File size: 22,456 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
import os
from typing import Optional, TYPE_CHECKING, List, Union, Tuple

import torch
from safetensors.torch import load_file, save_file
from tqdm import tqdm
import random

from toolkit.train_tools import get_torch_dtype
import itertools

if TYPE_CHECKING:
    from toolkit.config_modules import SliderTargetConfig


class ACTION_TYPES_SLIDER:
    ERASE_NEGATIVE = 0
    ENHANCE_NEGATIVE = 1


class PromptEmbeds:
    # text_embeds: torch.Tensor
    # pooled_embeds: Union[torch.Tensor, None]
    # attention_mask: Union[torch.Tensor, None]

    def __init__(self, args: Union[Tuple[torch.Tensor], List[torch.Tensor], torch.Tensor], attention_mask=None) -> None:
        if isinstance(args, list) or isinstance(args, tuple):
            # xl
            self.text_embeds = args[0]
            self.pooled_embeds = args[1]
        else:
            # sdv1.x, sdv2.x
            self.text_embeds = args
            self.pooled_embeds = None

        self.attention_mask = attention_mask

    def to(self, *args, **kwargs):
        self.text_embeds = self.text_embeds.to(*args, **kwargs)
        if self.pooled_embeds is not None:
            self.pooled_embeds = self.pooled_embeds.to(*args, **kwargs)
        if self.attention_mask is not None:
            self.attention_mask = self.attention_mask.to(*args, **kwargs)
        return self

    def detach(self):
        new_embeds = self.clone()
        new_embeds.text_embeds = new_embeds.text_embeds.detach()
        if new_embeds.pooled_embeds is not None:
            new_embeds.pooled_embeds = new_embeds.pooled_embeds.detach()
        if new_embeds.attention_mask is not None:
            new_embeds.attention_mask = new_embeds.attention_mask.detach()
        return new_embeds

    def clone(self):
        if self.pooled_embeds is not None:
            prompt_embeds = PromptEmbeds([self.text_embeds.clone(), self.pooled_embeds.clone()])
        else:
            prompt_embeds = PromptEmbeds(self.text_embeds.clone())

        if self.attention_mask is not None:
            prompt_embeds.attention_mask = self.attention_mask.clone()
        return prompt_embeds


class EncodedPromptPair:
    def __init__(
            self,
            target_class,
            target_class_with_neutral,
            positive_target,
            positive_target_with_neutral,
            negative_target,
            negative_target_with_neutral,
            neutral,
            empty_prompt,
            both_targets,
            action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
            action_list=None,
            multiplier=1.0,
            multiplier_list=None,
            weight=1.0,
            target: 'SliderTargetConfig' = None,
    ):
        self.target_class: PromptEmbeds = target_class
        self.target_class_with_neutral: PromptEmbeds = target_class_with_neutral
        self.positive_target: PromptEmbeds = positive_target
        self.positive_target_with_neutral: PromptEmbeds = positive_target_with_neutral
        self.negative_target: PromptEmbeds = negative_target
        self.negative_target_with_neutral: PromptEmbeds = negative_target_with_neutral
        self.neutral: PromptEmbeds = neutral
        self.empty_prompt: PromptEmbeds = empty_prompt
        self.both_targets: PromptEmbeds = both_targets
        self.multiplier: float = multiplier
        self.target: 'SliderTargetConfig' = target
        if multiplier_list is not None:
            self.multiplier_list: list[float] = multiplier_list
        else:
            self.multiplier_list: list[float] = [multiplier]
        self.action: int = action
        if action_list is not None:
            self.action_list: list[int] = action_list
        else:
            self.action_list: list[int] = [action]
        self.weight: float = weight

