
"encoder.down.2.block.1.norm2.weight": "encoder.down_blocks.2.resnets.1.norm2.weight",
"encoder.down.2.downsample.conv.bias": "encoder.down_blocks.2.downsamplers.0.conv.bias",
"encoder.down.2.downsample.conv.weight": "encoder.down_blocks.2.downsamplers.0.conv.weight",
"encoder.down.3.block.0.conv1.bias": "encoder.down_blocks.3.resnets.0.conv1.bias",
"encoder.down.3.block.0.conv1.weight": "encoder.down_blocks.3.resnets.0.conv1.weight",
"encoder.down.3.block.0.conv2.bias": "encoder.down_blocks.3.resnets.0.conv2.bias",
"encoder.down.3.block.0.conv2.weight": "encoder.down_blocks.3.resnets.0.conv2.weight",
"encoder.down.3.block.0.norm1.bias": "encoder.down_blocks.3.resnets.0.norm1.bias",
"encoder.down.3.block.0.norm1.weight": "encoder.down_blocks.3.resnets.0.norm1.weight",
"encoder.down.3.block.0.norm2.bias": "encoder.down_blocks.3.resnets.0.norm2.bias",
"encoder.down.3.block.0.norm2.weight": "encoder.down_blocks.3.resnets.0.norm2.weight",
"encoder.down.3.block.1.conv1.bias": "encoder.down_blocks.3.resnets.1.conv1.bias",
"encoder.down.3.block.1.conv1.weight": "encoder.down_blocks.3.resnets.1.conv1.weight",
"encoder.down.3.block.1.conv2.bias": "encoder.down_blocks.3.resnets.1.conv2.bias",
"encoder.down.3.block.1.conv2.weight": "encoder.down_blocks.3.resnets.1.conv2.weight",
"encoder.down.3.block.1.norm1.bias": "encoder.down_blocks.3.resnets.1.norm1.bias",
"encoder.down.3.block.1.norm1.weight": "encoder.down_blocks.3.resnets.1.norm1.weight",
"encoder.down.3.block.1.norm2.bias": "encoder.down_blocks.3.resnets.1.norm2.bias",
"encoder.down.3.block.1.norm2.weight": "encoder.down_blocks.3.resnets.1.norm2.weight",
"encoder.mid.attn_1.k.bias": "encoder.mid_block.attentions.0.to_k.bias",
"encoder.mid.attn_1.k.weight": "encoder.mid_block.attentions.0.to_k.weight",
"encoder.mid.attn_1.norm.bias": "encoder.mid_block.attentions.0.group_norm.bias",
"encoder.mid.attn_1.norm.weight": "encoder.mid_block.attentions.0.group_norm.weight",
"encoder.mid.attn_1.proj_out.bias": "encoder.mid_block.attentions.0.to_out.0.bias",
"encoder.mid.attn_1.proj_out.weight": "encoder.mid_block.attentions.0.to_out.0.weight",
"encoder.mid.attn_1.q.bias": "encoder.mid_block.attentions.0.to_q.bias",
"encoder.mid.attn_1.q.weight": "encoder.mid_block.attentions.0.to_q.weight",
"encoder.mid.attn_1.v.bias": "encoder.mid_block.attentions.0.to_v.bias",
"encoder.mid.attn_1.v.weight": "encoder.mid_block.attentions.0.to_v.weight",
"encoder.mid.block_1.conv1.bias": "encoder.mid_block.resnets.0.conv1.bias",
"encoder.mid.block_1.conv1.weight": "encoder.mid_block.resnets.0.conv1.weight",
"encoder.mid.block_1.conv2.bias": "encoder.mid_block.resnets.0.conv2.bias",
"encoder.mid.block_1.conv2.weight": "encoder.mid_block.resnets.0.conv2.weight",
"encoder.mid.block_1.norm1.bias": "encoder.mid_block.resnets.0.norm1.bias",
"encoder.mid.block_1.norm1.weight": "encoder.mid_block.resnets.0.norm1.weight",
"encoder.mid.block_1.norm2.bias": "encoder.mid_block.resnets.0.norm2.bias",
"encoder.mid.block_1.norm2.weight": "encoder.mid_block.resnets.0.norm2.weight",
"encoder.mid.block_2.conv1.bias": "encoder.mid_block.resnets.1.conv1.bias",
