alatlatihlora / latihsekarang.py
crystantine's picture
Update latihsekarang.py
b60af16 verified
import os
import uuid
import shutil
import json
import yaml
import torch
from PIL import Image
from slugify import slugify
from transformers import AutoProcessor, AutoModelForCausalLM
import pinggy as pg
# Ensure the current working directory is in sys.path
import sys
sys.path.insert(0, os.getcwd())
sys.path.insert(0, "ai-toolkit")
from toolkit.job import get_job
from huggingface_hub import whoami
MAX_IMAGES = 150
def load_captioning(uploaded_files, concept_sentence):
uploaded_images = [file for file in uploaded_files if not file.endswith('.txt')]
txt_files = [file for file in uploaded_files if file.endswith('.txt')]
txt_files_dict = {os.path.splitext(os.path.basename(txt_file))[0]: txt_file for txt_file in txt_files}
updates = []
if len(uploaded_images) <= 1:
raise pg.Error("Please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)")
elif len(uploaded_images) > MAX_IMAGES:
raise pg.Error(f"For now, only {MAX_IMAGES} or less images are allowed for training")
updates.append(pg.Update(visible=True))
for i in range(1, MAX_IMAGES + 1):
visible = i <= len(uploaded_images)
updates.append(pg.Update(visible=visible))
image_value = uploaded_images[i - 1] if visible else None
updates.append(pg.Update(value=image_value, visible=visible))
corresponding_caption = False
if image_value:
base_name = os.path.splitext(os.path.basename(image_value))[0]
if base_name in txt_files_dict:
with open(txt_files_dict[base_name], 'r') as file:
corresponding_caption = file.read()
text_value = corresponding_caption if visible and corresponding_caption else "[trigger]" if visible and concept_sentence else None
updates.append(pg.Update(value=text_value, visible=visible))
updates.append(pg.Update(visible=True))
updates.append(pg.Update(placeholder=f'A portrait of person in a bustling cafe {concept_sentence}', value=f'A person in a bustling cafe {concept_sentence}'))
updates.append(pg.Update(placeholder=f"A mountainous landscape in the style of {concept_sentence}"))
updates.append(pg.Update(placeholder=f"A {concept_sentence} in a mall"))
updates.append(pg.Update(visible=True))
return updates
def hide_captioning():
return pg.Update(visible=False), pg.Update(visible=False), pg.Update(visible=False)
def create_dataset(images, *captions):
destination_folder = f"datasets/{uuid.uuid4()}"
os.makedirs(destination_folder, exist_ok=True)
jsonl_file_path = os.path.join(destination_folder, "metadata.jsonl")
with open(jsonl_file_path, "a") as jsonl_file:
for index, image in enumerate(images):
new_image_path = shutil.copy(image, destination_folder)
original_caption = captions[index]
file_name = os.path.basename(new_image_path)
data = {"file_name": file_name, "prompt": original_caption}
jsonl_file.write(json.dumps(data) + "\n")
return destination_folder
def run_captioning(images, concept_sentence, *captions):
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16
model = AutoModelForCausalLM.from_pretrained(
"multimodalart/Florence-2-large-no-flash-attn", torch_dtype=torch_dtype, trust_remote_code=True
).to(device)
processor = AutoProcessor.from_pretrained("multimodalart/Florence-2-large-no-flash-attn", trust_remote_code=True)
captions = list(captions)
for i, image_path in enumerate(images):
if isinstance(image_path, str):
image = Image.open(image_path).convert("RGB")
prompt = "<DETAILED_CAPTION>"
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
generated_ids = model.generate(
input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text, task=prompt, image_size=(image.width, image.height)
)
caption_text = parsed_answer["<DETAILED_CAPTION>"].replace("The image shows ", "")
if concept_sentence:
caption_text = f"{caption_text} [trigger]"
captions[i] = caption_text
yield captions
model.to("cpu")
del model
del processor
def recursive_update(d, u):
for k, v in u.items():
if isinstance(v, dict) and v:
d[k] = recursive_update(d.get(k, {}), v)
else:
d[k] = v
return d
def start_training(
lora_name,
concept_sentence,
steps,
lr,
rank,
model_to_train,
low_vram,
dataset_folder,
sample_1,
sample_2,
sample_3,
use_more_advanced_options,
more_advanced_options,
):
push_to_hub = True
if not lora_name:
raise pg.Error("You forgot to insert your LoRA name! This name has to be unique.")
