alatlatihlora / toolkit /config_modules.py
crystantine's picture
Upload 190 files
1ba389d verified
import os
import time
from typing import List, Optional, Literal, Union, TYPE_CHECKING, Dict
import random
import torch
from toolkit.prompt_utils import PromptEmbeds
ImgExt = Literal['jpg', 'png', 'webp']
SaveFormat = Literal['safetensors', 'diffusers']
if TYPE_CHECKING:
from toolkit.guidance import GuidanceType
class SaveConfig:
def __init__(self, **kwargs):
self.save_every: int = kwargs.get('save_every', 1000)
self.dtype: str = kwargs.get('dtype', 'float16')
self.max_step_saves_to_keep: int = kwargs.get('max_step_saves_to_keep', 5)
self.save_format: SaveFormat = kwargs.get('save_format', 'safetensors')
if self.save_format not in ['safetensors', 'diffusers']:
raise ValueError(f"save_format must be safetensors or diffusers, got {self.save_format}")
self.push_to_hub: bool = kwargs.get("push_to_hub", False)
self.hf_repo_id: Optional[str] = kwargs.get("hf_repo_id", None)
self.hf_private: Optional[str] = kwargs.get("hf_private", False)
class LogingConfig:
def __init__(self, **kwargs):
self.log_every: int = kwargs.get('log_every', 100)
self.verbose: bool = kwargs.get('verbose', False)
self.use_wandb: bool = kwargs.get('use_wandb', False)
class SampleConfig:
def __init__(self, **kwargs):
self.sampler: str = kwargs.get('sampler', 'ddpm')
self.sample_every: int = kwargs.get('sample_every', 100)
self.width: int = kwargs.get('width', 512)
self.height: int = kwargs.get('height', 512)
self.prompts: list[str] = kwargs.get('prompts', [])
self.neg = kwargs.get('neg', False)
self.seed = kwargs.get('seed', 0)
self.walk_seed = kwargs.get('walk_seed', False)
self.guidance_scale = kwargs.get('guidance_scale', 7)
self.sample_steps = kwargs.get('sample_steps', 20)
self.network_multiplier = kwargs.get('network_multiplier', 1)
self.guidance_rescale = kwargs.get('guidance_rescale', 0.0)
self.ext: ImgExt = kwargs.get('format', 'jpg')
self.adapter_conditioning_scale = kwargs.get('adapter_conditioning_scale', 1.0)
self.refiner_start_at = kwargs.get('refiner_start_at',
0.5) # step to start using refiner on sample if it exists
self.extra_values = kwargs.get('extra_values', [])
class LormModuleSettingsConfig:
def __init__(self, **kwargs):
self.contains: str = kwargs.get('contains', '4nt$3')
self.extract_mode: str = kwargs.get('extract_mode', 'ratio')
# min num parameters to attach to
self.parameter_threshold: int = kwargs.get('parameter_threshold', 0)
self.extract_mode_param: dict = kwargs.get('extract_mode_param', 0.25)
class LoRMConfig:
def __init__(self, **kwargs):
self.extract_mode: str = kwargs.get('extract_mode', 'ratio')
self.do_conv: bool = kwargs.get('do_conv', False)
self.extract_mode_param: dict = kwargs.get('extract_mode_param', 0.25)
self.parameter_threshold: int = kwargs.get('parameter_threshold', 0)
module_settings = kwargs.get('module_settings', [])
default_module_settings = {
'extract_mode': self.extract_mode,
'extract_mode_param': self.extract_mode_param,
'parameter_threshold': self.parameter_threshold,
}
module_settings = [{**default_module_settings, **module_setting, } for module_setting in module_settings]
self.module_settings: List[LormModuleSettingsConfig] = [LormModuleSettingsConfig(**module_setting) for
module_setting in module_settings]
def get_config_for_module(self, block_name):
for setting in self.module_settings:
contain_pieces = setting.contains.split('|')
if all(contain_piece in block_name for contain_piece in contain_pieces):
return setting
# try replacing the . with _
contain_pieces = setting.contains.replace('.', '_').split('|')
if all(contain_piece in block_name for contain_piece in contain_pieces):
return setting
# do default
return LormModuleSettingsConfig(**{
'extract_mode': self.extract_mode,
'extract_mode_param': self.extract_mode_param,
'parameter_threshold': self.parameter_threshold,
})
NetworkType = Literal['lora', 'locon', 'lorm']
class NetworkConfig:
def __init__(self, **kwargs):
