|
import copy |
|
import glob |
|
import os |
|
import time |
|
from collections import OrderedDict |
|
from typing import List, Optional |
|
|
|
from PIL import Image |
|
from PIL.ImageOps import exif_transpose |
|
|
|
from toolkit.basic import flush |
|
from toolkit.models.RRDB import RRDBNet as ESRGAN, esrgan_safetensors_keys |
|
from safetensors.torch import save_file, load_file |
|
from torch.utils.data import DataLoader, ConcatDataset |
|
import torch |
|
from torch import nn |
|
from torchvision.transforms import transforms |
|
|
|
from jobs.process import BaseTrainProcess |
|
from toolkit.data_loader import AugmentedImageDataset |
|
from toolkit.esrgan_utils import convert_state_dict_to_basicsr, convert_basicsr_state_dict_to_save_format |
|
from toolkit.losses import ComparativeTotalVariation, get_gradient_penalty, PatternLoss |
|
from toolkit.metadata import get_meta_for_safetensors |
|
from toolkit.optimizer import get_optimizer |
|
from toolkit.style import get_style_model_and_losses |
|
from toolkit.train_tools import get_torch_dtype |
|
from diffusers import AutoencoderKL |
|
from tqdm import tqdm |
|
import time |
|
import numpy as np |
|
from .models.vgg19_critic import Critic |
|
|
|
IMAGE_TRANSFORMS = transforms.Compose( |
|
[ |
|
transforms.ToTensor(), |
|
|
|
] |
|
) |
|
|
|
|
|
class TrainESRGANProcess(BaseTrainProcess): |
|
def __init__(self, process_id: int, job, config: OrderedDict): |
|
super().__init__(process_id, job, config) |
|
self.data_loader = None |
|
self.model: ESRGAN = None |
|
self.device = self.get_conf('device', self.job.device) |
|
self.pretrained_path = self.get_conf('pretrained_path', 'None') |
|
self.datasets_objects = self.get_conf('datasets', required=True) |
|
self.batch_size = self.get_conf('batch_size', 1, as_type=int) |
|
self.resolution = self.get_conf('resolution', 256, as_type=int) |
|
self.learning_rate = self.get_conf('learning_rate', 1e-6, as_type=float) |
|
self.sample_every = self.get_conf('sample_every', None) |
|
self.optimizer_type = self.get_conf('optimizer', 'adam') |
|
self.epochs = self.get_conf('epochs', None, as_type=int) |
|
self.max_steps = self.get_conf('max_steps', None, as_type=int) |
|
self.save_every = self.get_conf('save_every', None) |
|
self.upscale_sample = self.get_conf('upscale_sample', 4) |
|
self.dtype = self.get_conf('dtype', 'float32') |
|
self.sample_sources = self.get_conf('sample_sources', None) |
|
self.log_every = self.get_conf('log_every', 100, as_type=int) |
|
self.style_weight = self.get_conf('style_weight', 0, as_type=float) |
|
self.content_weight = self.get_conf('content_weight', 0, as_type=float) |
|
self.mse_weight = self.get_conf('mse_weight', 1e0, as_type=float) |
|
self.zoom = self.get_conf('zoom', 4, as_type=int) |
|
self.tv_weight = self.get_conf('tv_weight', 1e0, as_type=float) |
|
self.critic_weight = self.get_conf('critic_weight', 1, as_type=float) |
|
self.pattern_weight = self.get_conf('pattern_weight', 1, as_type=float) |
|
self.optimizer_params = self.get_conf('optimizer_params', {}) |
|
self.augmentations = self.get_conf('augmentations', {}) |
|
self.torch_dtype = get_torch_dtype(self.dtype) |
|
if self.torch_dtype == torch.bfloat16: |
|
self.esrgan_dtype = torch.float32 |
|
else: |
|
self.esrgan_dtype = torch.float32 |
|
|
|
self.vgg_19 = None |
|
self.style_weight_scalers = [] |
|
self.content_weight_scalers = [] |
|
|
|
|
|
if self.zoom % 2 != 0: |
|
raise ValueError('zoom must be divisible by 2') |
|
|
|
self.step_num = 0 |
|
self.epoch_num = 0 |
|
|
|
self.use_critic = self.get_conf('use_critic', False, as_type=bool) |
