|
import random |
|
from datetime import datetime |
|
import os |
|
from collections import OrderedDict |
|
from typing import TYPE_CHECKING, Union |
|
|
|
import torch |
|
import yaml |
|
|
|
from jobs.process.BaseProcess import BaseProcess |
|
|
|
if TYPE_CHECKING: |
|
from jobs import TrainJob, BaseJob, ExtensionJob |
|
from torch.utils.tensorboard import SummaryWriter |
|
from tqdm import tqdm |
|
|
|
|
|
class BaseTrainProcess(BaseProcess): |
|
|
|
def __init__( |
|
self, |
|
process_id: int, |
|
job, |
|
config: OrderedDict |
|
): |
|
super().__init__(process_id, job, config) |
|
self.process_id: int |
|
self.config: OrderedDict |
|
self.writer: 'SummaryWriter' |
|
self.job: Union['TrainJob', 'BaseJob', 'ExtensionJob'] |
|
self.progress_bar: 'tqdm' = None |
|
|
|
self.training_seed = self.get_conf('training_seed', self.job.training_seed if hasattr(self.job, 'training_seed') else None) |
|
|
|
if self.training_seed is not None: |
|
torch.manual_seed(self.training_seed) |
|
if torch.cuda.is_available(): |
|
torch.cuda.manual_seed(self.training_seed) |
|
random.seed(self.training_seed) |
|
|
|
self.progress_bar = None |
|
self.writer = None |
|
self.training_folder = self.get_conf('training_folder', |
|
self.job.training_folder if hasattr(self.job, 'training_folder') else None) |
|
self.save_root = os.path.join(self.training_folder, self.name) |
|
self.step = 0 |
|
self.first_step = 0 |
|
self.log_dir = self.get_conf('log_dir', self.job.log_dir if hasattr(self.job, 'log_dir') else None) |
|
self.setup_tensorboard() |
|
self.save_training_config() |
|
|
|
def run(self): |
|
super().run() |
|
|
|
|
|
pass |
|
|
|
|
|
def print(self, *args): |
|
if self.progress_bar is not None: |
|
self.progress_bar.write(' '.join(map(str, args))) |
|
self.progress_bar.update() |
|
else: |
|
print(*args) |
|
|
|
def setup_tensorboard(self): |
|
if self.log_dir: |
|
from torch.utils.tensorboard import SummaryWriter |
|
now = datetime.now() |
|
time_str = now.strftime('%Y%m%d-%H%M%S') |
|
summary_name = f"{self.name}_{time_str}" |
|
summary_dir = os.path.join(self.log_dir, summary_name) |
|
self.writer = SummaryWriter(summary_dir) |
|
|
|
def save_training_config(self): |
|
os.makedirs(self.save_root, exist_ok=True) |
|
save_dif = os.path.join(self.save_root, f'config.yaml') |
|
with open(save_dif, 'w') as f: |
|
yaml.dump(self.job.raw_config, f) |
|
|