"encoder.mid.block_2.conv1.weight": "encoder.mid_block.resnets.1.conv1.weight",
"encoder.mid.block_2.conv2.bias": "encoder.mid_block.resnets.1.conv2.bias",
"encoder.mid.block_2.conv2.weight": "encoder.mid_block.resnets.1.conv2.weight",
"encoder.mid.block_2.norm1.bias": "encoder.mid_block.resnets.1.norm1.bias",
"encoder.mid.block_2.norm1.weight": "encoder.mid_block.resnets.1.norm1.weight",
"encoder.mid.block_2.norm2.bias": "encoder.mid_block.resnets.1.norm2.bias",
"encoder.mid.block_2.norm2.weight": "encoder.mid_block.resnets.1.norm2.weight",
"encoder.norm_out.bias": "encoder.conv_norm_out.bias",
"encoder.norm_out.weight": "encoder.conv_norm_out.weight",
"post_quant_conv.bias": "post_quant_conv.bias",
"post_quant_conv.weight": "post_quant_conv.weight",
"quant_conv.bias": "quant_conv.bias",
"quant_conv.weight": "quant_conv.weight"
}
def get_diffusers_vae_key_from_ldm_key(target_ldm_key, i=None):
for ldm_key, diffusers_key in vae_ldm_to_diffusers_dict.items():
if i is not None:
ldm_key = ldm_key.replace("{i}", str(i))
diffusers_key = diffusers_key.replace("{i}", str(i))
if ldm_key == target_ldm_key:
return diffusers_key
if ldm_key in vae_ldm_to_diffusers_dict:
return vae_ldm_to_diffusers_dict[ldm_key]
else:
return None
# def get_ldm_vae_key_from_diffusers_key(target_diffusers_key):
# for ldm_key, diffusers_key in vae_ldm_to_diffusers_dict.items():
# if diffusers_key == target_diffusers_key:
# return ldm_key
# return None
def get_ldm_vae_key_from_diffusers_key(target_diffusers_key):
for ldm_key, diffusers_key in vae_ldm_to_diffusers_dict.items():
if "{" in diffusers_key: # if we have a placeholder
# escape special characters in the key, and replace the placeholder with a regex group
pattern = re.escape(diffusers_key).replace("\\{i\\}", "(\\d+)")
match = re.match(pattern, target_diffusers_key)
if match: # if we found a match
return ldm_key.format(i=match.group(1))
elif diffusers_key == target_diffusers_key:
return ldm_key
return None
vae_keys_squished_on_diffusers = [
"decoder.mid_block.attentions.0.to_k.weight",
"decoder.mid_block.attentions.0.to_out.0.weight",
"decoder.mid_block.attentions.0.to_q.weight",
"decoder.mid_block.attentions.0.to_v.weight",
"encoder.mid_block.attentions.0.to_k.weight",
"encoder.mid_block.attentions.0.to_out.0.weight",
"encoder.mid_block.attentions.0.to_q.weight",
"encoder.mid_block.attentions.0.to_v.weight"
]
def convert_diffusers_back_to_ldm(diffusers_vae):
new_state_dict = OrderedDict()
diffusers_state_dict = diffusers_vae.state_dict()
for key, value in diffusers_state_dict.items():
val_to_save = value
if key in vae_keys_squished_on_diffusers:
val_to_save = value.clone()
# (512, 512) diffusers and (512, 512, 1, 1) ldm
val_to_save = val_to_save.unsqueeze(-1).unsqueeze(-1)
ldm_key = get_ldm_vae_key_from_diffusers_key(key)
if ldm_key is not None:
new_state_dict[ldm_key] = val_to_save
else:
# for now add current key
new_state_dict[key] = val_to_save
return new_state_dict
def convert_ldm_vae_checkpoint(checkpoint, config):
mapping = {}
# extract state dict for VAE
vae_state_dict = {}
vae_key = "first_stage_model."
