alatlatihlora / jobs /process /GenerateProcess.py
crystantine's picture
Upload 190 files
1ba389d verified
import gc
import os
from collections import OrderedDict
from typing import ForwardRef, List, Optional, Union
import torch
from safetensors.torch import save_file, load_file
from jobs.process.BaseProcess import BaseProcess
from toolkit.config_modules import ModelConfig, GenerateImageConfig
from toolkit.metadata import get_meta_for_safetensors, load_metadata_from_safetensors, add_model_hash_to_meta, \
add_base_model_info_to_meta
from toolkit.stable_diffusion_model import StableDiffusion
from toolkit.train_tools import get_torch_dtype
import random
class GenerateConfig:
def __init__(self, **kwargs):
self.prompts: List[str]
self.sampler = kwargs.get('sampler', 'ddpm')
self.width = kwargs.get('width', 512)
self.height = kwargs.get('height', 512)
self.size_list: Union[List[int], None] = kwargs.get('size_list', None)
self.neg = kwargs.get('neg', '')
self.seed = kwargs.get('seed', -1)
self.guidance_scale = kwargs.get('guidance_scale', 7)
self.sample_steps = kwargs.get('sample_steps', 20)
self.prompt_2 = kwargs.get('prompt_2', None)
self.neg_2 = kwargs.get('neg_2', None)
self.prompts = kwargs.get('prompts', None)
self.guidance_rescale = kwargs.get('guidance_rescale', 0.0)
self.compile = kwargs.get('compile', False)
self.ext = kwargs.get('ext', 'png')
self.prompt_file = kwargs.get('prompt_file', False)
self.prompts_in_file = self.prompts
if self.prompts is None:
raise ValueError("Prompts must be set")
if isinstance(self.prompts, str):
if os.path.exists(self.prompts):
with open(self.prompts, 'r', encoding='utf-8') as f:
self.prompts_in_file = f.read().splitlines()
self.prompts_in_file = [p.strip() for p in self.prompts_in_file if len(p.strip()) > 0]
else:
raise ValueError("Prompts file does not exist, put in list if you want to use a list of prompts")
self.random_prompts = kwargs.get('random_prompts', False)
self.max_random_per_prompt = kwargs.get('max_random_per_prompt', 1)
self.max_images = kwargs.get('max_images', 10000)
if self.random_prompts:
self.prompts = []
for i in range(self.max_images):
num_prompts = random.randint(1, self.max_random_per_prompt)
prompt_list = [random.choice(self.prompts_in_file) for _ in range(num_prompts)]
self.prompts.append(", ".join(prompt_list))
else:
self.prompts = self.prompts_in_file
if kwargs.get('shuffle', False):
# shuffle the prompts
random.shuffle(self.prompts)
class GenerateProcess(BaseProcess):
process_id: int
config: OrderedDict
progress_bar: ForwardRef('tqdm') = None
sd: StableDiffusion
def __init__(
self,
process_id: int,
job,
config: OrderedDict
):
super().__init__(process_id, job, config)
self.output_folder = self.get_conf('output_folder', required=True)
self.model_config = ModelConfig(**self.get_conf('model', required=True))
self.device = self.get_conf('device', self.job.device)
self.generate_config = GenerateConfig(**self.get_conf('generate', required=True))
self.torch_dtype = get_torch_dtype(self.get_conf('dtype', 'float16'))
self.progress_bar = None
self.sd = StableDiffusion(
device=self.device,
model_config=self.model_config,
dtype=self.model_config.dtype,
)
print(f"Using device {self.device}")
def clean_prompt(self, prompt: str):
# remove any non alpha numeric characters or ,'" from prompt
return ''.join(e for e in prompt if e.isalnum() or e in ", '\"")
def run(self):
with torch.no_grad():
super().run()
print("Loading model...")
self.sd.load_model()
self.sd.pipeline.to(self.device, self.torch_dtype)
print("Compiling model...")
# self.sd.unet = torch.compile(self.sd.unet, mode="reduce-overhead", fullgraph=True)
if self.generate_config.compile:
self.sd.unet = torch.compile(self.sd.unet, mode="reduce-overhead")
print(f"Generating {len(self.generate_config.prompts)} images")
# build prompt image configs
prompt_image_configs = []
for prompt in self.generate_config.prompts:
width = self.generate_config.width
height = self.generate_config.height
prompt = self.clean_prompt(prompt)
if self.generate_config.size_list is not None:
# randomly select a size
width, height = random.choice(self.generate_config.size_list)
prompt_image_configs.append(GenerateImageConfig(
prompt=prompt,
prompt_2=self.generate_config.prompt_2,
width=width,
height=height,
num_inference_steps=self.generate_config.sample_steps,
guidance_scale=self.generate_config.guidance_scale,
negative_prompt=self.generate_config.neg,
negative_prompt_2=self.generate_config.neg_2,
seed=self.generate_config.seed,
guidance_rescale=self.generate_config.guidance_rescale,
output_ext=self.generate_config.ext,
output_folder=self.output_folder,
add_prompt_file=self.generate_config.prompt_file
))
# generate images
self.sd.generate_images(prompt_image_configs, sampler=self.generate_config.sampler)
print("Done generating images")
# cleanup
del self.sd
gc.collect()
torch.cuda.empty_cache()