try:
if whoami()["auth"]["accessToken"]["role"] == "write" or "repo.write" in whoami()["auth"]["accessToken"]["fineGrained"]["scoped"][0]["permissions"]:
pg.Info(f"Starting training locally {whoami()['name']}. Your LoRA will be available locally and in Hugging Face after it finishes.")
else:
push_to_hub = False
pg.Warning("Started training locally. Your LoRa will only be available locally because you didn't login with a `write` token to Hugging Face")
except:
push_to_hub = False
pg.Warning("Started training locally. Your LoRa will only be available locally because you didn't login with a `write` token to Hugging Face")
slugged_lora_name = slugify(lora_name)
with open("config/examples/train_lora_flux_24gb.yaml", "r") as f:
config = yaml.safe_load(f)
config["config"]["name"] = slugged_lora_name
config["config"]["process"][0]["model"]["low_vram"] = low_vram
config["config"]["process"][0]["train"]["skip_first_sample"] = True
config["config"]["process"][0]["train"]["steps"] = int(steps)
config["config"]["process"][0]["train"]["lr"] = float(lr)
config["config"]["process"][0]["network"]["linear"] = int(rank)
config["config"]["process"][0]["network"]["linear_alpha"] = int(rank)
config["config"]["process"][0]["datasets"][0]["folder_path"] = dataset_folder
config["config"]["process"][0]["save"]["push_to_hub"] = push_to_hub
if push_to_hub:
try:
username = whoami()["name"]
except:
raise pg.Error("Error trying to retrieve your username. Are you sure you are logged in with Hugging Face?")
config["config"]["process"][0]["save"]["hf_repo_id"] = f"{username}/{slugged_lora_name}"
config["config"]["process"][0]["save"]["hf_private"] = True
if concept_sentence:
config["config"]["process"][0]["trigger_word"] = concept_sentence
if sample_1 or sample_2 or sample_3:
config["config"]["process"][0]["train"]["disable_sampling"] = False
config["config"]["process"][0]["sample"]["sample_every"] = steps
config["config"]["process"][0]["sample"]["sample_steps"] = 28
config["config"]["process"][0]["sample"]["prompts"] = []
if sample_1:
config["config"]["process"][0]["sample"]["prompts"].append(sample_1)
if sample_2:
config["config"]["process"][0]["sample"]["prompts"].append(sample_2)
if sample_3:
config["config"]["process"][0]["sample"]["prompts"].append(sample_3)
else:
config["config"]["process"][0]["train"]["disable_sampling"] = True
if model_to_train == "schnell":
config["config"]["process"][0]["model"]["name_or_path"] = "black-forest-labs/FLUX.1-schnell"
config["config"]["process"][0]["model"]["assistant_lora_path"] = "ostris/FLUX.1-schnell-training-adapter"
config["config"]["process"][0]["sample"]["sample_steps"] = 4
if use_more_advanced_options:
more_advanced_options_dict = yaml.safe_load(more_advanced_options)
config["config"]["process"][0] = recursive_update(config["config"]["process"][0], more_advanced_options_dict)
random_config_name = str(uuid.uuid4())
os.makedirs("tmp", exist_ok=True)
config_path = f"tmp/{random_config_name}-{slugged_lora_name}.yaml"
with open(config_path, "w") as f:
yaml.dump(config, f)
job = get_job(config_path)
job.run()
job.cleanup()
return f"Training completed successfully. Model saved as {slugged_lora_name}"
config_yaml = '''
device: cuda:0
model:
is_flux: true
quantize: true
network:
linear: 16
linear_alpha: 16
type: lora