|
self.critic = None |
|
|
|
if self.use_critic: |
|
self.critic = Critic( |
|
device=self.device, |
|
dtype=self.dtype, |
|
process=self, |
|
**self.get_conf('critic', {}) |
|
) |
|
|
|
if self.sample_every is not None and self.sample_sources is None: |
|
raise ValueError('sample_every is specified but sample_sources is not') |
|
|
|
if self.epochs is None and self.max_steps is None: |
|
raise ValueError('epochs or max_steps must be specified') |
|
|
|
self.data_loaders = [] |
|
|
|
assert isinstance(self.datasets_objects, list) |
|
for dataset in self.datasets_objects: |
|
if 'path' not in dataset: |
|
raise ValueError('dataset must have a path') |
|
|
|
if not os.path.isdir(dataset['path']): |
|
raise ValueError(f"dataset path does is not a directory: {dataset['path']}") |
|
|
|
|
|
if not os.path.exists(self.save_root): |
|
os.makedirs(self.save_root, exist_ok=True) |
|
|
|
self._pattern_loss = None |
|
|
|
|
|
aug_transforms = [] |
|
|
|
def update_training_metadata(self): |
|
self.add_meta(OrderedDict({"training_info": self.get_training_info()})) |
|
|
|
def get_training_info(self): |
|
info = OrderedDict({ |
|
'step': self.step_num, |
|
'epoch': self.epoch_num, |
|
}) |
|
return info |
|
|
|
def load_datasets(self): |
|
if self.data_loader is None: |
|
print(f"Loading datasets") |
|
datasets = [] |
|
for dataset in self.datasets_objects: |
|
print(f" - Dataset: {dataset['path']}") |
|
ds = copy.copy(dataset) |
|
ds['resolution'] = self.resolution |
|
|
|
if 'augmentations' not in ds: |
|
ds['augmentations'] = self.augmentations |
|
|
|
|
|
ds['augmentations'] = [{ |
|
'method': 'Resize', |
|
'params': { |
|
'width': int(self.resolution // self.zoom), |
|
'height': int(self.resolution // self.zoom), |
|
|
|
'interpolation': 'cv2.INTER_AREA' |
|
} |
|
}] + ds['augmentations'] |
|
|
|
image_dataset = AugmentedImageDataset(ds) |
|
datasets.append(image_dataset) |
|
|
|
concatenated_dataset = ConcatDataset(datasets) |
|
self.data_loader = DataLoader( |
|
concatenated_dataset, |
|
batch_size=self.batch_size, |
|
shuffle=True, |
|
num_workers=6 |
|
) |
|
|
|
def setup_vgg19(self): |
|
if self.vgg_19 is None: |
|
self.vgg_19, self.style_losses, self.content_losses, self.vgg19_pool_4 = get_style_model_and_losses( |
|
single_target=True, |
|
device=self.device, |
|
output_layer_name='pool_4', |
|
dtype=self.torch_dtype |
|
) |
|
self.vgg_19.to(self.device, dtype=self.torch_dtype) |
|
self.vgg_19.requires_grad_(False) |
|
|
|
|
|
|
|
noise = torch.randn((2, 3, self.resolution, self.resolution), device=self.device, dtype=self.torch_dtype) |
|
self.vgg_19(noise) |
|
for style_loss in self.style_losses: |
|
|
|
scaler = 1 / torch.mean(style_loss.loss).item() |
|
self.style_weight_scalers.append(scaler) |
|
for content_loss in self.content_losses: |
|
|
|
scaler = 1 / torch.mean(content_loss.loss).item() |
|
|
|
if scaler != scaler: |
|
scaler = 1 |
|
print(f"Warning: content loss scaler is nan, setting to 1") |
|
self.content_weight_scalers.append(scaler) |
|
|
|
self.print(f"Style weight scalers: {self.style_weight_scalers}") |
|
self.print(f"Content weight scalers: {self.content_weight_scalers}") |
|
|
|
def get_style_loss(self): |
|
if self.style_weight > 0: |
|
|
|
loss = torch.sum( |
|
torch.stack([loss.loss * scaler for loss, scaler in zip(self.style_losses, self.style_weight_scalers)])) |
|
return loss |
|
else: |
|
return torch.tensor(0.0, device=self.device) |
|
|
|
def get_content_loss(self): |
|
if self.content_weight > 0: |
|
|
|
loss = torch.sum(torch.stack( |
|