self.type: NetworkType = kwargs.get('type', 'lora')
rank = kwargs.get('rank', None)
linear = kwargs.get('linear', None)
if rank is not None:
self.rank: int = rank # rank for backward compatibility
self.linear: int = rank
elif linear is not None:
self.rank: int = linear
self.linear: int = linear
self.conv: int = kwargs.get('conv', None)
self.alpha: float = kwargs.get('alpha', 1.0)
self.linear_alpha: float = kwargs.get('linear_alpha', self.alpha)
self.conv_alpha: float = kwargs.get('conv_alpha', self.conv)
self.dropout: Union[float, None] = kwargs.get('dropout', None)
self.network_kwargs: dict = kwargs.get('network_kwargs', {})
self.lorm_config: Union[LoRMConfig, None] = None
lorm = kwargs.get('lorm', None)
if lorm is not None:
self.lorm_config: LoRMConfig = LoRMConfig(**lorm)
if self.type == 'lorm':
# set linear to arbitrary values so it makes them
self.linear = 4
self.rank = 4
if self.lorm_config.do_conv:
self.conv = 4
self.transformer_only = kwargs.get('transformer_only', True)
AdapterTypes = Literal['t2i', 'ip', 'ip+', 'clip', 'ilora', 'photo_maker', 'control_net']
CLIPLayer = Literal['penultimate_hidden_states', 'image_embeds', 'last_hidden_state']
class AdapterConfig:
def __init__(self, **kwargs):
self.type: AdapterTypes = kwargs.get('type', 't2i') # t2i, ip, clip, control_net
self.in_channels: int = kwargs.get('in_channels', 3)
self.channels: List[int] = kwargs.get('channels', [320, 640, 1280, 1280])
self.num_res_blocks: int = kwargs.get('num_res_blocks', 2)
self.downscale_factor: int = kwargs.get('downscale_factor', 8)
self.adapter_type: str = kwargs.get('adapter_type', 'full_adapter')
self.image_dir: str = kwargs.get('image_dir', None)
self.test_img_path: str = kwargs.get('test_img_path', None)
self.train: str = kwargs.get('train', False)
self.image_encoder_path: str = kwargs.get('image_encoder_path', None)
self.name_or_path = kwargs.get('name_or_path', None)
num_tokens = kwargs.get('num_tokens', None)
if num_tokens is None and self.type.startswith('ip'):
if self.type == 'ip+':
num_tokens = 16
num_tokens = 16
elif self.type == 'ip':
num_tokens = 4
self.num_tokens: int = num_tokens
self.train_image_encoder: bool = kwargs.get('train_image_encoder', False)
self.train_only_image_encoder: bool = kwargs.get('train_only_image_encoder', False)
if self.train_only_image_encoder:
self.train_image_encoder = True
self.train_only_image_encoder_positional_embedding: bool = kwargs.get(
'train_only_image_encoder_positional_embedding', False)
self.image_encoder_arch: str = kwargs.get('image_encoder_arch', 'clip') # clip vit vit_hybrid, safe
self.safe_reducer_channels: int = kwargs.get('safe_reducer_channels', 512)
self.safe_channels: int = kwargs.get('safe_channels', 2048)
self.safe_tokens: int = kwargs.get('safe_tokens', 8)
self.quad_image: bool = kwargs.get('quad_image', False)
# clip vision
self.trigger = kwargs.get('trigger', 'tri993r')
self.trigger_class_name = kwargs.get('trigger_class_name', None)
self.class_names = kwargs.get('class_names', [])
self.clip_layer: CLIPLayer = kwargs.get('clip_layer', None)
if self.clip_layer is None:
if self.type.startswith('ip+'):
self.clip_layer = 'penultimate_hidden_states'
else:
self.clip_layer = 'last_hidden_state'
# text encoder
self.text_encoder_path: str = kwargs.get('text_encoder_path', None)
self.text_encoder_arch: str = kwargs.get('text_encoder_arch', 'clip') # clip t5
self.train_scaler: bool = kwargs.get('train_scaler', False)
self.scaler_lr: Optional[float] = kwargs.get('scaler_lr', None)
# trains with a scaler to easy channel bias but merges it in on save
self.merge_scaler: bool = kwargs.get('merge_scaler', False)
# for ilora
self.head_dim: int = kwargs.get('head_dim', 1024)
self.num_heads: int = kwargs.get('num_heads', 1)
self.ilora_down: bool = kwargs.get('ilora_down', True)
self.ilora_mid: bool = kwargs.get('ilora_mid', True)
self.ilora_up: bool = kwargs.get('ilora_up', True)
self.flux_only_double: bool = kwargs.get('flux_only_double', False)
class EmbeddingConfig:
def __init__(self, **kwargs):