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(vae_key):
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
# if len(vae_state_dict) == 0:
# # 渡されたcheckpointは.ckptから読み込んだcheckpointではなくvaeのstate_dict
# vae_state_dict = checkpoint
new_checkpoint = {}
# for key in list(vae_state_dict.keys()):
# diffusers_key = get_diffusers_vae_key_from_ldm_key(key)
# if diffusers_key is not None:
# new_checkpoint[diffusers_key] = vae_state_dict[key]
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
# Retrieves the keys for the encoder down blocks only
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
down_blocks = {layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in
range(num_down_blocks)}
# Retrieves the keys for the decoder up blocks only
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
up_blocks = {layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in
range(num_up_blocks)}
for i in range(num_down_blocks):
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.weight"
)
mapping[f"encoder.down.{i}.downsample.conv.weight"] = f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.bias"
)
mapping[f"encoder.down.{i}.downsample.conv.bias"] = f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
for i in range(num_up_blocks):
block_id = num_up_blocks - 1 - i
resnets = [key for key in up_blocks[block_id] if
f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key]
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.weight"
]
mapping[f"decoder.up.{block_id}.upsample.conv.weight"] = f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.bias"
]
mapping[f"decoder.up.{block_id}.upsample.conv.bias"] = f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
conv_attn_to_linear(new_checkpoint)
return new_checkpoint
def create_unet_diffusers_config(v2, use_linear_projection_in_v2=False):
"""
Creates a config for the diffusers based on the config of the LDM model.
"""
# unet_params = original_config.model.params.unet_config.params
block_out_channels = [UNET_PARAMS_MODEL_CHANNELS * mult for mult in UNET_PARAMS_CHANNEL_MULT]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
block_type = "CrossAttnDownBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "DownBlock2D"
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
block_type = "CrossAttnUpBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
config = dict(
sample_size=UNET_PARAMS_IMAGE_SIZE,
in_channels=UNET_PARAMS_IN_CHANNELS,
out_channels=UNET_PARAMS_OUT_CHANNELS,
down_block_types=tuple(down_block_types),
up_block_types=tuple(up_block_types),
block_out_channels=tuple(block_out_channels),
layers_per_block=UNET_PARAMS_NUM_RES_BLOCKS,
cross_attention_dim=UNET_PARAMS_CONTEXT_DIM if not v2 else V2_UNET_PARAMS_CONTEXT_DIM,
attention_head_dim=UNET_PARAMS_NUM_HEADS if not v2 else V2_UNET_PARAMS_ATTENTION_HEAD_DIM,
# use_linear_projection=UNET_PARAMS_USE_LINEAR_PROJECTION if not v2 else V2_UNET_PARAMS_USE_LINEAR_PROJECTION,
)
if v2 and use_linear_projection_in_v2:
config["use_linear_projection"] = True
return config
def create_vae_diffusers_config():
"""
Creates a config for the diffusers based on the config of the LDM model.
"""
# vae_params = original_config.model.params.first_stage_config.params.ddconfig
# _ = original_config.model.params.first_stage_config.params.embed_dim
block_out_channels = [VAE_PARAMS_CH * mult for mult in VAE_PARAMS_CH_MULT]
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
config = dict(
sample_size=VAE_PARAMS_RESOLUTION,
in_channels=VAE_PARAMS_IN_CHANNELS,
out_channels=VAE_PARAMS_OUT_CH,
down_block_types=tuple(down_block_types),
up_block_types=tuple(up_block_types),
block_out_channels=tuple(block_out_channels),
latent_channels=VAE_PARAMS_Z_CHANNELS,
layers_per_block=VAE_PARAMS_NUM_RES_BLOCKS,
)
return config
def convert_ldm_clip_checkpoint_v1(checkpoint):
keys = list(checkpoint.keys())
text_model_dict = {}
for key in keys:
if key.startswith("cond_stage_model.transformer"):
text_model_dict[key[len("cond_stage_model.transformer."):]] = checkpoint[key]
# support checkpoint without position_ids (invalid checkpoint)
if "text_model.embeddings.position_ids" not in text_model_dict:
text_model_dict["text_model.embeddings.position_ids"] = torch.arange(77).unsqueeze(0) # 77 is the max length of the text
return text_model_dict
def convert_ldm_clip_checkpoint_v2(checkpoint, max_length):
# 嫌になるくらい違うぞ!
def convert_key(key):
if not key.startswith("cond_stage_model"):
return None
# common conversion
key = key.replace("cond_stage_model.model.transformer.", "text_model.encoder.")
