File size: 22,456 Bytes
1ba389d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
import os
from typing import Optional, TYPE_CHECKING, List, Union, Tuple
import torch
from safetensors.torch import load_file, save_file
from tqdm import tqdm
import random
from toolkit.train_tools import get_torch_dtype
import itertools
if TYPE_CHECKING:
from toolkit.config_modules import SliderTargetConfig
class ACTION_TYPES_SLIDER:
ERASE_NEGATIVE = 0
ENHANCE_NEGATIVE = 1
class PromptEmbeds:
# text_embeds: torch.Tensor
# pooled_embeds: Union[torch.Tensor, None]
# attention_mask: Union[torch.Tensor, None]
def __init__(self, args: Union[Tuple[torch.Tensor], List[torch.Tensor], torch.Tensor], attention_mask=None) -> None:
if isinstance(args, list) or isinstance(args, tuple):
# xl
self.text_embeds = args[0]
self.pooled_embeds = args[1]
else:
# sdv1.x, sdv2.x
self.text_embeds = args
self.pooled_embeds = None
self.attention_mask = attention_mask
def to(self, *args, **kwargs):
self.text_embeds = self.text_embeds.to(*args, **kwargs)
if self.pooled_embeds is not None:
self.pooled_embeds = self.pooled_embeds.to(*args, **kwargs)
if self.attention_mask is not None:
self.attention_mask = self.attention_mask.to(*args, **kwargs)
return self
def detach(self):
new_embeds = self.clone()
new_embeds.text_embeds = new_embeds.text_embeds.detach()
if new_embeds.pooled_embeds is not None:
new_embeds.pooled_embeds = new_embeds.pooled_embeds.detach()
if new_embeds.attention_mask is not None:
new_embeds.attention_mask = new_embeds.attention_mask.detach()
return new_embeds
def clone(self):
if self.pooled_embeds is not None:
prompt_embeds = PromptEmbeds([self.text_embeds.clone(), self.pooled_embeds.clone()])
else:
prompt_embeds = PromptEmbeds(self.text_embeds.clone())
if self.attention_mask is not None:
prompt_embeds.attention_mask = self.attention_mask.clone()
return prompt_embeds
class EncodedPromptPair:
def __init__(
self,
target_class,
target_class_with_neutral,
positive_target,
positive_target_with_neutral,
negative_target,
negative_target_with_neutral,
neutral,
empty_prompt,
both_targets,
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
action_list=None,
multiplier=1.0,
multiplier_list=None,
weight=1.0,
target: 'SliderTargetConfig' = None,
):
self.target_class: PromptEmbeds = target_class
self.target_class_with_neutral: PromptEmbeds = target_class_with_neutral
self.positive_target: PromptEmbeds = positive_target
self.positive_target_with_neutral: PromptEmbeds = positive_target_with_neutral
self.negative_target: PromptEmbeds = negative_target
self.negative_target_with_neutral: PromptEmbeds = negative_target_with_neutral
self.neutral: PromptEmbeds = neutral
self.empty_prompt: PromptEmbeds = empty_prompt
self.both_targets: PromptEmbeds = both_targets
self.multiplier: float = multiplier
self.target: 'SliderTargetConfig' = target
if multiplier_list is not None:
self.multiplier_list: list[float] = multiplier_list
else:
self.multiplier_list: list[float] = [multiplier]
self.action: int = action
if action_list is not None:
self.action_list: list[int] = action_list
else:
self.action_list: list[int] = [action]
self.weight: float = weight
# simulate torch to for tensors
def to(self, *args, **kwargs):
self.target_class = self.target_class.to(*args, **kwargs)
self.target_class_with_neutral = self.target_class_with_neutral.to(*args, **kwargs)
self.positive_target = self.positive_target.to(*args, **kwargs)
self.positive_target_with_neutral = self.positive_target_with_neutral.to(*args, **kwargs)
self.negative_target = self.negative_target.to(*args, **kwargs)
self.negative_target_with_neutral = self.negative_target_with_neutral.to(*args, **kwargs)
self.neutral = self.neutral.to(*args, **kwargs)
self.empty_prompt = self.empty_prompt.to(*args, **kwargs)
self.both_targets = self.both_targets.to(*args, **kwargs)
return self
def detach(self):
self.target_class = self.target_class.detach()
self.target_class_with_neutral = self.target_class_with_neutral.detach()