self.trigger = kwargs.get('trigger', 'custom_embedding')
self.tokens = kwargs.get('tokens', 4)
self.init_words = kwargs.get('init_words', '*')
self.save_format = kwargs.get('save_format', 'safetensors')
self.trigger_class_name = kwargs.get('trigger_class_name', None) # used for inverted masked prior
ContentOrStyleType = Literal['balanced', 'style', 'content']
LossTarget = Literal['noise', 'source', 'unaugmented', 'differential_noise']
class TrainConfig:
def __init__(self, **kwargs):
self.noise_scheduler = kwargs.get('noise_scheduler', 'ddpm')
self.content_or_style: ContentOrStyleType = kwargs.get('content_or_style', 'balanced')
self.content_or_style_reg: ContentOrStyleType = kwargs.get('content_or_style', 'balanced')
self.steps: int = kwargs.get('steps', 1000)
self.lr = kwargs.get('lr', 1e-6)
self.unet_lr = kwargs.get('unet_lr', self.lr)
self.text_encoder_lr = kwargs.get('text_encoder_lr', self.lr)
self.refiner_lr = kwargs.get('refiner_lr', self.lr)
self.embedding_lr = kwargs.get('embedding_lr', self.lr)
self.adapter_lr = kwargs.get('adapter_lr', self.lr)
self.optimizer = kwargs.get('optimizer', 'adamw')
self.optimizer_params = kwargs.get('optimizer_params', {})
self.lr_scheduler = kwargs.get('lr_scheduler', 'constant')
self.lr_scheduler_params = kwargs.get('lr_scheduler_params', {})
self.min_denoising_steps: int = kwargs.get('min_denoising_steps', 0)
self.max_denoising_steps: int = kwargs.get('max_denoising_steps', 1000)
self.batch_size: int = kwargs.get('batch_size', 1)
self.orig_batch_size: int = self.batch_size
self.dtype: str = kwargs.get('dtype', 'fp32')
self.xformers = kwargs.get('xformers', False)
self.sdp = kwargs.get('sdp', False)
self.train_unet = kwargs.get('train_unet', True)
self.train_text_encoder = kwargs.get('train_text_encoder', False)
self.train_refiner = kwargs.get('train_refiner', True)
self.train_turbo = kwargs.get('train_turbo', False)
self.show_turbo_outputs = kwargs.get('show_turbo_outputs', False)
self.min_snr_gamma = kwargs.get('min_snr_gamma', None)
self.snr_gamma = kwargs.get('snr_gamma', None)
# trains a gamma, offset, and scale to adjust loss to adapt to timestep differentials
# this should balance the learning rate across all timesteps over time
self.learnable_snr_gos = kwargs.get('learnable_snr_gos', False)
self.noise_offset = kwargs.get('noise_offset', 0.0)
self.skip_first_sample = kwargs.get('skip_first_sample', False)
self.force_first_sample = kwargs.get('force_first_sample', False)
self.gradient_checkpointing = kwargs.get('gradient_checkpointing', True)
self.weight_jitter = kwargs.get('weight_jitter', 0.0)
self.merge_network_on_save = kwargs.get('merge_network_on_save', False)
self.max_grad_norm = kwargs.get('max_grad_norm', 1.0)
self.start_step = kwargs.get('start_step', None)
self.free_u = kwargs.get('free_u', False)
self.adapter_assist_name_or_path: Optional[str] = kwargs.get('adapter_assist_name_or_path', None)
self.adapter_assist_type: Optional[str] = kwargs.get('adapter_assist_type', 't2i') # t2i, control_net
self.noise_multiplier = kwargs.get('noise_multiplier', 1.0)
self.target_noise_multiplier = kwargs.get('target_noise_multiplier', 1.0)
self.img_multiplier = kwargs.get('img_multiplier', 1.0)
self.noisy_latent_multiplier = kwargs.get('noisy_latent_multiplier', 1.0)
self.latent_multiplier = kwargs.get('latent_multiplier', 1.0)
self.negative_prompt = kwargs.get('negative_prompt', None)
self.max_negative_prompts = kwargs.get('max_negative_prompts', 1)
# multiplier applied to loos on regularization images
self.reg_weight = kwargs.get('reg_weight', 1.0)
self.num_train_timesteps = kwargs.get('num_train_timesteps', 1000)
self.random_noise_shift = kwargs.get('random_noise_shift', 0.0)
# automatically adapte the vae scaling based on the image norm
self.adaptive_scaling_factor = kwargs.get('adaptive_scaling_factor', False)
# dropout that happens before encoding. It functions independently per text encoder
self.prompt_dropout_prob = kwargs.get('prompt_dropout_prob', 0.0)
