|
import os |
|
import uuid |
|
import shutil |
|
import json |
|
import yaml |
|
import torch |
|
from PIL import Image |
|
from slugify import slugify |
|
from transformers import AutoProcessor, AutoModelForCausalLM |
|
import pinggy as pg |
|
|
|
|
|
import sys |
|
sys.path.insert(0, os.getcwd()) |
|
sys.path.insert(0, "ai-toolkit") |
|
from toolkit.job import get_job |
|
from huggingface_hub import whoami |
|
|
|
MAX_IMAGES = 150 |
|
|
|
def load_captioning(uploaded_files, concept_sentence): |
|
uploaded_images = [file for file in uploaded_files if not file.endswith('.txt')] |
|
txt_files = [file for file in uploaded_files if file.endswith('.txt')] |
|
txt_files_dict = {os.path.splitext(os.path.basename(txt_file))[0]: txt_file for txt_file in txt_files} |
|
updates = [] |
|
|
|
if len(uploaded_images) <= 1: |
|
raise pg.Error("Please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)") |
|
elif len(uploaded_images) > MAX_IMAGES: |
|
raise pg.Error(f"For now, only {MAX_IMAGES} or less images are allowed for training") |
|
|
|
updates.append(pg.Update(visible=True)) |
|
for i in range(1, MAX_IMAGES + 1): |
|
visible = i <= len(uploaded_images) |
|
updates.append(pg.Update(visible=visible)) |
|
|
|
image_value = uploaded_images[i - 1] if visible else None |
|
updates.append(pg.Update(value=image_value, visible=visible)) |
|
|
|
corresponding_caption = False |
|
if image_value: |
|
base_name = os.path.splitext(os.path.basename(image_value))[0] |
|
if base_name in txt_files_dict: |
|
with open(txt_files_dict[base_name], 'r') as file: |
|
corresponding_caption = file.read() |
|
|
|
text_value = corresponding_caption if visible and corresponding_caption else "[trigger]" if visible and concept_sentence else None |
|
updates.append(pg.Update(value=text_value, visible=visible)) |
|
|
|
updates.append(pg.Update(visible=True)) |
|
updates.append(pg.Update(placeholder=f'A portrait of person in a bustling cafe {concept_sentence}', value=f'A person in a bustling cafe {concept_sentence}')) |
|
updates.append(pg.Update(placeholder=f"A mountainous landscape in the style of {concept_sentence}")) |
|
updates.append(pg.Update(placeholder=f"A {concept_sentence} in a mall")) |
|
updates.append(pg.Update(visible=True)) |
|
|
|
return updates |
|
|
|
def hide_captioning(): |
|
return pg.Update(visible=False), pg.Update(visible=False), pg.Update(visible=False) |
|
|
|
def create_dataset(images, *captions): |
|
destination_folder = f"datasets/{uuid.uuid4()}" |
|
os.makedirs(destination_folder, exist_ok=True) |
|
|
|
jsonl_file_path = os.path.join(destination_folder, "metadata.jsonl") |
|
with open(jsonl_file_path, "a") as jsonl_file: |
|
for index, image in enumerate(images): |
|
new_image_path = shutil.copy(image, destination_folder) |
|
original_caption = captions[index] |
|
file_name = os.path.basename(new_image_path) |
|
data = {"file_name": file_name, "prompt": original_caption} |
|
jsonl_file.write(json.dumps(data) + "\n") |
|
|
|
return destination_folder |
|
|
|
def run_captioning(images, concept_sentence, *captions): |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.float16 |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"multimodalart/Florence-2-large-no-flash-attn", torch_dtype=torch_dtype, trust_remote_code=True |
|
).to(device) |
|
processor = AutoProcessor.from_pretrained("multimodalart/Florence-2-large-no-flash-attn", trust_remote_code=True) |
|
|
|
captions = list(captions) |
|
for i, image_path in enumerate(images): |
|
if isinstance(image_path, str): |
|
image = Image.open(image_path).convert("RGB") |
|
|
|
prompt = "<DETAILED_CAPTION>" |
|
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype) |
|
|
|
generated_ids = model.generate( |
|
input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3 |
|
) |
|
|
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] |
|
parsed_answer = processor.post_process_generation( |
|
generated_text, task=prompt, image_size=(image.width, image.height) |
|
) |
|
caption_text = parsed_answer["<DETAILED_CAPTION>"].replace("The image shows ", "") |