    # simulate torch to for tensors
    def to(self, *args, **kwargs):
        self.target_class = self.target_class.to(*args, **kwargs)
        self.target_class_with_neutral = self.target_class_with_neutral.to(*args, **kwargs)
        self.positive_target = self.positive_target.to(*args, **kwargs)
        self.positive_target_with_neutral = self.positive_target_with_neutral.to(*args, **kwargs)
        self.negative_target = self.negative_target.to(*args, **kwargs)
        self.negative_target_with_neutral = self.negative_target_with_neutral.to(*args, **kwargs)
        self.neutral = self.neutral.to(*args, **kwargs)
        self.empty_prompt = self.empty_prompt.to(*args, **kwargs)
        self.both_targets = self.both_targets.to(*args, **kwargs)
        return self

    def detach(self):
        self.target_class = self.target_class.detach()
        self.target_class_with_neutral = self.target_class_with_neutral.detach()
        self.positive_target = self.positive_target.detach()
        self.positive_target_with_neutral = self.positive_target_with_neutral.detach()
        self.negative_target = self.negative_target.detach()
        self.negative_target_with_neutral = self.negative_target_with_neutral.detach()
        self.neutral = self.neutral.detach()
        self.empty_prompt = self.empty_prompt.detach()
        self.both_targets = self.both_targets.detach()
        return self


def concat_prompt_embeds(prompt_embeds: list[PromptEmbeds]):
    text_embeds = torch.cat([p.text_embeds for p in prompt_embeds], dim=0)
    pooled_embeds = None
    if prompt_embeds[0].pooled_embeds is not None:
        pooled_embeds = torch.cat([p.pooled_embeds for p in prompt_embeds], dim=0)
    return PromptEmbeds([text_embeds, pooled_embeds])


def concat_prompt_pairs(prompt_pairs: list[EncodedPromptPair]):
    weight = prompt_pairs[0].weight
    target_class = concat_prompt_embeds([p.target_class for p in prompt_pairs])
    target_class_with_neutral = concat_prompt_embeds([p.target_class_with_neutral for p in prompt_pairs])
    positive_target = concat_prompt_embeds([p.positive_target for p in prompt_pairs])
    positive_target_with_neutral = concat_prompt_embeds([p.positive_target_with_neutral for p in prompt_pairs])
    negative_target = concat_prompt_embeds([p.negative_target for p in prompt_pairs])
    negative_target_with_neutral = concat_prompt_embeds([p.negative_target_with_neutral for p in prompt_pairs])
    neutral = concat_prompt_embeds([p.neutral for p in prompt_pairs])
    empty_prompt = concat_prompt_embeds([p.empty_prompt for p in prompt_pairs])
    both_targets = concat_prompt_embeds([p.both_targets for p in prompt_pairs])
    # combine all the lists
    action_list = []
    multiplier_list = []
    weight_list = []
    for p in prompt_pairs:
        action_list += p.action_list
        multiplier_list += p.multiplier_list
    return EncodedPromptPair(
        target_class=target_class,
        target_class_with_neutral=target_class_with_neutral,
        positive_target=positive_target,
        positive_target_with_neutral=positive_target_with_neutral,
        negative_target=negative_target,
        negative_target_with_neutral=negative_target_with_neutral,
        neutral=neutral,
        empty_prompt=empty_prompt,
        both_targets=both_targets,
        action_list=action_list,
        multiplier_list=multiplier_list,
        weight=weight,
        target=prompt_pairs[0].target
    )


def split_prompt_embeds(concatenated: PromptEmbeds, num_parts=None) -> List[PromptEmbeds]:
    if num_parts is None:
        # use batch size
        num_parts = concatenated.text_embeds.shape[0]
    text_embeds_splits = torch.chunk(concatenated.text_embeds, num_parts, dim=0)

    if concatenated.pooled_embeds is not None:
        pooled_embeds_splits = torch.chunk(concatenated.pooled_embeds, num_parts, dim=0)
    else:
        pooled_embeds_splits = [None] * num_parts

    prompt_embeds_list = [
        PromptEmbeds([text, pooled])
        for text, pooled in zip(text_embeds_splits, pooled_embeds_splits)
    ]

    return prompt_embeds_list


def split_prompt_pairs(concatenated: EncodedPromptPair, num_embeds=None) -> List[EncodedPromptPair]:
    target_class_splits = split_prompt_embeds(concatenated.target_class, num_embeds)
    target_class_with_neutral_splits = split_prompt_embeds(concatenated.target_class_with_neutral, num_embeds)
    positive_target_splits = split_prompt_embeds(concatenated.positive_target, num_embeds)
    positive_target_with_neutral_splits = split_prompt_embeds(concatenated.positive_target_with_neutral, num_embeds)
    negative_target_splits = split_prompt_embeds(concatenated.negative_target, num_embeds)
    negative_target_with_neutral_splits = split_prompt_embeds(concatenated.negative_target_with_neutral, num_embeds)
    neutral_splits = split_prompt_embeds(concatenated.neutral, num_embeds)
    empty_prompt_splits = split_prompt_embeds(concatenated.empty_prompt, num_embeds)
    both_targets_splits = split_prompt_embeds(concatenated.both_targets, num_embeds)