# match the norm of the noise before computing loss. This will help the model maintain its
# current understandin of the brightness of images.
self.match_noise_norm = kwargs.get('match_noise_norm', False)
# set to -1 to accumulate gradients for entire epoch
# warning, only do this with a small dataset or you will run out of memory
# This is legacy but left in for backwards compatibility
self.gradient_accumulation_steps = kwargs.get('gradient_accumulation_steps', 1)
# this will do proper gradient accumulation where you will not see a step until the end of the accumulation
# the method above will show a step every accumulation
self.gradient_accumulation = kwargs.get('gradient_accumulation', 1)
if self.gradient_accumulation > 1:
if self.gradient_accumulation_steps != 1:
raise ValueError("gradient_accumulation and gradient_accumulation_steps are mutually exclusive")
# short long captions will double your batch size. This only works when a dataset is
# prepared with a json caption file that has both short and long captions in it. It will
# Double up every image and run it through with both short and long captions. The idea
# is that the network will learn how to generate good images with both short and long captions
self.short_and_long_captions = kwargs.get('short_and_long_captions', False)
# if above is NOT true, this will make it so the long caption foes to te2 and the short caption goes to te1 for sdxl only
self.short_and_long_captions_encoder_split = kwargs.get('short_and_long_captions_encoder_split', False)
# basically gradient accumulation but we run just 1 item through the network
# and accumulate gradients. This can be used as basic gradient accumulation but is very helpful
# for training tricks that increase batch size but need a single gradient step
self.single_item_batching = kwargs.get('single_item_batching', False)
match_adapter_assist = kwargs.get('match_adapter_assist', False)
self.match_adapter_chance = kwargs.get('match_adapter_chance', 0.0)
self.loss_target: LossTarget = kwargs.get('loss_target',
'noise') # noise, source, unaugmented, differential_noise
# When a mask is passed in a dataset, and this is true,
# we will predict noise without a the LoRa network and use the prediction as a target for
# unmasked reign. It is unmasked regularization basically
self.inverted_mask_prior = kwargs.get('inverted_mask_prior', False)
self.inverted_mask_prior_multiplier = kwargs.get('inverted_mask_prior_multiplier', 0.5)
# legacy
if match_adapter_assist and self.match_adapter_chance == 0.0:
self.match_adapter_chance = 1.0
# standardize inputs to the meand std of the model knowledge
self.standardize_images = kwargs.get('standardize_images', False)
self.standardize_latents = kwargs.get('standardize_latents', False)
if self.train_turbo and not self.noise_scheduler.startswith("euler"):
raise ValueError(f"train_turbo is only supported with euler and wuler_a noise schedulers")
self.dynamic_noise_offset = kwargs.get('dynamic_noise_offset', False)
self.do_cfg = kwargs.get('do_cfg', False)
self.do_random_cfg = kwargs.get('do_random_cfg', False)
self.cfg_scale = kwargs.get('cfg_scale', 1.0)
self.max_cfg_scale = kwargs.get('max_cfg_scale', self.cfg_scale)
self.cfg_rescale = kwargs.get('cfg_rescale', None)
if self.cfg_rescale is None:
self.cfg_rescale = self.cfg_scale
# applies the inverse of the prediction mean and std to the target to correct
# for norm drift
self.correct_pred_norm = kwargs.get('correct_pred_norm', False)
self.correct_pred_norm_multiplier = kwargs.get('correct_pred_norm_multiplier', 1.0)
self.loss_type = kwargs.get('loss_type', 'mse')
# scale the prediction by this. Increase for more detail, decrease for less
self.pred_scaler = kwargs.get('pred_scaler', 1.0)
# repeats the prompt a few times to saturate the encoder
self.prompt_saturation_chance = kwargs.get('prompt_saturation_chance', 0.0)
# applies negative loss on the prior to encourage network to diverge from it
self.do_prior_divergence = kwargs.get('do_prior_divergence', False)
ema_config: Union[Dict, None] = kwargs.get('ema_config', None)
if ema_config is not None:
ema_config['use_ema'] = True
print(f"Using EMA")
else:
ema_config = {'use_ema': False}
self.ema_config: EMAConfig = EMAConfig(**ema_config)
# adds an additional loss to the network to encourage it output a normalized standard deviation
self.target_norm_std = kwargs.get('target_norm_std', None)
self.target_norm_std_value = kwargs.get('target_norm_std_value', 1.0)
self.linear_timesteps = kwargs.get('linear_timesteps', False)
self.linear_timesteps2 = kwargs.get('linear_timesteps2', False)
self.disable_sampling = kwargs.get('disable_sampling', False)
class ModelConfig:
def __init__(self, **kwargs):
self.name_or_path: str = kwargs.get('name_or_path', None)