key = key.replace("cond_stage_model.model.", "text_model.")
if "resblocks" in key:
# resblocks conversion
key = key.replace(".resblocks.", ".layers.")
if ".ln_" in key:
key = key.replace(".ln_", ".layer_norm")
elif ".mlp." in key:
key = key.replace(".c_fc.", ".fc1.")
key = key.replace(".c_proj.", ".fc2.")
elif ".attn.out_proj" in key:
key = key.replace(".attn.out_proj.", ".self_attn.out_proj.")
elif ".attn.in_proj" in key:
key = None # 特殊なので後で処理する
else:
raise ValueError(f"unexpected key in SD: {key}")
elif ".positional_embedding" in key:
key = key.replace(".positional_embedding", ".embeddings.position_embedding.weight")
elif ".text_projection" in key:
key = None # 使われない???
elif ".logit_scale" in key:
key = None # 使われない???
elif ".token_embedding" in key:
key = key.replace(".token_embedding.weight", ".embeddings.token_embedding.weight")
elif ".ln_final" in key:
key = key.replace(".ln_final", ".final_layer_norm")
return key
keys = list(checkpoint.keys())
new_sd = {}
for key in keys:
# remove resblocks 23
if ".resblocks.23." in key:
continue
new_key = convert_key(key)
if new_key is None:
continue
new_sd[new_key] = checkpoint[key]
# attnの変換
for key in keys:
if ".resblocks.23." in key:
continue
if ".resblocks" in key and ".attn.in_proj_" in key:
# 三つに分割
values = torch.chunk(checkpoint[key], 3)
key_suffix = ".weight" if "weight" in key else ".bias"
key_pfx = key.replace("cond_stage_model.model.transformer.resblocks.", "text_model.encoder.layers.")
key_pfx = key_pfx.replace("_weight", "")
key_pfx = key_pfx.replace("_bias", "")
key_pfx = key_pfx.replace(".attn.in_proj", ".self_attn.")
new_sd[key_pfx + "q_proj" + key_suffix] = values[0]
new_sd[key_pfx + "k_proj" + key_suffix] = values[1]
new_sd[key_pfx + "v_proj" + key_suffix] = values[2]
# rename or add position_ids
ANOTHER_POSITION_IDS_KEY = "text_model.encoder.text_model.embeddings.position_ids"
if ANOTHER_POSITION_IDS_KEY in new_sd:
# waifu diffusion v1.4
position_ids = new_sd[ANOTHER_POSITION_IDS_KEY]
del new_sd[ANOTHER_POSITION_IDS_KEY]
else:
position_ids = torch.Tensor([list(range(max_length))]).to(torch.int64)
new_sd["text_model.embeddings.position_ids"] = position_ids
return new_sd
# endregion
# region Diffusers->StableDiffusion の変換コード
# convert_diffusers_to_original_stable_diffusion をコピーして修正している(ASL 2.0)
def conv_transformer_to_linear(checkpoint):
keys = list(checkpoint.keys())
tf_keys = ["proj_in.weight", "proj_out.weight"]
for key in keys:
if ".".join(key.split(".")[-2:]) in tf_keys:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0, 0]
def convert_unet_state_dict_to_sd(v2, unet_state_dict):
unet_conversion_map = [
# (stable-diffusion, HF Diffusers)
("time_embed.0.weight", "time_embedding.linear_1.weight"),
("time_embed.0.bias", "time_embedding.linear_1.bias"),
("time_embed.2.weight", "time_embedding.linear_2.weight"),
("time_embed.2.bias", "time_embedding.linear_2.bias"),
("input_blocks.0.0.weight", "conv_in.weight"),
("input_blocks.0.0.bias", "conv_in.bias"),
("out.0.weight", "conv_norm_out.weight"),
("out.0.bias", "conv_norm_out.bias"),
("out.2.weight", "conv_out.weight"),
("out.2.bias", "conv_out.bias"),
]
unet_conversion_map_resnet = [
# (stable-diffusion, HF Diffusers)
("in_layers.0", "norm1"),
("in_layers.2", "conv1"),
("out_layers.0", "norm2"),
("out_layers.3", "conv2"),
("emb_layers.1", "time_emb_proj"),
("skip_connection", "conv_shortcut"),
]
unet_conversion_map_layer = []
for i in range(4):
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
sd_down_res_prefix = f"input_blocks.{3 * i + j + 1}.0."