    prompt_pairs = []
    for i in range(len(target_class_splits)):
        action_list_split = concatenated.action_list[i::len(target_class_splits)]
        multiplier_list_split = concatenated.multiplier_list[i::len(target_class_splits)]

        prompt_pair = EncodedPromptPair(
            target_class=target_class_splits[i],
            target_class_with_neutral=target_class_with_neutral_splits[i],
            positive_target=positive_target_splits[i],
            positive_target_with_neutral=positive_target_with_neutral_splits[i],
            negative_target=negative_target_splits[i],
            negative_target_with_neutral=negative_target_with_neutral_splits[i],
            neutral=neutral_splits[i],
            empty_prompt=empty_prompt_splits[i],
            both_targets=both_targets_splits[i],
            action_list=action_list_split,
            multiplier_list=multiplier_list_split,
            weight=concatenated.weight,
            target=concatenated.target
        )
        prompt_pairs.append(prompt_pair)

    return prompt_pairs


class PromptEmbedsCache:
    prompts: dict[str, PromptEmbeds] = {}

    def __setitem__(self, __name: str, __value: PromptEmbeds) -> None:
        self.prompts[__name] = __value

    def __getitem__(self, __name: str) -> Optional[PromptEmbeds]:
        if __name in self.prompts:
            return self.prompts[__name]
        else:
            return None


class EncodedAnchor:
    def __init__(
            self,
            prompt,
            neg_prompt,
            multiplier=1.0,
            multiplier_list=None
    ):
        self.prompt = prompt
        self.neg_prompt = neg_prompt
        self.multiplier = multiplier

        if multiplier_list is not None:
            self.multiplier_list: list[float] = multiplier_list
        else:
            self.multiplier_list: list[float] = [multiplier]

    def to(self, *args, **kwargs):
        self.prompt = self.prompt.to(*args, **kwargs)
        self.neg_prompt = self.neg_prompt.to(*args, **kwargs)
        return self


def concat_anchors(anchors: list[EncodedAnchor]):
    prompt = concat_prompt_embeds([a.prompt for a in anchors])
    neg_prompt = concat_prompt_embeds([a.neg_prompt for a in anchors])
    return EncodedAnchor(
        prompt=prompt,
        neg_prompt=neg_prompt,
        multiplier_list=[a.multiplier for a in anchors]
    )


def split_anchors(concatenated: EncodedAnchor, num_anchors: int = 4) -> List[EncodedAnchor]:
    prompt_splits = split_prompt_embeds(concatenated.prompt, num_anchors)
    neg_prompt_splits = split_prompt_embeds(concatenated.neg_prompt, num_anchors)
    multiplier_list_splits = torch.chunk(torch.tensor(concatenated.multiplier_list), num_anchors)

    anchors = []
    for prompt, neg_prompt, multiplier in zip(prompt_splits, neg_prompt_splits, multiplier_list_splits):
        anchor = EncodedAnchor(
            prompt=prompt,
            neg_prompt=neg_prompt,
            multiplier=multiplier.tolist()
        )
        anchors.append(anchor)

    return anchors


def get_permutations(s, max_permutations=8):
    # Split the string by comma
    phrases = [phrase.strip() for phrase in s.split(',')]

    # remove empty strings
    phrases = [phrase for phrase in phrases if len(phrase) > 0]
    # shuffle the list
    random.shuffle(phrases)

    # Get all permutations
    permutations = list([p for p in itertools.islice(itertools.permutations(phrases), max_permutations)])

    # Convert the tuples back to comma separated strings
    return [', '.join(permutation) for permutation in permutations]


def get_slider_target_permutations(target: 'SliderTargetConfig', max_permutations=8) -> List['SliderTargetConfig']:
    from toolkit.config_modules import SliderTargetConfig
    pos_permutations = get_permutations(target.positive, max_permutations=max_permutations)
    neg_permutations = get_permutations(target.negative, max_permutations=max_permutations)

    permutations = []
    for pos, neg in itertools.product(pos_permutations, neg_permutations):
        permutations.append(
            SliderTargetConfig(
                target_class=target.target_class,
                positive=pos,
                negative=neg,
                multiplier=target.multiplier,
                weight=target.weight
            )
        )