sample:
guidance_scale: 3.5
height: 1024
neg: ''
sample_every: 1000
sample_steps: 28
sampler: flowmatch
seed: 42
walk_seed: true
width: 1024
save:
dtype: float16
hf_private: true
max_step_saves_to_keep: 4
push_to_hub: true
save_every: 10000
train:
batch_size: 1
dtype: bf16
ema_config:
ema_decay: 0.99
use_ema: true
gradient_accumulation_steps: 1
gradient_checkpointing: true
noise_scheduler: flowmatch
optimizer: adamw8bit
train_text_encoder: false
train_unet: true
'''
def main():
with pg.App() as app:
app.add_page(title="LoRA Ease for FLUX", description="Train a high quality FLUX LoRA in a breeze")
app.add_textbox(
id="lora_name",
label="The name of your LoRA",
placeholder="e.g.: Persian Miniature Painting style, Cat Toy",
)
app.add_textbox(
id="concept_sentence",
label="Trigger word/sentence",
placeholder="uncommon word like p3rs0n or trtcrd, or sentence like 'in the style of CNSTLL'",
)
image_upload = app.add_file_upload(
id="images",
label="Upload your images",
file_types=["image", ".txt"],
multiple=True,
)
captioning_area = app.add_container(id="captioning_area", visible=False)
captioning_area.add_text("Custom captioning")
do_captioning = app.add_button("Add AI captions with Florence-2", id="do_captioning")
for i in range(1, MAX_IMAGES + 1):
with captioning_area.add_row(id=f"captioning_row_{i}", visible=False) as row:
row.add_image(id=f"image_{i}", width=111, height=111, visible=False)
row.add_textbox(id=f"caption_{i}", label=f"Caption {i}")
app.add_accordion(title="Advanced options", open=False)
app.add_number(id="steps", label="Steps", value=1000, min=1, max=10000)
app.add_number(id="lr", label="Learning Rate", value=4e-4, min=1e-6, max=1e-3)
app.add_number(id="rank", label="LoRA Rank", value=16, min=4, max=128)
app.add_radio(id="model_to_train", options=["dev", "schnell"], value="dev", label="Model to train")
app.add_checkbox(id="low_vram", label="Low VRAM", value=True)
with app.add_accordion(title="Even more advanced options", open=False):
app.add_checkbox(id="use_more_advanced_options", label="Use more advanced options", value=False)
app.add_code(id="more_advanced_options", value=config_yaml, language="yaml")
app.add_accordion(title="Sample prompts (optional)", visible=False)
app.add_textbox(id="sample_1", label="Test prompt 1")
app.add_textbox(id="sample_2", label="Test prompt 2")
app.add_textbox(id="sample_3", label="Test prompt 3")
start = app.add_button("Start training", id="start", visible=False)
progress_area = app.add_text("")
app.on_upload(id="images", fn=load_captioning, inputs=["images", "concept_sentence"], outputs=["captioning_area", "sample", "start"])
app.on_click(id="do_captioning", fn=run_captioning, inputs=["images", "concept_sentence"] + [f"caption_{i}" for i in range(1, MAX_IMAGES + 1)], outputs=[f"caption_{i}" for i in range(1, MAX_IMAGES + 1)])
app.on_click(id="start", fn=create_dataset, inputs=["images"] + [f"caption_{i}" for i in range(1, MAX_IMAGES + 1)], outputs=["dataset_folder"])
app.on_click(id="start", fn=start_training, inputs=[
"lora_name",
"concept_sentence",
"steps",
"lr",
"rank",
"model_to_train",
"low_vram",
"dataset_folder",
"sample_1",
"sample_2",
"sample_3",
"use_more_advanced_options",
"more_advanced_options"
], outputs=["progress_area"])
app.run()
if __name__ == "__main__":
main()