self.is_v2: bool = kwargs.get('is_v2', False)
self.is_xl: bool = kwargs.get('is_xl', False)
self.is_pixart: bool = kwargs.get('is_pixart', False)
self.is_pixart_sigma: bool = kwargs.get('is_pixart_sigma', False)
self.is_auraflow: bool = kwargs.get('is_auraflow', False)
self.is_v3: bool = kwargs.get('is_v3', False)
self.is_flux: bool = kwargs.get('is_flux', False)
if self.is_pixart_sigma:
self.is_pixart = True
self.use_flux_cfg = kwargs.get('use_flux_cfg', False)
self.is_ssd: bool = kwargs.get('is_ssd', False)
self.is_vega: bool = kwargs.get('is_vega', False)
self.is_v_pred: bool = kwargs.get('is_v_pred', False)
self.dtype: str = kwargs.get('dtype', 'float16')
self.vae_path = kwargs.get('vae_path', None)
self.refiner_name_or_path = kwargs.get('refiner_name_or_path', None)
self._original_refiner_name_or_path = self.refiner_name_or_path
self.refiner_start_at = kwargs.get('refiner_start_at', 0.5)
self.lora_path = kwargs.get('lora_path', None)
# mainly for decompression loras for distilled models
self.assistant_lora_path = kwargs.get('assistant_lora_path', None)
self.latent_space_version = kwargs.get('latent_space_version', None)
# only for SDXL models for now
self.use_text_encoder_1: bool = kwargs.get('use_text_encoder_1', True)
self.use_text_encoder_2: bool = kwargs.get('use_text_encoder_2', True)
self.experimental_xl: bool = kwargs.get('experimental_xl', False)
if self.name_or_path is None:
raise ValueError('name_or_path must be specified')
if self.is_ssd:
# sed sdxl as true since it is mostly the same architecture
self.is_xl = True
if self.is_vega:
self.is_xl = True
# for text encoder quant. Only works with pixart currently
self.text_encoder_bits = kwargs.get('text_encoder_bits', 16) # 16, 8, 4
self.unet_path = kwargs.get("unet_path", None)
self.unet_sample_size = kwargs.get("unet_sample_size", None)
self.vae_device = kwargs.get("vae_device", None)
self.vae_dtype = kwargs.get("vae_dtype", self.dtype)
self.te_device = kwargs.get("te_device", None)
self.te_dtype = kwargs.get("te_dtype", self.dtype)
# only for flux for now
self.quantize = kwargs.get("quantize", False)
self.low_vram = kwargs.get("low_vram", False)
self.attn_masking = kwargs.get("attn_masking", False)
if self.attn_masking and not self.is_flux:
raise ValueError("attn_masking is only supported with flux models currently")
pass
class EMAConfig:
def __init__(self, **kwargs):
self.use_ema: bool = kwargs.get('use_ema', False)
self.ema_decay: float = kwargs.get('ema_decay', 0.999)
# feeds back the decay difference into the parameter
self.use_feedback: bool = kwargs.get('use_feedback', False)
class ReferenceDatasetConfig:
def __init__(self, **kwargs):
# can pass with a side by side pait or a folder with pos and neg folder
self.pair_folder: str = kwargs.get('pair_folder', None)
self.pos_folder: str = kwargs.get('pos_folder', None)
self.neg_folder: str = kwargs.get('neg_folder', None)
self.network_weight: float = float(kwargs.get('network_weight', 1.0))
self.pos_weight: float = float(kwargs.get('pos_weight', self.network_weight))
self.neg_weight: float = float(kwargs.get('neg_weight', self.network_weight))
# make sure they are all absolute values no negatives
self.pos_weight = abs(self.pos_weight)
self.neg_weight = abs(self.neg_weight)
self.target_class: str = kwargs.get('target_class', '')
self.size: int = kwargs.get('size', 512)
class SliderTargetConfig:
def __init__(self, **kwargs):
self.target_class: str = kwargs.get('target_class', '')
self.positive: str = kwargs.get('positive', '')
self.negative: str = kwargs.get('negative', '')
self.multiplier: float = kwargs.get('multiplier', 1.0)
self.weight: float = kwargs.get('weight', 1.0)
self.shuffle: bool = kwargs.get('shuffle', False)
class GuidanceConfig:
def __init__(self, **kwargs):
self.target_class: str = kwargs.get('target_class', '')
self.guidance_scale: float = kwargs.get('guidance_scale', 1.0)
self.positive_prompt: str = kwargs.get('positive_prompt', '')
self.negative_prompt: str = kwargs.get('negative_prompt', '')
class SliderConfigAnchors:
def __init__(self, **kwargs):
self.prompt = kwargs.get('prompt', '')
self.neg_prompt = kwargs.get('neg_prompt', '')
self.multiplier = kwargs.get('multiplier', 1.0)
class SliderConfig:
def __init__(self, **kwargs):
targets = kwargs.get('targets', [])
anchors = kwargs.get('anchors', [])
anchors = [SliderConfigAnchors(**anchor) for anchor in anchors]
self.anchors: List[SliderConfigAnchors] = anchors
self.resolutions: List[List[int]] = kwargs.get('resolutions', [[512, 512]])
self.prompt_file: str = kwargs.get('prompt_file', None)
self.prompt_tensors: str = kwargs.get('prompt_tensors', None)
self.batch_full_slide: bool = kwargs.get('batch_full_slide', True)
self.use_adapter: bool = kwargs.get('use_adapter', None) # depth
