alatlatihlora / jobs /process /ModRescaleLoraProcess.py
crystantine's picture
Upload 190 files
1ba389d verified
import gc
import os
from collections import OrderedDict
from typing import ForwardRef
import torch
from safetensors.torch import save_file, load_file
from jobs.process.BaseProcess import BaseProcess
from toolkit.metadata import get_meta_for_safetensors, load_metadata_from_safetensors, add_model_hash_to_meta, \
add_base_model_info_to_meta
from toolkit.train_tools import get_torch_dtype
class ModRescaleLoraProcess(BaseProcess):
process_id: int
config: OrderedDict
progress_bar: ForwardRef('tqdm') = None
def __init__(
self,
process_id: int,
job,
config: OrderedDict
):
super().__init__(process_id, job, config)
self.process_id: int
self.config: OrderedDict
self.progress_bar: ForwardRef('tqdm') = None
self.input_path = self.get_conf('input_path', required=True)
self.output_path = self.get_conf('output_path', required=True)
self.replace_meta = self.get_conf('replace_meta', default=False)
self.save_dtype = self.get_conf('save_dtype', default='fp16', as_type=get_torch_dtype)
self.current_weight = self.get_conf('current_weight', required=True, as_type=float)
self.target_weight = self.get_conf('target_weight', required=True, as_type=float)
self.scale_target = self.get_conf('scale_target', default='up_down') # alpha or up_down
self.is_xl = self.get_conf('is_xl', default=False, as_type=bool)
self.is_v2 = self.get_conf('is_v2', default=False, as_type=bool)
self.progress_bar = None
def run(self):
super().run()
source_state_dict = load_file(self.input_path)
source_meta = load_metadata_from_safetensors(self.input_path)
if self.replace_meta:
self.meta.update(
add_base_model_info_to_meta(
self.meta,
is_xl=self.is_xl,
is_v2=self.is_v2,
)
)
save_meta = get_meta_for_safetensors(self.meta, self.job.name)
else:
save_meta = get_meta_for_safetensors(source_meta, self.job.name, add_software_info=False)
# save
os.makedirs(os.path.dirname(self.output_path), exist_ok=True)
new_state_dict = OrderedDict()
for key in list(source_state_dict.keys()):
v = source_state_dict[key]
v = v.detach().clone().to("cpu").to(get_torch_dtype('fp32'))
# all loras have an alpha, up weight and down weight
# - "lora_te_text_model_encoder_layers_0_mlp_fc1.alpha",
# - "lora_te_text_model_encoder_layers_0_mlp_fc1.lora_down.weight",
# - "lora_te_text_model_encoder_layers_0_mlp_fc1.lora_up.weight",
# we can rescale by adjusting the alpha or the up weights, or the up and down weights
# I assume doing both up and down would be best all around, but I'm not sure
# some locons also have mid weights, we will leave those alone for now, will work without them
# when adjusting alpha, it is used to calculate the multiplier in a lora module
# - scale = alpha / lora_dim
# - output = layer_out + lora_up_out * multiplier * scale
total_module_scale = torch.tensor(self.current_weight / self.target_weight) \
.to("cpu", dtype=get_torch_dtype('fp32'))
num_modules_layers = 2 # up and down
up_down_scale = torch.pow(total_module_scale, 1.0 / num_modules_layers) \
.to("cpu", dtype=get_torch_dtype('fp32'))
# only update alpha
if self.scale_target == 'alpha' and key.endswith('.alpha'):
v = v * total_module_scale
if self.scale_target == 'up_down' and key.endswith('.lora_up.weight') or key.endswith('.lora_down.weight'):
# would it be better to adjust the up weights for fp16 precision? Doing both should reduce chance of NaN
v = v * up_down_scale
v = v.detach().clone().to("cpu").to(self.save_dtype)
new_state_dict[key] = v
save_meta = add_model_hash_to_meta(new_state_dict, save_meta)
save_file(new_state_dict, self.output_path, save_meta)
# cleanup incase there are other jobs
del new_state_dict
del source_state_dict
del source_meta
torch.cuda.empty_cache()
gc.collect()
print(f"Saved to {self.output_path}")