self.positive_target = self.positive_target.detach()
self.positive_target_with_neutral = self.positive_target_with_neutral.detach()
self.negative_target = self.negative_target.detach()
self.negative_target_with_neutral = self.negative_target_with_neutral.detach()
self.neutral = self.neutral.detach()
self.empty_prompt = self.empty_prompt.detach()
self.both_targets = self.both_targets.detach()
return self
def concat_prompt_embeds(prompt_embeds: list[PromptEmbeds]):
text_embeds = torch.cat([p.text_embeds for p in prompt_embeds], dim=0)
pooled_embeds = None
if prompt_embeds[0].pooled_embeds is not None:
pooled_embeds = torch.cat([p.pooled_embeds for p in prompt_embeds], dim=0)
return PromptEmbeds([text_embeds, pooled_embeds])
def concat_prompt_pairs(prompt_pairs: list[EncodedPromptPair]):
weight = prompt_pairs[0].weight
target_class = concat_prompt_embeds([p.target_class for p in prompt_pairs])
target_class_with_neutral = concat_prompt_embeds([p.target_class_with_neutral for p in prompt_pairs])
positive_target = concat_prompt_embeds([p.positive_target for p in prompt_pairs])
positive_target_with_neutral = concat_prompt_embeds([p.positive_target_with_neutral for p in prompt_pairs])
negative_target = concat_prompt_embeds([p.negative_target for p in prompt_pairs])
negative_target_with_neutral = concat_prompt_embeds([p.negative_target_with_neutral for p in prompt_pairs])
neutral = concat_prompt_embeds([p.neutral for p in prompt_pairs])
empty_prompt = concat_prompt_embeds([p.empty_prompt for p in prompt_pairs])
both_targets = concat_prompt_embeds([p.both_targets for p in prompt_pairs])
# combine all the lists
action_list = []
multiplier_list = []
weight_list = []
for p in prompt_pairs:
action_list += p.action_list
multiplier_list += p.multiplier_list
return EncodedPromptPair(
target_class=target_class,
target_class_with_neutral=target_class_with_neutral,
positive_target=positive_target,
positive_target_with_neutral=positive_target_with_neutral,
negative_target=negative_target,
negative_target_with_neutral=negative_target_with_neutral,
neutral=neutral,
empty_prompt=empty_prompt,
both_targets=both_targets,
action_list=action_list,
multiplier_list=multiplier_list,
weight=weight,
target=prompt_pairs[0].target
)
def split_prompt_embeds(concatenated: PromptEmbeds, num_parts=None) -> List[PromptEmbeds]:
if num_parts is None:
# use batch size
num_parts = concatenated.text_embeds.shape[0]
text_embeds_splits = torch.chunk(concatenated.text_embeds, num_parts, dim=0)
if concatenated.pooled_embeds is not None:
pooled_embeds_splits = torch.chunk(concatenated.pooled_embeds, num_parts, dim=0)
else:
pooled_embeds_splits = [None] * num_parts
prompt_embeds_list = [
PromptEmbeds([text, pooled])
for text, pooled in zip(text_embeds_splits, pooled_embeds_splits)
]
return prompt_embeds_list
def split_prompt_pairs(concatenated: EncodedPromptPair, num_embeds=None) -> List[EncodedPromptPair]:
target_class_splits = split_prompt_embeds(concatenated.target_class, num_embeds)
target_class_with_neutral_splits = split_prompt_embeds(concatenated.target_class_with_neutral, num_embeds)
positive_target_splits = split_prompt_embeds(concatenated.positive_target, num_embeds)
positive_target_with_neutral_splits = split_prompt_embeds(concatenated.positive_target_with_neutral, num_embeds)
negative_target_splits = split_prompt_embeds(concatenated.negative_target, num_embeds)
negative_target_with_neutral_splits = split_prompt_embeds(concatenated.negative_target_with_neutral, num_embeds)
neutral_splits = split_prompt_embeds(concatenated.neutral, num_embeds)
empty_prompt_splits = split_prompt_embeds(concatenated.empty_prompt, num_embeds)
both_targets_splits = split_prompt_embeds(concatenated.both_targets, num_embeds)
prompt_pairs = []
for i in range(len(target_class_splits)):
action_list_split = concatenated.action_list[i::len(target_class_splits)]
multiplier_list_split = concatenated.multiplier_list[i::len(target_class_splits)]