self.adapter_img_dir = kwargs.get('adapter_img_dir', None)
self.low_ram = kwargs.get('low_ram', False)
# expand targets if shuffling
from toolkit.prompt_utils import get_slider_target_permutations
self.targets: List[SliderTargetConfig] = []
targets = [SliderTargetConfig(**target) for target in targets]
# do permutations if shuffle is true
print(f"Building slider targets")
for target in targets:
if target.shuffle:
target_permutations = get_slider_target_permutations(target, max_permutations=8)
self.targets = self.targets + target_permutations
else:
self.targets.append(target)
print(f"Built {len(self.targets)} slider targets (with permutations)")
class DatasetConfig:
"""
Dataset config for sd-datasets
"""
def __init__(self, **kwargs):
self.type = kwargs.get('type', 'image') # sd, slider, reference
# will be legacy
self.folder_path: str = kwargs.get('folder_path', None)
# can be json or folder path
self.dataset_path: str = kwargs.get('dataset_path', None)
self.default_caption: str = kwargs.get('default_caption', None)
random_triggers = kwargs.get('random_triggers', [])
# if they are a string, load them from a file
if isinstance(random_triggers, str) and os.path.exists(random_triggers):
with open(random_triggers, 'r') as f:
random_triggers = f.read().splitlines()
# remove empty lines
random_triggers = [line for line in random_triggers if line.strip() != '']
self.random_triggers: List[str] = random_triggers
self.random_triggers_max: int = kwargs.get('random_triggers_max', 1)
self.caption_ext: str = kwargs.get('caption_ext', None)
self.random_scale: bool = kwargs.get('random_scale', False)
self.random_crop: bool = kwargs.get('random_crop', False)
self.resolution: int = kwargs.get('resolution', 512)
self.scale: float = kwargs.get('scale', 1.0)
self.buckets: bool = kwargs.get('buckets', True)
self.bucket_tolerance: int = kwargs.get('bucket_tolerance', 64)
self.is_reg: bool = kwargs.get('is_reg', False)
self.network_weight: float = float(kwargs.get('network_weight', 1.0))
self.token_dropout_rate: float = float(kwargs.get('token_dropout_rate', 0.0))
self.shuffle_tokens: bool = kwargs.get('shuffle_tokens', False)
self.caption_dropout_rate: float = float(kwargs.get('caption_dropout_rate', 0.0))
self.keep_tokens: int = kwargs.get('keep_tokens', 0) # #of first tokens to always keep unless caption dropped
self.flip_x: bool = kwargs.get('flip_x', False)
self.flip_y: bool = kwargs.get('flip_y', False)
self.augments: List[str] = kwargs.get('augments', [])
self.control_path: str = kwargs.get('control_path', None) # depth maps, etc
# instead of cropping ot match image, it will serve the full size control image (clip images ie for ip adapters)
self.full_size_control_images: bool = kwargs.get('full_size_control_images', False)
self.alpha_mask: bool = kwargs.get('alpha_mask', False) # if true, will use alpha channel as mask
self.mask_path: str = kwargs.get('mask_path',
None) # focus mask (black and white. White has higher loss than black)
self.unconditional_path: str = kwargs.get('unconditional_path',
None) # path where matching unconditional images are located
self.invert_mask: bool = kwargs.get('invert_mask', False) # invert mask
self.mask_min_value: float = kwargs.get('mask_min_value', 0.0) # min value for . 0 - 1
self.poi: Union[str, None] = kwargs.get('poi',
None) # if one is set and in json data, will be used as auto crop scale point of interes
self.num_repeats: int = kwargs.get('num_repeats', 1) # number of times to repeat dataset
# cache latents will store them in memory
self.cache_latents: bool = kwargs.get('cache_latents', False)
# cache latents to disk will store them on disk. If both are true, it will save to disk, but keep in memory
self.cache_latents_to_disk: bool = kwargs.get('cache_latents_to_disk', False)
self.cache_clip_vision_to_disk: bool = kwargs.get('cache_clip_vision_to_disk', False)
self.standardize_images: bool = kwargs.get('standardize_images', False)
# https://albumentations.ai/docs/api_reference/augmentations/transforms
# augmentations are returned as a separate image and cannot currently be cached
self.augmentations: List[dict] = kwargs.get('augmentations', None)
self.shuffle_augmentations: bool = kwargs.get('shuffle_augmentations', False)
has_augmentations = self.augmentations is not None and len(self.augmentations) > 0
if (len(self.augments) > 0 or has_augmentations) and (self.cache_latents or self.cache_latents_to_disk):
print(f"WARNING: Augments are not supported with caching latents. Setting cache_latents to False")
self.cache_latents = False
self.cache_latents_to_disk = False
# legacy compatability
legacy_caption_type = kwargs.get('caption_type', None)
if legacy_caption_type:
self.caption_ext = legacy_caption_type
self.caption_type = self.caption_ext
