|
from typing import TYPE_CHECKING |
|
from toolkit.config_modules import NetworkConfig |
|
from toolkit.lora_special import LoRASpecialNetwork |
|
from safetensors.torch import load_file |
|
|
|
if TYPE_CHECKING: |
|
from toolkit.stable_diffusion_model import StableDiffusion |
|
|
|
|
|
def load_assistant_lora_from_path(adapter_path, sd: 'StableDiffusion') -> LoRASpecialNetwork: |
|
if not sd.is_flux: |
|
raise ValueError("Only Flux models can load assistant adapters currently.") |
|
pipe = sd.pipeline |
|
print(f"Loading assistant adapter from {adapter_path}") |
|
adapter_name = adapter_path.split("/")[-1].split(".")[0] |
|
lora_state_dict = load_file(adapter_path) |
|
|
|
linear_dim = int(lora_state_dict['transformer.single_transformer_blocks.0.attn.to_k.lora_A.weight'].shape[0]) |
|
|
|
linear_alpha = linear_dim |
|
transformer_only = 'transformer.proj_out.alpha' not in lora_state_dict |
|
|
|
network_config = NetworkConfig( |
|
linear=linear_dim, |
|
linear_alpha=linear_alpha, |
|
transformer_only=transformer_only, |
|
) |
|
|
|
network = LoRASpecialNetwork( |
|
text_encoder=pipe.text_encoder, |
|
unet=pipe.transformer, |
|
lora_dim=network_config.linear, |
|
multiplier=1.0, |
|
alpha=network_config.linear_alpha, |
|
train_unet=True, |
|
train_text_encoder=False, |
|
is_flux=True, |
|
network_config=network_config, |
|
network_type=network_config.type, |
|
transformer_only=network_config.transformer_only, |
|
is_assistant_adapter=True |
|
) |
|
network.apply_to( |
|
pipe.text_encoder, |
|
pipe.transformer, |
|
apply_text_encoder=False, |
|
apply_unet=True |
|
) |
|
network.force_to(sd.device_torch, dtype=sd.torch_dtype) |
|
network.eval() |
|
network._update_torch_multiplier() |
|
network.load_weights(lora_state_dict) |
|
network.is_active = True |
|
|
|
return network |
|
|