|
import gc |
|
import os |
|
from collections import OrderedDict |
|
from typing import ForwardRef |
|
|
|
import torch |
|
from safetensors.torch import save_file, load_file |
|
|
|
from jobs.process.BaseProcess import BaseProcess |
|
from toolkit.metadata import get_meta_for_safetensors, load_metadata_from_safetensors, add_model_hash_to_meta, \ |
|
add_base_model_info_to_meta |
|
from toolkit.train_tools import get_torch_dtype |
|
|
|
|
|
class ModRescaleLoraProcess(BaseProcess): |
|
process_id: int |
|
config: OrderedDict |
|
progress_bar: ForwardRef('tqdm') = None |
|
|
|
def __init__( |
|
self, |
|
process_id: int, |
|
job, |
|
config: OrderedDict |
|
): |
|
super().__init__(process_id, job, config) |
|
self.process_id: int |
|
self.config: OrderedDict |
|
self.progress_bar: ForwardRef('tqdm') = None |
|
self.input_path = self.get_conf('input_path', required=True) |
|
self.output_path = self.get_conf('output_path', required=True) |
|
self.replace_meta = self.get_conf('replace_meta', default=False) |
|
self.save_dtype = self.get_conf('save_dtype', default='fp16', as_type=get_torch_dtype) |
|
self.current_weight = self.get_conf('current_weight', required=True, as_type=float) |
|
self.target_weight = self.get_conf('target_weight', required=True, as_type=float) |
|
self.scale_target = self.get_conf('scale_target', default='up_down') |
|
self.is_xl = self.get_conf('is_xl', default=False, as_type=bool) |
|
self.is_v2 = self.get_conf('is_v2', default=False, as_type=bool) |
|
|
|
self.progress_bar = None |
|
|
|
def run(self): |
|
super().run() |
|
source_state_dict = load_file(self.input_path) |
|
source_meta = load_metadata_from_safetensors(self.input_path) |
|
|
|
if self.replace_meta: |
|
self.meta.update( |
|
add_base_model_info_to_meta( |
|
self.meta, |
|
is_xl=self.is_xl, |
|
is_v2=self.is_v2, |
|
) |
|
) |
|
save_meta = get_meta_for_safetensors(self.meta, self.job.name) |
|
else: |
|
save_meta = get_meta_for_safetensors(source_meta, self.job.name, add_software_info=False) |
|
|
|
|
|
os.makedirs(os.path.dirname(self.output_path), exist_ok=True) |
|
|
|
new_state_dict = OrderedDict() |
|
|
|
for key in list(source_state_dict.keys()): |
|
v = source_state_dict[key] |
|
v = v.detach().clone().to("cpu").to(get_torch_dtype('fp32')) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
total_module_scale = torch.tensor(self.current_weight / self.target_weight) \ |
|
.to("cpu", dtype=get_torch_dtype('fp32')) |
|
num_modules_layers = 2 |
|
up_down_scale = torch.pow(total_module_scale, 1.0 / num_modules_layers) \ |
|
.to("cpu", dtype=get_torch_dtype('fp32')) |
|
|
|
if self.scale_target == 'alpha' and key.endswith('.alpha'): |
|
v = v * total_module_scale |
|
if self.scale_target == 'up_down' and key.endswith('.lora_up.weight') or key.endswith('.lora_down.weight'): |
|
|
|
v = v * up_down_scale |
|
v = v.detach().clone().to("cpu").to(self.save_dtype) |
|
new_state_dict[key] = v |
|
|
|
save_meta = add_model_hash_to_meta(new_state_dict, save_meta) |
|
save_file(new_state_dict, self.output_path, save_meta) |
|
|
|
|
|
del new_state_dict |
|
del source_state_dict |
|
del source_meta |
|
|
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
print(f"Saved to {self.output_path}") |
|
|