[loss.loss * scaler for loss, scaler in zip(self.content_losses, self.content_weight_scalers)])) |
|
return loss |
|
else: |
|
return torch.tensor(0.0, device=self.device) |
|
|
|
def get_mse_loss(self, pred, target): |
|
if self.mse_weight > 0: |
|
loss_fn = nn.MSELoss() |
|
loss = loss_fn(pred, target) |
|
return loss |
|
else: |
|
return torch.tensor(0.0, device=self.device) |
|
|
|
def get_tv_loss(self, pred, target): |
|
if self.tv_weight > 0: |
|
get_tv_loss = ComparativeTotalVariation() |
|
loss = get_tv_loss(pred, target) |
|
return loss |
|
else: |
|
return torch.tensor(0.0, device=self.device) |
|
|
|
def get_pattern_loss(self, pred, target): |
|
if self._pattern_loss is None: |
|
self._pattern_loss = PatternLoss( |
|
pattern_size=self.zoom, |
|
dtype=self.torch_dtype |
|
).to(self.device, dtype=self.torch_dtype) |
|
self._pattern_loss = self._pattern_loss.to(self.device, dtype=self.torch_dtype) |
|
loss = torch.mean(self._pattern_loss(pred, target)) |
|
return loss |
|
|
|
def save(self, step=None): |
|
if not os.path.exists(self.save_root): |
|
os.makedirs(self.save_root, exist_ok=True) |
|
|
|
step_num = '' |
|
if step is not None: |
|
|
|
step_num = f"_{str(step).zfill(9)}" |
|
|
|
self.update_training_metadata() |
|
|
|
filename = f'{self.job.name}{step_num}.pth' |
|
|
|
save_meta = get_meta_for_safetensors(self.meta, self.job.name) |
|
|
|
|
|
|
|
|
|
save_state_dict = self.model.state_dict() |
|
|
|
for key in list(save_state_dict.keys()): |
|
v = save_state_dict[key] |
|
v = v.detach().clone().to("cpu").to(torch.float32) |
|
save_state_dict[key] = v |
|
|
|
|
|
|
|
torch.save(save_state_dict, os.path.join(self.save_root, filename)) |
|
|
|
self.print(f"Saved to {os.path.join(self.save_root, filename)}") |
|
|
|
if self.use_critic: |
|
self.critic.save(step) |
|
|
|
def sample(self, step=None, batch: Optional[List[torch.Tensor]] = None): |
|
sample_folder = os.path.join(self.save_root, 'samples') |
|
if not os.path.exists(sample_folder): |
|
os.makedirs(sample_folder, exist_ok=True) |
|
batch_sample_folder = os.path.join(self.save_root, 'samples_batch') |
|
|
|
batch_targets = None |
|
batch_inputs = None |
|
if batch is not None and not os.path.exists(batch_sample_folder): |
|
os.makedirs(batch_sample_folder, exist_ok=True) |
|
|
|
self.model.eval() |
|
|
|
def process_and_save(img, target_img, save_path): |
|
img = img.to(self.device, dtype=self.esrgan_dtype) |
|
output = self.model(img) |
|
|
|
output = output.clamp(0, 1) |
|
img = img.clamp(0, 1) |
|
|
|
output = output.cpu().permute(0, 2, 3, 1).squeeze(0).float().numpy() |
|
img = img.cpu().permute(0, 2, 3, 1).squeeze(0).float().numpy() |
|
|
|
|
|
output = Image.fromarray((output * 255).astype(np.uint8)) |
|
img = Image.fromarray((img * 255).astype(np.uint8)) |
|
|
|
if isinstance(target_img, torch.Tensor): |
|
|
|
target_img = target_img.cpu().permute(0, 2, 3, 1).squeeze(0).float().numpy() |
|
target_img = Image.fromarray((target_img * 255).astype(np.uint8)) |
|
|
|
|
|
output = output.resize( |
|
(self.resolution * self.upscale_sample, self.resolution * self.upscale_sample), |
|
resample=Image.NEAREST |
|
) |
|
img = img.resize( |
|
(self.resolution * self.upscale_sample, self.resolution * self.upscale_sample), |
|
resample=Image.NEAREST |
|
) |
|
|
|
width, height = output.size |
|
|
|
|
|
target_image = target_img.resize((width, height)) |
|
output = output.resize((width, height)) |
|
img = img.resize((width, height)) |
|
|
|
output_img = Image.new('RGB', (width * 3, height)) |
|
|
|
output_img.paste(img, (0, 0)) |
|