prompt_pair = EncodedPromptPair(
target_class=target_class_splits[i],
target_class_with_neutral=target_class_with_neutral_splits[i],
positive_target=positive_target_splits[i],
positive_target_with_neutral=positive_target_with_neutral_splits[i],
negative_target=negative_target_splits[i],
negative_target_with_neutral=negative_target_with_neutral_splits[i],
neutral=neutral_splits[i],
empty_prompt=empty_prompt_splits[i],
both_targets=both_targets_splits[i],
action_list=action_list_split,
multiplier_list=multiplier_list_split,
weight=concatenated.weight,
target=concatenated.target
)
prompt_pairs.append(prompt_pair)
return prompt_pairs
class PromptEmbedsCache:
prompts: dict[str, PromptEmbeds] = {}
def __setitem__(self, __name: str, __value: PromptEmbeds) -> None:
self.prompts[__name] = __value
def __getitem__(self, __name: str) -> Optional[PromptEmbeds]:
if __name in self.prompts:
return self.prompts[__name]
else:
return None
class EncodedAnchor:
def __init__(
self,
prompt,
neg_prompt,
multiplier=1.0,
multiplier_list=None
):
self.prompt = prompt
self.neg_prompt = neg_prompt
self.multiplier = multiplier
if multiplier_list is not None:
self.multiplier_list: list[float] = multiplier_list
else:
self.multiplier_list: list[float] = [multiplier]
def to(self, *args, **kwargs):
self.prompt = self.prompt.to(*args, **kwargs)
self.neg_prompt = self.neg_prompt.to(*args, **kwargs)
return self
def concat_anchors(anchors: list[EncodedAnchor]):
prompt = concat_prompt_embeds([a.prompt for a in anchors])
neg_prompt = concat_prompt_embeds([a.neg_prompt for a in anchors])
return EncodedAnchor(
prompt=prompt,
neg_prompt=neg_prompt,
multiplier_list=[a.multiplier for a in anchors]
)
def split_anchors(concatenated: EncodedAnchor, num_anchors: int = 4) -> List[EncodedAnchor]:
prompt_splits = split_prompt_embeds(concatenated.prompt, num_anchors)
neg_prompt_splits = split_prompt_embeds(concatenated.neg_prompt, num_anchors)
multiplier_list_splits = torch.chunk(torch.tensor(concatenated.multiplier_list), num_anchors)
anchors = []
for prompt, neg_prompt, multiplier in zip(prompt_splits, neg_prompt_splits, multiplier_list_splits):
anchor = EncodedAnchor(
prompt=prompt,
neg_prompt=neg_prompt,
multiplier=multiplier.tolist()
)
anchors.append(anchor)
return anchors
def get_permutations(s, max_permutations=8):
# Split the string by comma
phrases = [phrase.strip() for phrase in s.split(',')]
# remove empty strings
phrases = [phrase for phrase in phrases if len(phrase) > 0]
# shuffle the list
random.shuffle(phrases)
# Get all permutations
permutations = list([p for p in itertools.islice(itertools.permutations(phrases), max_permutations)])
# Convert the tuples back to comma separated strings
return [', '.join(permutation) for permutation in permutations]
def get_slider_target_permutations(target: 'SliderTargetConfig', max_permutations=8) -> List['SliderTargetConfig']:
from toolkit.config_modules import SliderTargetConfig
pos_permutations = get_permutations(target.positive, max_permutations=max_permutations)
neg_permutations = get_permutations(target.negative, max_permutations=max_permutations)
permutations = []
for pos, neg in itertools.product(pos_permutations, neg_permutations):
permutations.append(
SliderTargetConfig(
target_class=target.target_class,
positive=pos,
negative=neg,
multiplier=target.multiplier,
weight=target.weight
)
)
# shuffle the list
random.shuffle(permutations)
if len(permutations) > max_permutations:
permutations = permutations[:max_permutations]
return permutations
if TYPE_CHECKING:
from toolkit.stable_diffusion_model import StableDiffusion
@torch.no_grad()
def encode_prompts_to_cache(
prompt_list: list[str],
sd: "StableDiffusion",
cache: Optional[PromptEmbedsCache] = None,
prompt_tensor_file: Optional[str] = None,
) -> PromptEmbedsCache:
# TODO: add support for larger prompts
if cache is None:
cache = PromptEmbedsCache()
if prompt_tensor_file is not None:
# check to see if it exists
if os.path.exists(prompt_tensor_file):