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
sd_down_atn_prefix = f"input_blocks.{3 * i + j + 1}.1."
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
sd_up_res_prefix = f"output_blocks.{3 * i + j}.0."
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
if i > 0:
# no attention layers in up_blocks.0
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
sd_up_atn_prefix = f"output_blocks.{3 * i + j}.1."
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
sd_downsample_prefix = f"input_blocks.{3 * (i + 1)}.0.op."
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
sd_upsample_prefix = f"output_blocks.{3 * i + 2}.{1 if i == 0 else 2}."
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
hf_mid_atn_prefix = "mid_block.attentions.0."
sd_mid_atn_prefix = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
hf_mid_res_prefix = f"mid_block.resnets.{j}."
sd_mid_res_prefix = f"middle_block.{2 * j}."
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
# buyer beware: this is a *brittle* function,
# and correct output requires that all of these pieces interact in
# the exact order in which I have arranged them.
mapping = {k: k for k in unet_state_dict.keys()}
for sd_name, hf_name in unet_conversion_map:
mapping[hf_name] = sd_name
for k, v in mapping.items():
if "resnets" in k:
for sd_part, hf_part in unet_conversion_map_resnet:
v = v.replace(hf_part, sd_part)
mapping[k] = v
for k, v in mapping.items():
for sd_part, hf_part in unet_conversion_map_layer:
v = v.replace(hf_part, sd_part)
mapping[k] = v
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
if v2:
conv_transformer_to_linear(new_state_dict)
return new_state_dict
# ================#
# VAE Conversion #
# ================#
def reshape_weight_for_sd(w):
# convert HF linear weights to SD conv2d weights
return w.reshape(*w.shape, 1, 1)
def convert_vae_state_dict(vae_state_dict):
vae_conversion_map = [
# (stable-diffusion, HF Diffusers)
("nin_shortcut", "conv_shortcut"),
("norm_out", "conv_norm_out"),
("mid.attn_1.", "mid_block.attentions.0."),
]
for i in range(4):
# down_blocks have two resnets
for j in range(2):
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
sd_down_prefix = f"encoder.down.{i}.block.{j}."
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
if i < 3:
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
sd_downsample_prefix = f"down.{i}.downsample."
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
sd_upsample_prefix = f"up.{3 - i}.upsample."
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
# up_blocks have three resnets
# also, up blocks in hf are numbered in reverse from sd
for j in range(3):
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
sd_up_prefix = f"decoder.up.{3 - i}.block.{j}."
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
# this part accounts for mid blocks in both the encoder and the decoder
for i in range(2):
hf_mid_res_prefix = f"mid_block.resnets.{i}."
sd_mid_res_prefix = f"mid.block_{i + 1}."