output_img.paste(output, (width, 0)) |
|
output_img.paste(target_image, (width * 2, 0)) |
|
|
|
output_img.save(save_path) |
|
|
|
with torch.no_grad(): |
|
for i, img_url in enumerate(self.sample_sources): |
|
img = exif_transpose(Image.open(img_url)) |
|
img = img.convert('RGB') |
|
|
|
if img.width != img.height: |
|
min_dim = min(img.width, img.height) |
|
img = img.crop((0, 0, min_dim, min_dim)) |
|
|
|
img = img.resize((self.resolution * self.zoom, self.resolution * self.zoom), resample=Image.BICUBIC) |
|
|
|
target_image = img |
|
|
|
img = img.resize((self.resolution, self.resolution), resample=Image.BICUBIC) |
|
|
|
|
|
|
|
img = IMAGE_TRANSFORMS(img).unsqueeze(0).to(self.device, dtype=self.esrgan_dtype) |
|
img = img |
|
|
|
step_num = '' |
|
if step is not None: |
|
|
|
step_num = f"_{str(step).zfill(9)}" |
|
seconds_since_epoch = int(time.time()) |
|
|
|
i_str = str(i).zfill(2) |
|
filename = f"{seconds_since_epoch}{step_num}_{i_str}.jpg" |
|
process_and_save(img, target_image, os.path.join(sample_folder, filename)) |
|
|
|
if batch is not None: |
|
batch_targets = batch[0].detach() |
|
batch_inputs = batch[1].detach() |
|
batch_targets = torch.chunk(batch_targets, batch_targets.shape[0], dim=0) |
|
batch_inputs = torch.chunk(batch_inputs, batch_inputs.shape[0], dim=0) |
|
|
|
for i in range(len(batch_inputs)): |
|
if step is not None: |
|
|
|
step_num = f"_{str(step).zfill(9)}" |
|
seconds_since_epoch = int(time.time()) |
|
|
|
i_str = str(i).zfill(2) |
|
filename = f"{seconds_since_epoch}{step_num}_{i_str}.jpg" |
|
process_and_save(batch_inputs[i], batch_targets[i], os.path.join(batch_sample_folder, filename)) |
|
|
|
self.model.train() |
|
|
|
def load_model(self): |
|
state_dict = None |
|
path_to_load = self.pretrained_path |
|
|
|
self.print(f"Looking for latest checkpoint in {self.save_root}") |
|
files = glob.glob(os.path.join(self.save_root, f"{self.job.name}*.safetensors")) |
|
files += glob.glob(os.path.join(self.save_root, f"{self.job.name}*.pth")) |
|
if files and len(files) > 0: |
|
latest_file = max(files, key=os.path.getmtime) |
|
print(f" - Latest checkpoint is: {latest_file}") |
|
path_to_load = latest_file |
|
|
|
elif self.pretrained_path is None: |
|
self.print(f" - No checkpoint found, starting from scratch") |
|
else: |
|
self.print(f" - No checkpoint found, loading pretrained model") |
|
self.print(f" - path: {path_to_load}") |
|
|
|
if path_to_load is not None: |
|
self.print(f" - Loading pretrained checkpoint: {path_to_load}") |
|
|
|
if path_to_load.endswith('.pth') or path_to_load.endswith('.pt'): |
|
state_dict = torch.load(path_to_load, map_location=self.device) |
|
elif path_to_load.endswith('.safetensors'): |
|
state_dict_raw = load_file(path_to_load) |
|
|
|
state_dict = OrderedDict() |
|
for key in esrgan_safetensors_keys: |
|
state_dict[key] = state_dict_raw[key] |
|
else: |
|
raise Exception(f"Unknown file extension for checkpoint: {path_to_load}") |
|
|
|
|
|
self.model = ESRGAN( |
|
state_dict |
|
).to(self.device, dtype=self.esrgan_dtype) |
|
|
|
|
|
self.model.train() |
|
self.model.requires_grad_(True) |
|
|
|
def run(self): |
|
super().run() |
|
self.load_datasets() |
|
steps_per_step = (self.critic.num_critic_per_gen + 1) |
|
|
|
max_step_epochs = self.max_steps // (len(self.data_loader) // steps_per_step) |
|
num_epochs = self.epochs |
|
if num_epochs is None or num_epochs > max_step_epochs: |
|
num_epochs = max_step_epochs |
|
|
|
max_epoch_steps = len(self.data_loader) * num_epochs * steps_per_step |
|
num_steps = self.max_steps |
|
