File size: 16,863 Bytes
1ba389d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
import math
import torch
import sys
from PIL import Image
from torch.nn import Parameter
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from toolkit.basic import adain
from toolkit.paths import REPOS_ROOT
from toolkit.saving import load_ip_adapter_model
from toolkit.train_tools import get_torch_dtype
sys.path.append(REPOS_ROOT)
from typing import TYPE_CHECKING, Union, Iterator, Mapping, Any, Tuple, List, Optional, Dict
from collections import OrderedDict
from ipadapter.ip_adapter.attention_processor import AttnProcessor, IPAttnProcessor, IPAttnProcessor2_0, \
AttnProcessor2_0
from ipadapter.ip_adapter.ip_adapter import ImageProjModel
from ipadapter.ip_adapter.resampler import Resampler
from toolkit.config_modules import AdapterConfig
from toolkit.prompt_utils import PromptEmbeds
import weakref
if TYPE_CHECKING:
from toolkit.stable_diffusion_model import StableDiffusion
from diffusers import (
EulerDiscreteScheduler,
DDPMScheduler,
)
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection
)
from toolkit.models.size_agnostic_feature_encoder import SAFEImageProcessor, SAFEVisionModel
from transformers import ViTHybridImageProcessor, ViTHybridForImageClassification
from transformers import ViTFeatureExtractor, ViTForImageClassification
import torch.nn.functional as F
import torch.nn as nn
class ReferenceAttnProcessor2_0(torch.nn.Module):
r"""
Attention processor for IP-Adapater for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
The context length of the image features.
"""
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, adapter=None):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.scale = scale
self.num_tokens = num_tokens
self.ref_net = nn.Linear(hidden_size, hidden_size)
self.blend = nn.Parameter(torch.zeros(hidden_size))
self.adapter_ref: weakref.ref = weakref.ref(adapter)
self._memory = None
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
if self.adapter_ref().is_active:
if self.adapter_ref().reference_mode == "write":
# write_mode
memory_ref = self.ref_net(hidden_states)
self._memory = memory_ref
elif self.adapter_ref().reference_mode == "read":
# read_mode
if self._memory is None:
print("Warning: no memory to read from")
else:
saved_hidden_states = self._memory
try:
new_hidden_states = saved_hidden_states
blend = self.blend
# expand the blend buyt keep dim 0 the same (batch)
while blend.ndim < new_hidden_states.ndim:
blend = blend.unsqueeze(0)
# expand batch
blend = torch.cat([blend] * new_hidden_states.shape[0], dim=0)
hidden_states = blend * new_hidden_states + (1 - blend) * hidden_states
except Exception as e:
raise Exception(f"Error blending: {e}")
return hidden_states
class ReferenceAdapter(torch.nn.Module):
def __init__(self, sd: 'StableDiffusion', adapter_config: 'AdapterConfig'):
super().__init__()
self.config = adapter_config
self.sd_ref: weakref.ref = weakref.ref(sd)
self.device = self.sd_ref().unet.device
self.reference_mode = "read"
self.current_scale = 1.0
self.is_active = True
self._reference_images = None
self._reference_latents = None
self.has_memory = False
self.noise_scheduler: Union[DDPMScheduler, EulerDiscreteScheduler] = None
# init adapter modules
attn_procs = {}
unet_sd = sd.unet.state_dict()
for name in sd.unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else sd.unet.config['cross_attention_dim']
if name.startswith("mid_block"):
hidden_size = sd.unet.config['block_out_channels'][-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(sd.unet.config['block_out_channels']))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = sd.unet.config['block_out_channels'][block_id]
else:
# they didnt have this, but would lead to undefined below
raise ValueError(f"unknown attn processor name: {name}")
if cross_attention_dim is None:
attn_procs[name] = AttnProcessor2_0()
else:
# layer_name = name.split(".processor")[0]
# weights = {
# "to_k_ip.weight": unet_sd[layer_name + ".to_k.weight"],
# "to_v_ip.weight": unet_sd[layer_name + ".to_v.weight"],
# }
attn_procs[name] = ReferenceAttnProcessor2_0(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=1.0,
num_tokens=self.config.num_tokens,
adapter=self
)
# attn_procs[name].load_state_dict(weights)
sd.unet.set_attn_processor(attn_procs)
adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values())
sd.adapter = self
self.unet_ref: weakref.ref = weakref.ref(sd.unet)
self.adapter_modules = adapter_modules
# load the weights if we have some
if self.config.name_or_path:
loaded_state_dict = load_ip_adapter_model(
self.config.name_or_path,
device='cpu',
dtype=sd.torch_dtype
)
self.load_state_dict(loaded_state_dict)
self.set_scale(1.0)
self.attach()
self.to(self.device, self.sd_ref().torch_dtype)
# if self.config.train_image_encoder:
# self.image_encoder.train()
# self.image_encoder.requires_grad_(True)
def to(self, *args, **kwargs):
super().to(*args, **kwargs)
# self.image_encoder.to(*args, **kwargs)
# self.image_proj_model.to(*args, **kwargs)
self.adapter_modules.to(*args, **kwargs)
return self
def load_reference_adapter(self, state_dict: Union[OrderedDict, dict]):
reference_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
reference_layers.load_state_dict(state_dict["reference_adapter"])
# def load_state_dict(self, state_dict: Union[OrderedDict, dict]):
# self.load_ip_adapter(state_dict)
def state_dict(self) -> OrderedDict:
state_dict = OrderedDict()
state_dict["reference_adapter"] = self.adapter_modules.state_dict()
return state_dict
def get_scale(self):
return self.current_scale
def set_reference_images(self, reference_images: Optional[torch.Tensor]):
self._reference_images = reference_images.clone().detach()
self._reference_latents = None
self.clear_memory()
def set_blank_reference_images(self, batch_size):
self._reference_images = torch.zeros((batch_size, 3, 512, 512), device=self.device, dtype=self.sd_ref().torch_dtype)
self._reference_latents = torch.zeros((batch_size, 4, 64, 64), device=self.device, dtype=self.sd_ref().torch_dtype)
self.clear_memory()
def set_scale(self, scale):
self.current_scale = scale
for attn_processor in self.sd_ref().unet.attn_processors.values():
if isinstance(attn_processor, ReferenceAttnProcessor2_0):
attn_processor.scale = scale
def attach(self):
unet = self.sd_ref().unet
self._original_unet_forward = unet.forward
unet.forward = lambda *args, **kwargs: self.unet_forward(*args, **kwargs)
if self.sd_ref().network is not None:
# set network to not merge in
self.sd_ref().network.can_merge_in = False
def unet_forward(self, sample, timestep, encoder_hidden_states, *args, **kwargs):
skip = False
if self._reference_images is None and self._reference_latents is None:
skip = True
if not self.is_active:
skip = True
if self.has_memory:
skip = True
if not skip:
if self.sd_ref().network is not None:
self.sd_ref().network.is_active = True
if self.sd_ref().network.is_merged_in:
raise ValueError("network is merged in, but we are not supposed to be merged in")
# send it through our forward first
self.forward(sample, timestep, encoder_hidden_states, *args, **kwargs)
if self.sd_ref().network is not None:
self.sd_ref().network.is_active = False
# Send it through the original unet forward
return self._original_unet_forward(sample, timestep, encoder_hidden_states, args, **kwargs)
# use drop for prompt dropout, or negatives
def forward(self, sample, timestep, encoder_hidden_states, *args, **kwargs):
if not self.noise_scheduler:
raise ValueError("noise scheduler not set")
if not self.is_active or (self._reference_images is None and self._reference_latents is None):
raise ValueError("reference adapter not active or no reference images set")
# todo may need to handle cfg?
self.reference_mode = "write"
if self._reference_latents is None:
self._reference_latents = self.sd_ref().encode_images(self._reference_images.to(
self.device, self.sd_ref().torch_dtype
)).detach()
# create a sample from our reference images
reference_latents = self._reference_latents.clone().detach().to(self.device, self.sd_ref().torch_dtype)
# if our num of samples are half of incoming, we are doing cfg. Zero out the first half (unconditional)
if reference_latents.shape[0] * 2 == sample.shape[0]:
# we are doing cfg
# Unconditional goes first
reference_latents = torch.cat([torch.zeros_like(reference_latents), reference_latents], dim=0).detach()
# resize it so reference_latents will fit inside sample in the center
width_scale = sample.shape[2] / reference_latents.shape[2]
height_scale = sample.shape[3] / reference_latents.shape[3]
scale = min(width_scale, height_scale)
# resize the reference latents
mode = "bilinear" if scale > 1.0 else "bicubic"
reference_latents = F.interpolate(
reference_latents,
size=(int(reference_latents.shape[2] * scale), int(reference_latents.shape[3] * scale)),
mode=mode,
align_corners=False
)
# add 0 padding if needed
width_pad = (sample.shape[2] - reference_latents.shape[2]) / 2
height_pad = (sample.shape[3] - reference_latents.shape[3]) / 2
reference_latents = F.pad(
reference_latents,
(math.floor(width_pad), math.floor(width_pad), math.ceil(height_pad), math.ceil(height_pad)),
mode="constant",
value=0
)
# resize again just to make sure it is exact same size
reference_latents = F.interpolate(
reference_latents,
size=(sample.shape[2], sample.shape[3]),
mode="bicubic",
align_corners=False
)
# todo maybe add same noise to the sample? For now we will send it through with no noise
# sample_imgs = self.noise_scheduler.add_noise(sample_imgs, timestep)
self._original_unet_forward(reference_latents, timestep, encoder_hidden_states, *args, **kwargs)
self.reference_mode = "read"
self.has_memory = True
return None
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
for attn_processor in self.adapter_modules:
yield from attn_processor.parameters(recurse)
# yield from self.image_proj_model.parameters(recurse)
# if self.config.train_image_encoder:
# yield from self.image_encoder.parameters(recurse)
# if self.config.train_image_encoder:
# yield from self.image_encoder.parameters(recurse)
# self.image_encoder.train()
# else:
# for attn_processor in self.adapter_modules:
# yield from attn_processor.parameters(recurse)
# yield from self.image_proj_model.parameters(recurse)
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
strict = False
# self.image_proj_model.load_state_dict(state_dict["image_proj"], strict=strict)
self.adapter_modules.load_state_dict(state_dict["reference_adapter"], strict=strict)
def enable_gradient_checkpointing(self):
self.image_encoder.gradient_checkpointing = True
def clear_memory(self):
for attn_processor in self.adapter_modules:
if isinstance(attn_processor, ReferenceAttnProcessor2_0):
attn_processor._memory = None
self.has_memory = False
|