|
import glob |
|
import os |
|
from collections import OrderedDict |
|
import random |
|
from typing import Optional, List |
|
|
|
from safetensors.torch import save_file, load_file |
|
from tqdm import tqdm |
|
|
|
from toolkit.layers import ReductionKernel |
|
from toolkit.stable_diffusion_model import PromptEmbeds |
|
from toolkit.train_tools import get_torch_dtype, apply_noise_offset |
|
import gc |
|
from toolkit import train_tools |
|
|
|
import torch |
|
from leco import train_util, model_util |
|
from .BaseSDTrainProcess import BaseSDTrainProcess, StableDiffusion |
|
|
|
|
|
def flush(): |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
|
|
class RescaleConfig: |
|
def __init__( |
|
self, |
|
**kwargs |
|
): |
|
self.from_resolution = kwargs.get('from_resolution', 512) |
|
self.scale = kwargs.get('scale', 0.5) |
|
self.latent_tensor_dir = kwargs.get('latent_tensor_dir', None) |
|
self.num_latent_tensors = kwargs.get('num_latent_tensors', 1000) |
|
self.to_resolution = kwargs.get('to_resolution', int(self.from_resolution * self.scale)) |
|
self.prompt_dropout = kwargs.get('prompt_dropout', 0.1) |
|
|
|
|
|
class PromptEmbedsCache: |
|
prompts: dict[str, PromptEmbeds] = {} |
|
|
|
def __setitem__(self, __name: str, __value: PromptEmbeds) -> None: |
|
self.prompts[__name] = __value |
|
|
|
def __getitem__(self, __name: str) -> Optional[PromptEmbeds]: |
|
if __name in self.prompts: |
|
return self.prompts[__name] |
|
else: |
|
return None |
|
|
|
|
|
class TrainSDRescaleProcess(BaseSDTrainProcess): |
|
def __init__(self, process_id: int, job, config: OrderedDict): |
|
|
|
super().__init__(process_id, job, config) |
|
self.step_num = 0 |
|
self.start_step = 0 |
|
self.device = self.get_conf('device', self.job.device) |
|
self.device_torch = torch.device(self.device) |
|
self.rescale_config = RescaleConfig(**self.get_conf('rescale', required=True)) |
|
self.reduce_size_fn = ReductionKernel( |
|
in_channels=4, |
|
kernel_size=int(self.rescale_config.from_resolution // self.rescale_config.to_resolution), |
|
dtype=get_torch_dtype(self.train_config.dtype), |
|
device=self.device_torch, |
|
) |
|
|
|
self.latent_paths: List[str] = [] |
|
self.empty_embedding: PromptEmbeds = None |
|
|
|
def before_model_load(self): |
|
pass |
|
|
|
def get_latent_tensors(self): |
|
dtype = get_torch_dtype(self.train_config.dtype) |
|
|
|
num_to_generate = 0 |
|
|
|
if not os.path.exists(self.rescale_config.latent_tensor_dir): |
|
os.makedirs(self.rescale_config.latent_tensor_dir) |
|
num_to_generate = self.rescale_config.num_latent_tensors |
|
else: |
|
|
|
current_tensor_list = glob.glob(os.path.join(self.rescale_config.latent_tensor_dir, "*.safetensors")) |
|
num_to_generate = self.rescale_config.num_latent_tensors - len(current_tensor_list) |
|
self.latent_paths = current_tensor_list |
|
|
|
if num_to_generate > 0: |
|
print(f"Generating {num_to_generate}/{self.rescale_config.num_latent_tensors} latent tensors") |
|
|
|
|
|
self.sd.unet.to('cpu') |
|
|
|
|
|
self.sd_parent = StableDiffusion( |
|
self.device_torch, |
|
model_config=self.model_config, |
|
dtype=self.train_config.dtype, |
|
) |
|
self.sd_parent.load_model() |
|
self.sd_parent.unet.to(self.device_torch, dtype=dtype) |
|
|
|
|
|
del self.sd_parent.text_encoder |
|
del self.sd_parent.tokenizer |
|
|
|
self.sd_parent.unet.eval() |
|
self.sd_parent.unet.requires_grad_(False) |
|
|
|
|
|
rng_state = torch.get_rng_state() |
|
cuda_rng_state = torch.cuda.get_rng_state() if torch.cuda.is_available() else None |
|
|
|
text_embeddings = train_tools.concat_prompt_embeddings( |
|
self.empty_embedding, |
|
self.empty_embedding, |
|
self.train_config.batch_size, |
|
) |
|
torch.set_default_device(self.device_torch) |
|
|
|
for i in tqdm(range(num_to_generate)): |
|
dtype = get_torch_dtype(self.train_config.dtype) |
|
|
|
seed = torch.randint(0, 2 ** 32, (1,)).item() |
|
|
|
seed_string = str(seed).zfill(10) |
|
|
|
torch.manual_seed(seed) |
|
if torch.cuda.is_available(): |
|
torch.cuda.manual_seed(seed) |
|
|
|
|
|
timesteps_to = self.train_config.max_denoising_steps |
|
|
|
|
|
self.sd.noise_scheduler.set_timesteps( |
|
timesteps_to, device=self.device_torch |
|
) |
|