if num_steps is None or num_steps > max_epoch_steps: |
|
num_steps = max_epoch_steps |
|
self.max_steps = num_steps |
|
self.epochs = num_epochs |
|
start_step = self.step_num |
|
self.first_step = start_step |
|
|
|
self.print(f"Training ESRGAN model:") |
|
self.print(f" - Training folder: {self.training_folder}") |
|
self.print(f" - Batch size: {self.batch_size}") |
|
self.print(f" - Learning rate: {self.learning_rate}") |
|
self.print(f" - Epochs: {num_epochs}") |
|
self.print(f" - Max steps: {self.max_steps}") |
|
|
|
|
|
self.load_model() |
|
|
|
params = self.model.parameters() |
|
|
|
if self.style_weight > 0 or self.content_weight > 0 or self.use_critic: |
|
self.setup_vgg19() |
|
self.vgg_19.requires_grad_(False) |
|
self.vgg_19.eval() |
|
if self.use_critic: |
|
self.critic.setup() |
|
|
|
optimizer = get_optimizer(params, self.optimizer_type, self.learning_rate, |
|
optimizer_params=self.optimizer_params) |
|
|
|
|
|
|
|
scheduler = torch.optim.lr_scheduler.ConstantLR( |
|
optimizer, |
|
total_iters=num_steps, |
|
factor=1, |
|
verbose=False |
|
) |
|
|
|
|
|
self.progress_bar = tqdm( |
|
total=num_steps, |
|
desc='Training ESRGAN', |
|
leave=True |
|
) |
|
|
|
blank_losses = OrderedDict({ |
|
"total": [], |
|
"style": [], |
|
"content": [], |
|
"mse": [], |
|
"kl": [], |
|
"tv": [], |
|
"ptn": [], |
|
"crD": [], |
|
"crG": [], |
|
}) |
|
epoch_losses = copy.deepcopy(blank_losses) |
|
log_losses = copy.deepcopy(blank_losses) |
|
print("Generating baseline samples") |
|
self.sample(step=0) |
|
|
|
critic_losses = [] |
|
for epoch in range(self.epoch_num, self.epochs, 1): |
|
if self.step_num >= self.max_steps: |
|
break |
|
flush() |
|
for targets, inputs in self.data_loader: |
|
if self.step_num >= self.max_steps: |
|
break |
|
with torch.no_grad(): |
|
is_critic_only_step = False |
|
if self.use_critic and 1 / (self.critic.num_critic_per_gen + 1) < np.random.uniform(): |
|
is_critic_only_step = True |
|
|
|
targets = targets.to(self.device, dtype=self.esrgan_dtype).clamp(0, 1).detach() |
|
inputs = inputs.to(self.device, dtype=self.esrgan_dtype).clamp(0, 1).detach() |
|
|
|
optimizer.zero_grad() |
|
|
|
do_grad = not is_critic_only_step |
|
with torch.set_grad_enabled(do_grad): |
|
pred = self.model(inputs) |
|
|
|
pred = pred.to(self.device, dtype=self.torch_dtype).clamp(0, 1) |
|
targets = targets.to(self.device, dtype=self.torch_dtype).clamp(0, 1) |
|
if torch.isnan(pred).any(): |
|
raise ValueError('pred has nan values') |
|
if torch.isnan(targets).any(): |
|
raise ValueError('targets has nan values') |
|
|
|
|
|
if self.style_weight > 0 or self.content_weight > 0 or self.use_critic: |
|
stacked = torch.cat([pred, targets], dim=0) |
|
|
|
stacked = stacked.clamp(0, 1) |
|
self.vgg_19(stacked) |
|
|
|
if torch.isnan(self.vgg19_pool_4.tensor).any(): |
|
raise ValueError('vgg19_pool_4 has nan values') |
|
|
|
if is_critic_only_step: |
|
critic_d_loss = self.critic.step(self.vgg19_pool_4.tensor.detach()) |
|
critic_losses.append(critic_d_loss) |
|
|
|
continue |
|
else: |
|
|
|
if len(critic_losses) == 0: |
|
critic_d_loss = 0 |
|
else: |
|
critic_d_loss = sum(critic_losses) / len(critic_losses) |
|
|
|
style_loss = self.get_style_loss() * self.style_weight |
|
content_loss = self.get_content_loss() * self.content_weight |
|
|
|
mse_loss = self.get_mse_loss(pred, targets) * self.mse_weight |
|
tv_loss = self.get_tv_loss(pred, targets) * self.tv_weight |
|
pattern_loss = self.get_pattern_loss(pred, targets) * self.pattern_weight |
|
if self.use_critic: |
|
critic_gen_loss = self.critic.get_critic_loss(self.vgg19_pool_4.tensor) * self.critic_weight |
