|
import torch |
|
from safetensors.torch import save_file, load_file |
|
from collections import OrderedDict |
|
meta = OrderedDict() |
|
meta["format"] ="pt" |
|
|
|
attn_dict = load_file("/mnt/Train/out/ip_adapter/sd15_bigG/sd15_bigG_000266000.safetensors") |
|
state_dict = load_file("/home/jaret/Dev/models/hf/OstrisDiffusionV1/unet/diffusion_pytorch_model.safetensors") |
|
|
|
attn_list = [] |
|
for key, value in state_dict.items(): |
|
if "attn1" in key: |
|
attn_list.append(key) |
|
|
|
attn_names = ['down_blocks.0.attentions.0.transformer_blocks.0.attn2.processor', 'down_blocks.0.attentions.1.transformer_blocks.0.attn2.processor', 'down_blocks.1.attentions.0.transformer_blocks.0.attn2.processor', 'down_blocks.1.attentions.1.transformer_blocks.0.attn2.processor', 'down_blocks.2.attentions.0.transformer_blocks.0.attn2.processor', 'down_blocks.2.attentions.1.transformer_blocks.0.attn2.processor', 'up_blocks.1.attentions.0.transformer_blocks.0.attn2.processor', 'up_blocks.1.attentions.1.transformer_blocks.0.attn2.processor', 'up_blocks.1.attentions.2.transformer_blocks.0.attn2.processor', 'up_blocks.2.attentions.0.transformer_blocks.0.attn2.processor', 'up_blocks.2.attentions.1.transformer_blocks.0.attn2.processor', 'up_blocks.2.attentions.2.transformer_blocks.0.attn2.processor', 'up_blocks.3.attentions.0.transformer_blocks.0.attn2.processor', 'up_blocks.3.attentions.1.transformer_blocks.0.attn2.processor', 'up_blocks.3.attentions.2.transformer_blocks.0.attn2.processor', 'mid_block.attentions.0.transformer_blocks.0.attn2.processor'] |
|
|
|
adapter_names = [] |
|
for i in range(100): |
|
if f'te_adapter.adapter_modules.{i}.to_k_adapter.weight' in attn_dict: |
|
adapter_names.append(f"te_adapter.adapter_modules.{i}.adapter") |
|
|
|
|
|
for i in range(len(adapter_names)): |
|
adapter_name = adapter_names[i] |
|
attn_name = attn_names[i] |
|
adapter_k_name = adapter_name[:-8] + '.to_k_adapter.weight' |
|
adapter_v_name = adapter_name[:-8] + '.to_v_adapter.weight' |
|
state_k_name = attn_name.replace(".processor", ".to_k.weight") |
|
state_v_name = attn_name.replace(".processor", ".to_v.weight") |
|
if adapter_k_name in attn_dict: |
|
state_dict[state_k_name] = attn_dict[adapter_k_name] |
|
state_dict[state_v_name] = attn_dict[adapter_v_name] |
|
else: |
|
print("adapter_k_name", adapter_k_name) |
|
print("state_k_name", state_k_name) |
|
|
|
for key, value in state_dict.items(): |
|
state_dict[key] = value.cpu().to(torch.float16) |
|
|
|
save_file(state_dict, "/home/jaret/Dev/models/hf/OstrisDiffusionV1/unet/diffusion_pytorch_model.safetensors", metadata=meta) |
|
|
|
print("Done") |
|
|