    # shuffle the list
    random.shuffle(permutations)

    if len(permutations) > max_permutations:
        permutations = permutations[:max_permutations]

    return permutations


if TYPE_CHECKING:
    from toolkit.stable_diffusion_model import StableDiffusion


@torch.no_grad()
def encode_prompts_to_cache(
        prompt_list: list[str],
        sd: "StableDiffusion",
        cache: Optional[PromptEmbedsCache] = None,
        prompt_tensor_file: Optional[str] = None,
) -> PromptEmbedsCache:
    # TODO: add support for larger prompts
    if cache is None:
        cache = PromptEmbedsCache()

    if prompt_tensor_file is not None:
        # check to see if it exists
        if os.path.exists(prompt_tensor_file):
            # load it.
            print(f"Loading prompt tensors from {prompt_tensor_file}")
            prompt_tensors = load_file(prompt_tensor_file, device='cpu')
            # add them to the cache
            for prompt_txt, prompt_tensor in tqdm(prompt_tensors.items(), desc="Loading prompts", leave=False):
                if prompt_txt.startswith("te:"):
                    prompt = prompt_txt[3:]
                    # text_embeds
                    text_embeds = prompt_tensor
                    pooled_embeds = None
                    # find pool embeds
                    if f"pe:{prompt}" in prompt_tensors:
                        pooled_embeds = prompt_tensors[f"pe:{prompt}"]

                    # make it
                    prompt_embeds = PromptEmbeds([text_embeds, pooled_embeds])
                    cache[prompt] = prompt_embeds.to(device='cpu', dtype=torch.float32)

    if len(cache.prompts) == 0:
        print("Prompt tensors not found. Encoding prompts..")
        empty_prompt = ""
        # encode empty_prompt
        cache[empty_prompt] = sd.encode_prompt(empty_prompt)

        for p in tqdm(prompt_list, desc="Encoding prompts", leave=False):
            # build the cache
            if cache[p] is None:
                cache[p] = sd.encode_prompt(p).to(device="cpu", dtype=torch.float16)

        # should we shard? It can get large
        if prompt_tensor_file:
            print(f"Saving prompt tensors to {prompt_tensor_file}")
            state_dict = {}
            for prompt_txt, prompt_embeds in cache.prompts.items():
                state_dict[f"te:{prompt_txt}"] = prompt_embeds.text_embeds.to(
                    "cpu", dtype=get_torch_dtype('fp16')
                )
                if prompt_embeds.pooled_embeds is not None:
                    state_dict[f"pe:{prompt_txt}"] = prompt_embeds.pooled_embeds.to(
                        "cpu",
                        dtype=get_torch_dtype('fp16')
                    )
            save_file(state_dict, prompt_tensor_file)

    return cache


@torch.no_grad()
def build_prompt_pair_batch_from_cache(
        cache: PromptEmbedsCache,
        target: 'SliderTargetConfig',
        neutral: Optional[str] = '',
) -> list[EncodedPromptPair]:
    erase_negative = len(target.positive.strip()) == 0
    enhance_positive = len(target.negative.strip()) == 0

    both = not erase_negative and not enhance_positive

    prompt_pair_batch = []