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
vae_conversion_map_attn = [
# (stable-diffusion, HF Diffusers)
("norm.", "group_norm."),
("q.", "query."),
("k.", "key."),
("v.", "value."),
("proj_out.", "proj_attn."),
]
mapping = {k: k for k in vae_state_dict.keys()}
for k, v in mapping.items():
for sd_part, hf_part in vae_conversion_map:
v = v.replace(hf_part, sd_part)
mapping[k] = v
for k, v in mapping.items():
if "attentions" in k:
for sd_part, hf_part in vae_conversion_map_attn:
v = v.replace(hf_part, sd_part)
mapping[k] = v
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
weights_to_convert = ["q", "k", "v", "proj_out"]
for k, v in new_state_dict.items():
for weight_name in weights_to_convert:
if f"mid.attn_1.{weight_name}.weight" in k:
# print(f"Reshaping {k} for SD format")
new_state_dict[k] = reshape_weight_for_sd(v)
return new_state_dict
# endregion
# region 自作のモデル読み書きなど
def is_safetensors(path):
return os.path.splitext(path)[1].lower() == ".safetensors"
def load_checkpoint_with_text_encoder_conversion(ckpt_path, device="cpu"):
# text encoderの格納形式が違うモデルに対応する ('text_model'がない)
TEXT_ENCODER_KEY_REPLACEMENTS = [
("cond_stage_model.transformer.embeddings.", "cond_stage_model.transformer.text_model.embeddings."),
("cond_stage_model.transformer.encoder.", "cond_stage_model.transformer.text_model.encoder."),
("cond_stage_model.transformer.final_layer_norm.", "cond_stage_model.transformer.text_model.final_layer_norm."),
]
if is_safetensors(ckpt_path):
checkpoint = None
state_dict = load_file(ckpt_path) # , device) # may causes error
else:
checkpoint = torch.load(ckpt_path, map_location=device)
if "state_dict" in checkpoint:
state_dict = checkpoint["state_dict"]
else:
state_dict = checkpoint
checkpoint = None
key_reps = []
for rep_from, rep_to in TEXT_ENCODER_KEY_REPLACEMENTS:
for key in state_dict.keys():
if key.startswith(rep_from):
new_key = rep_to + key[len(rep_from):]
key_reps.append((key, new_key))
for key, new_key in key_reps:
state_dict[new_key] = state_dict[key]
del state_dict[key]
return checkpoint, state_dict
# TODO dtype指定の動作が怪しいので確認する text_encoderを指定形式で作れるか未確認
def load_models_from_stable_diffusion_checkpoint(v2, ckpt_path, device="cpu", dtype=None,
unet_use_linear_projection_in_v2=False):
_, state_dict = load_checkpoint_with_text_encoder_conversion(ckpt_path, device)
# Convert the UNet2DConditionModel model.
unet_config = create_unet_diffusers_config(v2, unet_use_linear_projection_in_v2)
converted_unet_checkpoint = convert_ldm_unet_checkpoint(v2, state_dict, unet_config)
unet = UNet2DConditionModel(**unet_config).to(device)
info = unet.load_state_dict(converted_unet_checkpoint)
print("loading u-net:", info)
# Convert the VAE model.
vae_config = create_vae_diffusers_config()
converted_vae_checkpoint = convert_ldm_vae_checkpoint(state_dict, vae_config)
vae = AutoencoderKL(**vae_config).to(device)
info = vae.load_state_dict(converted_vae_checkpoint)
print("loading vae:", info)
# convert text_model
if v2:
converted_text_encoder_checkpoint = convert_ldm_clip_checkpoint_v2(state_dict, 77)
cfg = CLIPTextConfig(
vocab_size=49408,
hidden_size=1024,
intermediate_size=4096,
num_hidden_layers=23,
num_attention_heads=16,
max_position_embeddings=77,
hidden_act="gelu",
layer_norm_eps=1e-05,
dropout=0.0,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
model_type="clip_text_model",
projection_dim=512,
torch_dtype="float32",
transformers_version="4.25.0.dev0",
)
text_model = CLIPTextModel._from_config(cfg)
info = text_model.load_state_dict(converted_text_encoder_checkpoint)
else:
converted_text_encoder_checkpoint = convert_ldm_clip_checkpoint_v1(state_dict)
logging.set_verbosity_error() # don't show annoying warning
text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14").to(device)
logging.set_verbosity_warning()
# latest transformers doesnt have position ids. Do we remove it?
if "text_model.embeddings.position_ids" not in text_model.state_dict():
del converted_text_encoder_checkpoint["text_model.embeddings.position_ids"]
info = text_model.load_state_dict(converted_text_encoder_checkpoint)
print("loading text encoder:", info)
return text_model, vae, unet
def convert_text_encoder_state_dict_to_sd_v2(checkpoint, make_dummy_weights=False):
def convert_key(key):
# position_idsの除去
if ".position_ids" in key:
return None
# common
key = key.replace("text_model.encoder.", "transformer.")