self.guidance_type: GuidanceType = kwargs.get('guidance_type', 'targeted')
# ip adapter / reference dataset
self.clip_image_path: str = kwargs.get('clip_image_path', None) # depth maps, etc
self.clip_image_augmentations: List[dict] = kwargs.get('clip_image_augmentations', None)
self.clip_image_shuffle_augmentations: bool = kwargs.get('clip_image_shuffle_augmentations', False)
self.replacements: List[str] = kwargs.get('replacements', [])
self.loss_multiplier: float = kwargs.get('loss_multiplier', 1.0)
self.num_workers: int = kwargs.get('num_workers', 2)
self.prefetch_factor: int = kwargs.get('prefetch_factor', 2)
self.extra_values: List[float] = kwargs.get('extra_values', [])
self.square_crop: bool = kwargs.get('square_crop', False)
# apply same augmentations to control images. Usually want this true unless special case
self.replay_transforms: bool = kwargs.get('replay_transforms', True)
def preprocess_dataset_raw_config(raw_config: List[dict]) -> List[dict]:
"""
This just splits up the datasets by resolutions so you dont have to do it manually
:param raw_config:
:return:
"""
# split up datasets by resolutions
new_config = []
for dataset in raw_config:
resolution = dataset.get('resolution', 512)
if isinstance(resolution, list):
resolution_list = resolution
else:
resolution_list = [resolution]
for res in resolution_list:
dataset_copy = dataset.copy()
dataset_copy['resolution'] = res
new_config.append(dataset_copy)
return new_config
class GenerateImageConfig:
def __init__(
self,
prompt: str = '',
prompt_2: Optional[str] = None,
width: int = 512,
height: int = 512,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: str = '',
negative_prompt_2: Optional[str] = None,
seed: int = -1,
network_multiplier: float = 1.0,
guidance_rescale: float = 0.0,
# the tag [time] will be replaced with milliseconds since epoch
output_path: str = None, # full image path
output_folder: str = None, # folder to save image in if output_path is not specified
output_ext: str = ImgExt, # extension to save image as if output_path is not specified
output_tail: str = '', # tail to add to output filename
add_prompt_file: bool = False, # add a prompt file with generated image
adapter_image_path: str = None, # path to adapter image
adapter_conditioning_scale: float = 1.0, # scale for adapter conditioning
latents: Union[torch.Tensor | None] = None, # input latent to start with,
extra_kwargs: dict = None, # extra data to save with prompt file
refiner_start_at: float = 0.5, # start at this percentage of a step. 0.0 to 1.0 . 1.0 is the end
extra_values: List[float] = None, # extra values to save with prompt file
):
self.width: int = width
self.height: int = height
self.num_inference_steps: int = num_inference_steps
self.guidance_scale: float = guidance_scale
self.guidance_rescale: float = guidance_rescale
self.prompt: str = prompt
self.prompt_2: str = prompt_2
self.negative_prompt: str = negative_prompt
self.negative_prompt_2: str = negative_prompt_2
self.latents: Union[torch.Tensor | None] = latents
self.output_path: str = output_path
self.seed: int = seed
if self.seed == -1:
# generate random one
self.seed = random.randint(0, 2 ** 32 - 1)
self.network_multiplier: float = network_multiplier
self.output_folder: str = output_folder
self.output_ext: str = output_ext
self.add_prompt_file: bool = add_prompt_file
self.output_tail: str = output_tail
self.gen_time: int = int(time.time() * 1000)
self.adapter_image_path: str = adapter_image_path
self.adapter_conditioning_scale: float = adapter_conditioning_scale
self.extra_kwargs = extra_kwargs if extra_kwargs is not None else {}
self.refiner_start_at = refiner_start_at
self.extra_values = extra_values if extra_values is not None else []
# prompt string will override any settings above
self._process_prompt_string()
# handle dual text encoder prompts if nothing passed
if negative_prompt_2 is None:
self.negative_prompt_2 = negative_prompt
if prompt_2 is None:
self.prompt_2 = self.prompt
# parse prompt paths
if self.output_path is None and self.output_folder is None:
raise ValueError('output_path or output_folder must be specified')
elif self.output_path is not None:
self.output_folder = os.path.dirname(self.output_path)
self.output_ext = os.path.splitext(self.output_path)[1][1:]
self.output_filename_no_ext = os.path.splitext(os.path.basename(self.output_path))[0]
else:
self.output_filename_no_ext = '[time]_[count]'
if len(self.output_tail) > 0:
self.output_filename_no_ext += '_' + self.output_tail
self.output_path = os.path.join(self.output_folder, self.output_filename_no_ext + '.' + self.output_ext)
# adjust height
self.height = max(64, self.height - self.height % 8) # round to divisible by 8
self.width = max(64, self.width - self.width % 8) # round to divisible by 8