|
else: |
|
critic_gen_loss = torch.tensor(0.0, device=self.device, dtype=self.torch_dtype) |
|
|
|
loss = style_loss + content_loss + mse_loss + tv_loss + critic_gen_loss + pattern_loss |
|
|
|
if torch.isnan(loss): |
|
raise ValueError('loss is nan') |
|
|
|
|
|
loss.backward() |
|
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0) |
|
optimizer.step() |
|
scheduler.step() |
|
|
|
|
|
loss_value = loss.item() |
|
|
|
loss_string = f"loss: {loss_value:.2e}" |
|
if self.content_weight > 0: |
|
loss_string += f" cnt: {content_loss.item():.2e}" |
|
if self.style_weight > 0: |
|
loss_string += f" sty: {style_loss.item():.2e}" |
|
if self.mse_weight > 0: |
|
loss_string += f" mse: {mse_loss.item():.2e}" |
|
if self.tv_weight > 0: |
|
loss_string += f" tv: {tv_loss.item():.2e}" |
|
if self.pattern_weight > 0: |
|
loss_string += f" ptn: {pattern_loss.item():.2e}" |
|
if self.use_critic and self.critic_weight > 0: |
|
loss_string += f" crG: {critic_gen_loss.item():.2e}" |
|
if self.use_critic: |
|
loss_string += f" crD: {critic_d_loss:.2e}" |
|
|
|
if self.optimizer_type.startswith('dadaptation') or self.optimizer_type.startswith('prodigy'): |
|
learning_rate = ( |
|
optimizer.param_groups[0]["d"] * |
|
optimizer.param_groups[0]["lr"] |
|
) |
|
else: |
|
learning_rate = optimizer.param_groups[0]['lr'] |
|
|
|
lr_critic_string = '' |
|
if self.use_critic: |
|
lr_critic = self.critic.get_lr() |
|
lr_critic_string = f" lrC: {lr_critic:.1e}" |
|
|
|
self.progress_bar.set_postfix_str(f"lr: {learning_rate:.1e}{lr_critic_string} {loss_string}") |
|
self.progress_bar.set_description(f"E: {epoch}") |
|
self.progress_bar.update(1) |
|
|
|
epoch_losses["total"].append(loss_value) |
|
epoch_losses["style"].append(style_loss.item()) |
|
epoch_losses["content"].append(content_loss.item()) |
|
epoch_losses["mse"].append(mse_loss.item()) |
|
epoch_losses["tv"].append(tv_loss.item()) |
|
epoch_losses["ptn"].append(pattern_loss.item()) |
|
epoch_losses["crG"].append(critic_gen_loss.item()) |
|
epoch_losses["crD"].append(critic_d_loss) |
|
|
|
log_losses["total"].append(loss_value) |
|
log_losses["style"].append(style_loss.item()) |
|
log_losses["content"].append(content_loss.item()) |
|
log_losses["mse"].append(mse_loss.item()) |
|
log_losses["tv"].append(tv_loss.item()) |
|
log_losses["ptn"].append(pattern_loss.item()) |
|
log_losses["crG"].append(critic_gen_loss.item()) |
|
log_losses["crD"].append(critic_d_loss) |
|
|
|
|
|
if self.step_num != start_step: |
|
if self.sample_every and self.step_num % self.sample_every == 0: |
|
|
|
self.print(f"Sampling at step {self.step_num}") |
|
self.sample(self.step_num, batch=[targets, inputs]) |
|
|
|
if self.save_every and self.step_num % self.save_every == 0: |
|
|
|
self.print(f"Saving at step {self.step_num}") |
|
self.save(self.step_num) |
|
|
|
if self.log_every and self.step_num % self.log_every == 0: |
|
|
|
if self.writer is not None: |
|
|
|
for key in log_losses: |
|
log_losses[key] = sum(log_losses[key]) / (len(log_losses[key]) + 1e-6) |
|
|
|
self.writer.add_scalar(f"loss/{key}", log_losses[key], self.step_num) |
|
|
|
log_losses = copy.deepcopy(blank_losses) |
|
|
|
self.step_num += 1 |
|
|
|
if self.writer is not None: |
|
eps = 1e-6 |
|
|
|
for key in epoch_losses: |
|
epoch_losses[key] = sum(log_losses[key]) / (len(log_losses[key]) + eps) |
|
if epoch_losses[key] > 0: |
|
self.writer.add_scalar(f"epoch loss/{key}", epoch_losses[key], epoch) |
|
|
|
epoch_losses = copy.deepcopy(blank_losses) |
|
|
|
self.save() |
|
|