|
if concept_sentence: |
|
caption_text = f"{caption_text} [trigger]" |
|
captions[i] = caption_text |
|
|
|
yield captions |
|
model.to("cpu") |
|
del model |
|
del processor |
|
|
|
def recursive_update(d, u): |
|
for k, v in u.items(): |
|
if isinstance(v, dict) and v: |
|
d[k] = recursive_update(d.get(k, {}), v) |
|
else: |
|
d[k] = v |
|
return d |
|
|
|
def start_training( |
|
lora_name, |
|
concept_sentence, |
|
steps, |
|
lr, |
|
rank, |
|
model_to_train, |
|
low_vram, |
|
dataset_folder, |
|
sample_1, |
|
sample_2, |
|
sample_3, |
|
use_more_advanced_options, |
|
more_advanced_options, |
|
): |
|
push_to_hub = True |
|
if not lora_name: |
|
raise pg.Error("You forgot to insert your LoRA name! This name has to be unique.") |
|
try: |
|
if whoami()["auth"]["accessToken"]["role"] == "write" or "repo.write" in whoami()["auth"]["accessToken"]["fineGrained"]["scoped"][0]["permissions"]: |
|
pg.Info(f"Starting training locally {whoami()['name']}. Your LoRA will be available locally and in Hugging Face after it finishes.") |
|
else: |
|
push_to_hub = False |
|
pg.Warning("Started training locally. Your LoRa will only be available locally because you didn't login with a `write` token to Hugging Face") |
|
except: |
|
push_to_hub = False |
|
pg.Warning("Started training locally. Your LoRa will only be available locally because you didn't login with a `write` token to Hugging Face") |
|
|
|
slugged_lora_name = slugify(lora_name) |
|
|
|
with open("config/examples/train_lora_flux_24gb.yaml", "r") as f: |
|
config = yaml.safe_load(f) |
|
|
|
config["config"]["name"] = slugged_lora_name |
|
config["config"]["process"][0]["model"]["low_vram"] = low_vram |
|
config["config"]["process"][0]["train"]["skip_first_sample"] = True |
|
config["config"]["process"][0]["train"]["steps"] = int(steps) |
|
config["config"]["process"][0]["train"]["lr"] = float(lr) |
|
config["config"]["process"][0]["network"]["linear"] = int(rank) |
|
config["config"]["process"][0]["network"]["linear_alpha"] = int(rank) |
|
config["config"]["process"][0]["datasets"][0]["folder_path"] = dataset_folder |
|
config["config"]["process"][0]["save"]["push_to_hub"] = push_to_hub |
|
if push_to_hub: |
|
try: |
|
username = whoami()["name"] |
|
except: |
|
raise pg.Error("Error trying to retrieve your username. Are you sure you are logged in with Hugging Face?") |
|
config["config"]["process"][0]["save"]["hf_repo_id"] = f"{username}/{slugged_lora_name}" |
|
config["config"]["process"][0]["save"]["hf_private"] = True |
|
if concept_sentence: |
|
config["config"]["process"][0]["trigger_word"] = concept_sentence |
|
|
|
if sample_1 or sample_2 or sample_3: |
|
config["config"]["process"][0]["train"]["disable_sampling"] = False |
|
config["config"]["process"][0]["sample"]["sample_every"] = steps |
|
config["config"]["process"][0]["sample"]["sample_steps"] = 28 |
|
config["config"]["process"][0]["sample"]["prompts"] = [] |
|
if sample_1: |
|
config["config"]["process"][0]["sample"]["prompts"].append(sample_1) |
|
if sample_2: |
|
config["config"]["process"][0]["sample"]["prompts"].append(sample_2) |
|
if sample_3: |
|
config["config"]["process"][0]["sample"]["prompts"].append(sample_3) |
|
else: |
|
config["config"]["process"][0]["train"]["disable_sampling"] = True |
|
if model_to_train == "schnell": |
|
config["config"]["process"][0]["model"]["name_or_path"] = "black-forest-labs/FLUX.1-schnell" |
|
config["config"]["process"][0]["model"]["assistant_lora_path"] = "ostris/FLUX.1-schnell-training-adapter" |
|
config["config"]["process"][0]["sample"]["sample_steps"] = 4 |
|
if use_more_advanced_options: |
|
more_advanced_options_dict = yaml.safe_load(more_advanced_options) |
|
config["config"]["process"][0] = recursive_update(config["config"]["process"][0], more_advanced_options_dict) |
|
|
|
random_config_name = str(uuid.uuid4()) |
|
os.makedirs("tmp", exist_ok=True) |
|
config_path = f"tmp/{random_config_name}-{slugged_lora_name}.yaml" |
|
with open(config_path, "w") as f: |
|