key = key.replace("text_model.", "")
if "layers" in key:
# resblocks conversion
key = key.replace(".layers.", ".resblocks.")
if ".layer_norm" in key:
key = key.replace(".layer_norm", ".ln_")
elif ".mlp." in key:
key = key.replace(".fc1.", ".c_fc.")
key = key.replace(".fc2.", ".c_proj.")
elif ".self_attn.out_proj" in key:
key = key.replace(".self_attn.out_proj.", ".attn.out_proj.")
elif ".self_attn." in key:
key = None # 特殊なので後で処理する
else:
raise ValueError(f"unexpected key in DiffUsers model: {key}")
elif ".position_embedding" in key:
key = key.replace("embeddings.position_embedding.weight", "positional_embedding")
elif ".token_embedding" in key:
key = key.replace("embeddings.token_embedding.weight", "token_embedding.weight")
elif "final_layer_norm" in key:
key = key.replace("final_layer_norm", "ln_final")
return key
keys = list(checkpoint.keys())
new_sd = {}
for key in keys:
new_key = convert_key(key)
if new_key is None:
continue
new_sd[new_key] = checkpoint[key]
# attnの変換
for key in keys:
if "layers" in key and "q_proj" in key:
# 三つを結合
key_q = key
key_k = key.replace("q_proj", "k_proj")
key_v = key.replace("q_proj", "v_proj")
value_q = checkpoint[key_q]
value_k = checkpoint[key_k]
value_v = checkpoint[key_v]
value = torch.cat([value_q, value_k, value_v])
new_key = key.replace("text_model.encoder.layers.", "transformer.resblocks.")
new_key = new_key.replace(".self_attn.q_proj.", ".attn.in_proj_")
new_sd[new_key] = value
# 最後の層などを捏造するか
if make_dummy_weights:
print("make dummy weights for resblock.23, text_projection and logit scale.")
keys = list(new_sd.keys())
for key in keys:
if key.startswith("transformer.resblocks.22."):
new_sd[key.replace(".22.", ".23.")] = new_sd[key].clone() # copyしないとsafetensorsの保存で落ちる
# Diffusersに含まれない重みを作っておく
new_sd["text_projection"] = torch.ones((1024, 1024), dtype=new_sd[keys[0]].dtype, device=new_sd[keys[0]].device)
new_sd["logit_scale"] = torch.tensor(1)
return new_sd
def save_stable_diffusion_checkpoint(v2, output_file, text_encoder, unet, ckpt_path, epochs, steps, save_dtype=None,
vae=None):
if ckpt_path is not None:
# epoch/stepを参照する。またVAEがメモリ上にないときなど、もう一度VAEを含めて読み込む
checkpoint, state_dict = load_checkpoint_with_text_encoder_conversion(ckpt_path)
if checkpoint is None: # safetensors または state_dictのckpt
checkpoint = {}
strict = False
else:
strict = True
if "state_dict" in state_dict:
del state_dict["state_dict"]
else:
# 新しく作る
assert vae is not None, "VAE is required to save a checkpoint without a given checkpoint"
checkpoint = {}
state_dict = {}
strict = False
def update_sd(prefix, sd):
for k, v in sd.items():
key = prefix + k
assert not strict or key in state_dict, f"Illegal key in save SD: {key}"
if save_dtype is not None:
v = v.detach().clone().to("cpu").to(save_dtype)
state_dict[key] = v
# Convert the UNet model
unet_state_dict = convert_unet_state_dict_to_sd(v2, unet.state_dict())
update_sd("model.diffusion_model.", unet_state_dict)
# Convert the text encoder model
if v2:
make_dummy = ckpt_path is None # 参照元のcheckpointがない場合は最後の層を前の層から複製して作るなどダミーの重みを入れる
text_enc_dict = convert_text_encoder_state_dict_to_sd_v2(text_encoder.state_dict(), make_dummy)
update_sd("cond_stage_model.model.", text_enc_dict)
else:
text_enc_dict = text_encoder.state_dict()
update_sd("cond_stage_model.transformer.", text_enc_dict)
# Convert the VAE
if vae is not None:
vae_dict = convert_vae_state_dict(vae.state_dict())
update_sd("first_stage_model.", vae_dict)
# Put together new checkpoint
key_count = len(state_dict.keys())
new_ckpt = {"state_dict": state_dict}