# load it.
print(f"Loading prompt tensors from {prompt_tensor_file}")
prompt_tensors = load_file(prompt_tensor_file, device='cpu')
# add them to the cache
for prompt_txt, prompt_tensor in tqdm(prompt_tensors.items(), desc="Loading prompts", leave=False):
if prompt_txt.startswith("te:"):
prompt = prompt_txt[3:]
# text_embeds
text_embeds = prompt_tensor
pooled_embeds = None
# find pool embeds
if f"pe:{prompt}" in prompt_tensors:
pooled_embeds = prompt_tensors[f"pe:{prompt}"]
# make it
prompt_embeds = PromptEmbeds([text_embeds, pooled_embeds])
cache[prompt] = prompt_embeds.to(device='cpu', dtype=torch.float32)
if len(cache.prompts) == 0:
print("Prompt tensors not found. Encoding prompts..")
empty_prompt = ""
# encode empty_prompt
cache[empty_prompt] = sd.encode_prompt(empty_prompt)
for p in tqdm(prompt_list, desc="Encoding prompts", leave=False):
# build the cache
if cache[p] is None:
cache[p] = sd.encode_prompt(p).to(device="cpu", dtype=torch.float16)
# should we shard? It can get large
if prompt_tensor_file:
print(f"Saving prompt tensors to {prompt_tensor_file}")
state_dict = {}
for prompt_txt, prompt_embeds in cache.prompts.items():
state_dict[f"te:{prompt_txt}"] = prompt_embeds.text_embeds.to(
"cpu", dtype=get_torch_dtype('fp16')
)
if prompt_embeds.pooled_embeds is not None:
state_dict[f"pe:{prompt_txt}"] = prompt_embeds.pooled_embeds.to(
"cpu",
dtype=get_torch_dtype('fp16')
)
save_file(state_dict, prompt_tensor_file)
return cache
@torch.no_grad()
def build_prompt_pair_batch_from_cache(
cache: PromptEmbedsCache,
target: 'SliderTargetConfig',
neutral: Optional[str] = '',
) -> list[EncodedPromptPair]:
erase_negative = len(target.positive.strip()) == 0
enhance_positive = len(target.negative.strip()) == 0
both = not erase_negative and not enhance_positive
prompt_pair_batch = []
if both or erase_negative:
# print("Encoding erase negative")
prompt_pair_batch += [
# erase standard
EncodedPromptPair(
target_class=cache[target.target_class],
target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
positive_target=cache[f"{target.positive}"],
positive_target_with_neutral=cache[f"{target.positive} {neutral}"],
negative_target=cache[f"{target.negative}"],
negative_target_with_neutral=cache[f"{target.negative} {neutral}"],
neutral=cache[neutral],
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
multiplier=target.multiplier,
both_targets=cache[f"{target.positive} {target.negative}"],
empty_prompt=cache[""],
weight=target.weight,
target=target
),
]
if both or enhance_positive:
# print("Encoding enhance positive")
prompt_pair_batch += [
# enhance standard, swap pos neg
EncodedPromptPair(
target_class=cache[target.target_class],
target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
positive_target=cache[f"{target.negative}"],
positive_target_with_neutral=cache[f"{target.negative} {neutral}"],
negative_target=cache[f"{target.positive}"],
negative_target_with_neutral=cache[f"{target.positive} {neutral}"],
neutral=cache[neutral],
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
multiplier=target.multiplier,
both_targets=cache[f"{target.positive} {target.negative}"],
empty_prompt=cache[""],
weight=target.weight,
target=target
),
]
if both or enhance_positive:
# print("Encoding erase positive (inverse)")
prompt_pair_batch += [