|
|
noise = self.sd.get_latent_noise( |
|
pixel_height=self.rescale_config.from_resolution, |
|
pixel_width=self.rescale_config.from_resolution, |
|
batch_size=self.train_config.batch_size, |
|
noise_offset=self.train_config.noise_offset, |
|
).to(self.device_torch, dtype=dtype) |
|
|
|
|
|
latents = noise * self.sd.noise_scheduler.init_noise_sigma |
|
latents = latents.to(self.device_torch, dtype=dtype) |
|
|
|
|
|
guidance_scale = torch.rand(1).item() * 9.0 + 1.0 |
|
|
|
|
|
timestep = 1 |
|
|
|
noise_pred_target = self.sd_parent.predict_noise( |
|
latents, |
|
text_embeddings=text_embeddings, |
|
timestep=timestep, |
|
guidance_scale=guidance_scale |
|
) |
|
|
|
|
|
state_dict = OrderedDict() |
|
state_dict['noise_pred_target'] = noise_pred_target.to('cpu', dtype=torch.float16) |
|
state_dict['latents'] = latents.to('cpu', dtype=torch.float16) |
|
state_dict['guidance_scale'] = torch.tensor(guidance_scale).to('cpu', dtype=torch.float16) |
|
state_dict['timestep'] = torch.tensor(timestep).to('cpu', dtype=torch.float16) |
|
state_dict['timesteps_to'] = torch.tensor(timesteps_to).to('cpu', dtype=torch.float16) |
|
state_dict['seed'] = torch.tensor(seed).to('cpu', dtype=torch.float32) |
|
|
|
file_name = f"{seed_string}_{i}.safetensors" |
|
file_path = os.path.join(self.rescale_config.latent_tensor_dir, file_name) |
|
save_file(state_dict, file_path) |
|
self.latent_paths.append(file_path) |
|
|
|
print("Removing parent model") |
|
|
|
del self.sd_parent |
|
flush() |
|
|
|
torch.set_rng_state(rng_state) |
|
if cuda_rng_state is not None: |
|
torch.cuda.set_rng_state(cuda_rng_state) |
|
self.sd.unet.to(self.device_torch, dtype=dtype) |
|
|
|
def hook_before_train_loop(self): |
|
|
|
self.empty_embedding = self.sd.encode_prompt("") |
|
self.empty_embedding = self.empty_embedding.to(self.device_torch, |
|
dtype=get_torch_dtype(self.train_config.dtype)) |
|
|
|
|
|
if isinstance(self.sd.text_encoder, list): |
|
for encoder in self.sd.text_encoder: |
|
encoder.to('cpu') |
|
encoder.eval() |
|
encoder.requires_grad_(False) |
|
else: |
|
self.sd.text_encoder.to('cpu') |
|
self.sd.text_encoder.eval() |
|
self.sd.text_encoder.requires_grad_(False) |
|
|
|
|
|
flush() |
|
|
|
self.get_latent_tensors() |
|
|
|
flush() |
|
|
|
|
|
def hook_train_loop(self, batch): |
|
dtype = get_torch_dtype(self.train_config.dtype) |
|
|
|
loss_function = torch.nn.MSELoss() |
|
|
|
|
|
|
|
self.sd.unet.train() |
|
self.sd.unet.requires_grad_(True) |
|
self.sd.unet.to(self.device_torch, dtype=dtype) |
|
|
|
with torch.no_grad(): |
|
self.optimizer.zero_grad() |
|
|
|
|
|
latent_path = random.choice(self.latent_paths) |
|
latent_tensor = load_file(latent_path) |
|
|
|
noise_pred_target = (latent_tensor['noise_pred_target']).to(self.device_torch, dtype=dtype) |
|
latents = (latent_tensor['latents']).to(self.device_torch, dtype=dtype) |
|
guidance_scale = (latent_tensor['guidance_scale']).item() |
|
timestep = int((latent_tensor['timestep']).item()) |
|
timesteps_to = int((latent_tensor['timesteps_to']).item()) |
|
|
|
|
|
text_embeddings = train_tools.concat_prompt_embeddings( |
|
self.empty_embedding, |
|
self.empty_embedding, |
|
self.train_config.batch_size, |
|
) |
|
self.sd.noise_scheduler.set_timesteps( |
|
timesteps_to, device=self.device_torch |
|
) |
|
|
|
denoised_target = self.sd.noise_scheduler.step(noise_pred_target, timestep, latents).prev_sample |
|
|
|
|
|
|
|
denoised_target = self.reduce_size_fn(denoised_target.detach()) |
|
reduced_latents = self.reduce_size_fn(latents.detach()) |
|
|
|
denoised_target.requires_grad = False |
|
self.optimizer.zero_grad() |
|
noise_pred_train = self.sd.predict_noise( |
|
reduced_latents, |
|
text_embeddings=text_embeddings, |
|
timestep=timestep, |
|
guidance_scale=guidance_scale |
|
) |
|
denoised_pred = self.sd.noise_scheduler.step(noise_pred_train, timestep, reduced_latents).prev_sample |
|
loss = loss_function(denoised_pred, denoised_target) |
|
loss_float = loss.item() |
|
loss.backward() |
|
self.optimizer.step() |
|
self.lr_scheduler.step() |
|
self.optimizer.zero_grad() |
|
|
|
flush() |
|
|
|
loss_dict = OrderedDict( |
|
{'loss': loss_float}, |
|
) |
|
|
|
return loss_dict |
|
|
|
|