# epoch and global_step are sometimes not int
try:
if "epoch" in checkpoint:
epochs += checkpoint["epoch"]
if "global_step" in checkpoint:
steps += checkpoint["global_step"]
except:
pass
new_ckpt["epoch"] = epochs
new_ckpt["global_step"] = steps
if is_safetensors(output_file):
# TODO Tensor以外のdictの値を削除したほうがいいか
save_file(state_dict, output_file)
else:
torch.save(new_ckpt, output_file)
return key_count
def save_diffusers_checkpoint(v2, output_dir, text_encoder, unet, pretrained_model_name_or_path, vae=None,
use_safetensors=False):
if pretrained_model_name_or_path is None:
# load default settings for v1/v2
if v2:
pretrained_model_name_or_path = DIFFUSERS_REF_MODEL_ID_V2
else:
pretrained_model_name_or_path = DIFFUSERS_REF_MODEL_ID_V1
scheduler = DDIMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler")
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer")
if vae is None:
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
pipeline = StableDiffusionPipeline(
unet=unet,
text_encoder=text_encoder,
vae=vae,
scheduler=scheduler,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=None,
)
pipeline.save_pretrained(output_dir, safe_serialization=use_safetensors)
VAE_PREFIX = "first_stage_model."
def load_vae(vae_id, dtype):
print(f"load VAE: {vae_id}")
if os.path.isdir(vae_id) or not os.path.isfile(vae_id):
# Diffusers local/remote
try:
vae = AutoencoderKL.from_pretrained(vae_id, subfolder=None, torch_dtype=dtype)
except EnvironmentError as e:
print(f"exception occurs in loading vae: {e}")
print("retry with subfolder='vae'")
vae = AutoencoderKL.from_pretrained(vae_id, subfolder="vae", torch_dtype=dtype)
return vae
# local
vae_config = create_vae_diffusers_config()
if vae_id.endswith(".bin"):
# SD 1.5 VAE on Huggingface
converted_vae_checkpoint = torch.load(vae_id, map_location="cpu")
else:
# StableDiffusion
vae_model = load_file(vae_id, "cpu") if is_safetensors(vae_id) else torch.load(vae_id, map_location="cpu")
vae_sd = vae_model["state_dict"] if "state_dict" in vae_model else vae_model
# vae only or full model
full_model = False
for vae_key in vae_sd:
if vae_key.startswith(VAE_PREFIX):
full_model = True
break
if not full_model:
sd = {}
for key, value in vae_sd.items():
sd[VAE_PREFIX + key] = value
vae_sd = sd
del sd
# Convert the VAE model.
converted_vae_checkpoint = convert_ldm_vae_checkpoint(vae_sd, vae_config)
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint)
return vae
# endregion
def make_bucket_resolutions(max_reso, min_size=256, max_size=1024, divisible=64):
max_width, max_height = max_reso
max_area = (max_width // divisible) * (max_height // divisible)
resos = set()
size = int(math.sqrt(max_area)) * divisible
resos.add((size, size))
size = min_size
while size <= max_size:
width = size
height = min(max_size, (max_area // (width // divisible)) * divisible)
resos.add((width, height))
resos.add((height, width))
# # make additional resos
# if width >= height and width - divisible >= min_size:
# resos.add((width - divisible, height))
# resos.add((height, width - divisible))
# if height >= width and height - divisible >= min_size:
# resos.add((width, height - divisible))
# resos.add((height - divisible, width))
size += divisible
resos = list(resos)
resos.sort()
return resos
if __name__ == "__main__":
resos = make_bucket_resolutions((512, 768))
print(len(resos))
print(resos)
aspect_ratios = [w / h for w, h in resos]
print(aspect_ratios)
ars = set()
for ar in aspect_ratios:
if ar in ars:
print("error! duplicate ar:", ar)
ars.add(ar)
|