def set_gen_time(self, gen_time: int = None):
if gen_time is not None:
self.gen_time = gen_time
else:
self.gen_time = int(time.time() * 1000)
def _get_path_no_ext(self, count: int = 0, max_count=0):
# zero pad count
count_str = str(count).zfill(len(str(max_count)))
# replace [time] with gen time
filename = self.output_filename_no_ext.replace('[time]', str(self.gen_time))
# replace [count] with count
filename = filename.replace('[count]', count_str)
return filename
def get_image_path(self, count: int = 0, max_count=0):
filename = self._get_path_no_ext(count, max_count)
ext = self.output_ext
# if it does not start with a dot add one
if ext[0] != '.':
ext = '.' + ext
filename += ext
# join with folder
return os.path.join(self.output_folder, filename)
def get_prompt_path(self, count: int = 0, max_count=0):
filename = self._get_path_no_ext(count, max_count)
filename += '.txt'
# join with folder
return os.path.join(self.output_folder, filename)
def save_image(self, image, count: int = 0, max_count=0):
# make parent dirs
os.makedirs(self.output_folder, exist_ok=True)
self.set_gen_time()
# TODO save image gen header info for A1111 and us, our seeds probably wont match
image.save(self.get_image_path(count, max_count))
# do prompt file
if self.add_prompt_file:
self.save_prompt_file(count, max_count)
def save_prompt_file(self, count: int = 0, max_count=0):
# save prompt file
with open(self.get_prompt_path(count, max_count), 'w') as f:
prompt = self.prompt
if self.prompt_2 is not None:
prompt += ' --p2 ' + self.prompt_2
if self.negative_prompt is not None:
prompt += ' --n ' + self.negative_prompt
if self.negative_prompt_2 is not None:
prompt += ' --n2 ' + self.negative_prompt_2
prompt += ' --w ' + str(self.width)
prompt += ' --h ' + str(self.height)
prompt += ' --seed ' + str(self.seed)
prompt += ' --cfg ' + str(self.guidance_scale)
prompt += ' --steps ' + str(self.num_inference_steps)
prompt += ' --m ' + str(self.network_multiplier)
prompt += ' --gr ' + str(self.guidance_rescale)
# get gen info
f.write(self.prompt)
def _process_prompt_string(self):
# we will try to support all sd-scripts where we can
# FROM SD-SCRIPTS
# --n Treat everything until the next option as a negative prompt.
# --w Specify the width of the generated image.
# --h Specify the height of the generated image.
# --d Specify the seed for the generated image.
# --l Specify the CFG scale for the generated image.
# --s Specify the number of steps during generation.
# OURS and some QOL additions
# --m Specify the network multiplier for the generated image.
# --p2 Prompt for the second text encoder (SDXL only)
# --n2 Negative prompt for the second text encoder (SDXL only)
# --gr Specify the guidance rescale for the generated image (SDXL only)
# --seed Specify the seed for the generated image same as --d
# --cfg Specify the CFG scale for the generated image same as --l
# --steps Specify the number of steps during generation same as --s
# --network_multiplier Specify the network multiplier for the generated image same as --m
# process prompt string and update values if it has some
if self.prompt is not None and len(self.prompt) > 0:
# process prompt string
prompt = self.prompt
prompt = prompt.strip()
p_split = prompt.split('--')
self.prompt = p_split[0].strip()
if len(p_split) > 1:
for split in p_split[1:]:
# allows multi char flags
flag = split.split(' ')[0].strip()
content = split[len(flag):].strip()
if flag == 'p2':
self.prompt_2 = content
elif flag == 'n':
self.negative_prompt = content
elif flag == 'n2':
self.negative_prompt_2 = content
elif flag == 'w':
self.width = int(content)
elif flag == 'h':
self.height = int(content)
elif flag == 'd':
self.seed = int(content)
elif flag == 'seed':
self.seed = int(content)
elif flag == 'l':
self.guidance_scale = float(content)
elif flag == 'cfg':
self.guidance_scale = float(content)
elif flag == 's':
self.num_inference_steps = int(content)
elif flag == 'steps':
self.num_inference_steps = int(content)
elif flag == 'm':
self.network_multiplier = float(content)
elif flag == 'network_multiplier':
self.network_multiplier = float(content)
elif flag == 'gr':
self.guidance_rescale = float(content)
elif flag == 'a':
self.adapter_conditioning_scale = float(content)
elif flag == 'ref':
self.refiner_start_at = float(content)
elif flag == 'ev':
# split by comma
self.extra_values = [float(val) for val in content.split(',')]
elif flag == 'extra_values':
# split by comma
self.extra_values = [float(val) for val in content.split(',')]
def post_process_embeddings(
self,
conditional_prompt_embeds: PromptEmbeds,
unconditional_prompt_embeds: Optional[PromptEmbeds] = None,
):
# this is called after prompt embeds are encoded. We can override them in the future here
pass