    if both or erase_negative:
        # print("Encoding erase negative")
        prompt_pair_batch += [
            # erase standard
            EncodedPromptPair(
                target_class=cache[target.target_class],
                target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
                positive_target=cache[f"{target.positive}"],
                positive_target_with_neutral=cache[f"{target.positive} {neutral}"],
                negative_target=cache[f"{target.negative}"],
                negative_target_with_neutral=cache[f"{target.negative} {neutral}"],
                neutral=cache[neutral],
                action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
                multiplier=target.multiplier,
                both_targets=cache[f"{target.positive} {target.negative}"],
                empty_prompt=cache[""],
                weight=target.weight,
                target=target
            ),
        ]
    if both or enhance_positive:
        # print("Encoding enhance positive")
        prompt_pair_batch += [
            # enhance standard, swap pos neg
            EncodedPromptPair(
                target_class=cache[target.target_class],
                target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
                positive_target=cache[f"{target.negative}"],
                positive_target_with_neutral=cache[f"{target.negative} {neutral}"],
                negative_target=cache[f"{target.positive}"],
                negative_target_with_neutral=cache[f"{target.positive} {neutral}"],
                neutral=cache[neutral],
                action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
                multiplier=target.multiplier,
                both_targets=cache[f"{target.positive} {target.negative}"],
                empty_prompt=cache[""],
                weight=target.weight,
                target=target
            ),
        ]
    if both or enhance_positive:
        # print("Encoding erase positive (inverse)")
        prompt_pair_batch += [
            # erase inverted
            EncodedPromptPair(
                target_class=cache[target.target_class],
                target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
                positive_target=cache[f"{target.negative}"],
                positive_target_with_neutral=cache[f"{target.negative} {neutral}"],
                negative_target=cache[f"{target.positive}"],
                negative_target_with_neutral=cache[f"{target.positive} {neutral}"],
                neutral=cache[neutral],
                action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
                both_targets=cache[f"{target.positive} {target.negative}"],
                empty_prompt=cache[""],
                multiplier=target.multiplier * -1.0,
                weight=target.weight,
                target=target
            ),
        ]
    if both or erase_negative:
        # print("Encoding enhance negative (inverse)")
        prompt_pair_batch += [
            # enhance inverted
            EncodedPromptPair(
                target_class=cache[target.target_class],
                target_class_with_neutral=cache[f"{target.target_class} {neutral}"],
                positive_target=cache[f"{target.positive}"],
                positive_target_with_neutral=cache[f"{target.positive} {neutral}"],
                negative_target=cache[f"{target.negative}"],
                negative_target_with_neutral=cache[f"{target.negative} {neutral}"],
                both_targets=cache[f"{target.positive} {target.negative}"],
                neutral=cache[neutral],
                action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
                empty_prompt=cache[""],
                multiplier=target.multiplier * -1.0,
                weight=target.weight,
                target=target
            ),
        ]

    return prompt_pair_batch


def build_latent_image_batch_for_prompt_pair(
        pos_latent,
        neg_latent,
        prompt_pair: EncodedPromptPair,
        prompt_chunk_size
):
    erase_negative = len(prompt_pair.target.positive.strip()) == 0
    enhance_positive = len(prompt_pair.target.negative.strip()) == 0
    both = not erase_negative and not enhance_positive

    prompt_pair_chunks = split_prompt_pairs(prompt_pair, prompt_chunk_size)
    if both and len(prompt_pair_chunks) != 4:
        raise Exception("Invalid prompt pair chunks")
    if (erase_negative or enhance_positive) and len(prompt_pair_chunks) != 2:
        raise Exception("Invalid prompt pair chunks")

    latent_list = []

    if both or erase_negative:
        latent_list.append(pos_latent)
    if both or enhance_positive:
        latent_list.append(pos_latent)
    if both or enhance_positive:
        latent_list.append(neg_latent)
    if both or erase_negative:
        latent_list.append(neg_latent)

    return torch.cat(latent_list, dim=0)


def inject_trigger_into_prompt(prompt, trigger=None, to_replace_list=None, add_if_not_present=True):
    if trigger is None:
        # process as empty string to remove any [trigger] tokens
        trigger = ''
    output_prompt = prompt
    default_replacements = ["[name]", "[trigger]"]

    replace_with = trigger
    if to_replace_list is None:
        to_replace_list = default_replacements
    else:
        to_replace_list += default_replacements

    # remove duplicates
    to_replace_list = list(set(to_replace_list))

    # replace them all
    for to_replace in to_replace_list:
        # replace it
        output_prompt = output_prompt.replace(to_replace, replace_with)

    if trigger.strip() != "":
        # see how many times replace_with is in the prompt
        num_instances = output_prompt.count(replace_with)

        if num_instances == 0 and add_if_not_present:
            # add it to the beginning of the prompt
            output_prompt = replace_with + " " + output_prompt

        # if num_instances > 1:
        #     print(
        #         f"Warning: {trigger} token appears {num_instances} times in prompt {output_prompt}. This may cause issues.")

    return output_prompt