# erase inverted
EncodedPromptPair(
target_class=cache[target.target_class],
target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
positive_target=cache[f"{target.negative}"],
positive_target_with_neutral=cache[f"{target.negative} {neutral}"],
negative_target=cache[f"{target.positive}"],
negative_target_with_neutral=cache[f"{target.positive} {neutral}"],
neutral=cache[neutral],
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
both_targets=cache[f"{target.positive} {target.negative}"],
empty_prompt=cache[""],
multiplier=target.multiplier * -1.0,
weight=target.weight,
target=target
),
]
if both or erase_negative:
# print("Encoding enhance negative (inverse)")
prompt_pair_batch += [
# enhance inverted
EncodedPromptPair(
target_class=cache[target.target_class],
target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
positive_target=cache[f"{target.positive}"],
positive_target_with_neutral=cache[f"{target.positive} {neutral}"],
negative_target=cache[f"{target.negative}"],
negative_target_with_neutral=cache[f"{target.negative} {neutral}"],
both_targets=cache[f"{target.positive} {target.negative}"],
neutral=cache[neutral],
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
empty_prompt=cache[""],
multiplier=target.multiplier * -1.0,
weight=target.weight,
target=target
),
]
return prompt_pair_batch
def build_latent_image_batch_for_prompt_pair(
pos_latent,
neg_latent,
prompt_pair: EncodedPromptPair,
prompt_chunk_size
):
erase_negative = len(prompt_pair.target.positive.strip()) == 0
enhance_positive = len(prompt_pair.target.negative.strip()) == 0
both = not erase_negative and not enhance_positive
prompt_pair_chunks = split_prompt_pairs(prompt_pair, prompt_chunk_size)
if both and len(prompt_pair_chunks) != 4:
raise Exception("Invalid prompt pair chunks")
if (erase_negative or enhance_positive) and len(prompt_pair_chunks) != 2:
raise Exception("Invalid prompt pair chunks")
latent_list = []
if both or erase_negative:
latent_list.append(pos_latent)
if both or enhance_positive:
latent_list.append(pos_latent)
if both or enhance_positive:
latent_list.append(neg_latent)
if both or erase_negative:
latent_list.append(neg_latent)
return torch.cat(latent_list, dim=0)
def inject_trigger_into_prompt(prompt, trigger=None, to_replace_list=None, add_if_not_present=True):
if trigger is None:
# process as empty string to remove any [trigger] tokens
trigger = ''
output_prompt = prompt
default_replacements = ["[name]", "[trigger]"]
replace_with = trigger
if to_replace_list is None:
to_replace_list = default_replacements
else:
to_replace_list += default_replacements
# remove duplicates
to_replace_list = list(set(to_replace_list))
# replace them all
for to_replace in to_replace_list:
# replace it
output_prompt = output_prompt.replace(to_replace, replace_with)
if trigger.strip() != "":
# see how many times replace_with is in the prompt
num_instances = output_prompt.count(replace_with)
if num_instances == 0 and add_if_not_present:
# add it to the beginning of the prompt
output_prompt = replace_with + " " + output_prompt
# if num_instances > 1:
# print(
# f"Warning: {trigger} token appears {num_instances} times in prompt {output_prompt}. This may cause issues.")
return output_prompt
|