yaml.dump(config, f) |
|
|
|
job = get_job(config_path) |
|
job.run() |
|
job.cleanup() |
|
|
|
return f"Training completed successfully. Model saved as {slugged_lora_name}" |
|
|
|
config_yaml = ''' |
|
device: cuda:0 |
|
model: |
|
is_flux: true |
|
quantize: true |
|
network: |
|
linear: 16 |
|
linear_alpha: 16 |
|
type: lora |
|
sample: |
|
guidance_scale: 3.5 |
|
height: 1024 |
|
neg: '' |
|
sample_every: 1000 |
|
sample_steps: 28 |
|
sampler: flowmatch |
|
seed: 42 |
|
walk_seed: true |
|
width: 1024 |
|
save: |
|
dtype: float16 |
|
hf_private: true |
|
max_step_saves_to_keep: 4 |
|
push_to_hub: true |
|
save_every: 10000 |
|
train: |
|
batch_size: 1 |
|
dtype: bf16 |
|
ema_config: |
|
ema_decay: 0.99 |
|
use_ema: true |
|
gradient_accumulation_steps: 1 |
|
gradient_checkpointing: true |
|
noise_scheduler: flowmatch |
|
optimizer: adamw8bit |
|
train_text_encoder: false |
|
train_unet: true |
|
''' |
|
|
|
def main(): |
|
with pg.App() as app: |
|
app.add_page(title="LoRA Ease for FLUX", description="Train a high quality FLUX LoRA in a breeze") |
|
|
|
app.add_textbox( |
|
id="lora_name", |
|
label="The name of your LoRA", |
|
placeholder="e.g.: Persian Miniature Painting style, Cat Toy", |
|
) |
|
app.add_textbox( |
|
id="concept_sentence", |
|
label="Trigger word/sentence", |
|
placeholder="uncommon word like p3rs0n or trtcrd, or sentence like 'in the style of CNSTLL'", |
|
) |
|
|
|
image_upload = app.add_file_upload( |
|
id="images", |
|
label="Upload your images", |
|
file_types=["image", ".txt"], |
|
multiple=True, |
|
) |
|
|
|
captioning_area = app.add_container(id="captioning_area", visible=False) |
|
captioning_area.add_text("Custom captioning") |
|
do_captioning = app.add_button("Add AI captions with Florence-2", id="do_captioning") |
|
|
|
for i in range(1, MAX_IMAGES + 1): |
|
with captioning_area.add_row(id=f"captioning_row_{i}", visible=False) as row: |
|
row.add_image(id=f"image_{i}", width=111, height=111, visible=False) |
|
row.add_textbox(id=f"caption_{i}", label=f"Caption {i}") |
|
|
|
app.add_accordion(title="Advanced options", open=False) |
|
app.add_number(id="steps", label="Steps", value=1000, min=1, max=10000) |
|
app.add_number(id="lr", label="Learning Rate", value=4e-4, min=1e-6, max=1e-3) |
|
app.add_number(id="rank", label="LoRA Rank", value=16, min=4, max=128) |
|
app.add_radio(id="model_to_train", options=["dev", "schnell"], value="dev", label="Model to train") |
|
app.add_checkbox(id="low_vram", label="Low VRAM", value=True) |
|
|
|
with app.add_accordion(title="Even more advanced options", open=False): |
|
app.add_checkbox(id="use_more_advanced_options", label="Use more advanced options", value=False) |
|
app.add_code(id="more_advanced_options", value=config_yaml, language="yaml") |
|
|
|
app.add_accordion(title="Sample prompts (optional)", visible=False) |
|
app.add_textbox(id="sample_1", label="Test prompt 1") |
|
app.add_textbox(id="sample_2", label="Test prompt 2") |
|
app.add_textbox(id="sample_3", label="Test prompt 3") |
|
|
|
start = app.add_button("Start training", id="start", visible=False) |
|
progress_area = app.add_text("") |
|
|
|
app.on_upload(id="images", fn=load_captioning, inputs=["images", "concept_sentence"], outputs=["captioning_area", "sample", "start"]) |
|
app.on_click(id="do_captioning", fn=run_captioning, inputs=["images", "concept_sentence"] + [f"caption_{i}" for i in range(1, MAX_IMAGES + 1)], outputs=[f"caption_{i}" for i in range(1, MAX_IMAGES + 1)]) |
|
app.on_click(id="start", fn=create_dataset, inputs=["images"] + [f"caption_{i}" for i in range(1, MAX_IMAGES + 1)], outputs=["dataset_folder"]) |
|
app.on_click(id="start", fn=start_training, inputs=[ |
|
"lora_name", |
|
"concept_sentence", |
|
"steps", |
|
"lr", |
|
"rank", |
|
"model_to_train", |
|
"low_vram", |
|
"dataset_folder", |
|
"sample_1", |
|
"sample_2", |
|
"sample_3", |
|
"use_more_advanced_options", |
|
"more_advanced_options" |
|
], outputs=["progress_area"]) |
|
|
|
app.run() |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|