|
from __future__ import division |
|
from __future__ import unicode_literals |
|
|
|
from typing import Iterable, Optional |
|
import weakref |
|
import copy |
|
import contextlib |
|
|
|
import torch |
|
|
|
|
|
|
|
|
|
class ExponentialMovingAverage: |
|
""" |
|
Maintains (exponential) moving average of a set of parameters. |
|
|
|
Args: |
|
parameters: Iterable of `torch.nn.Parameter` (typically from |
|
`model.parameters()`). |
|
Note that EMA is computed on *all* provided parameters, |
|
regardless of whether or not they have `requires_grad = True`; |
|
this allows a single EMA object to be consistantly used even |
|
if which parameters are trainable changes step to step. |
|
|
|
If you want to some parameters in the EMA, do not pass them |
|
to the object in the first place. For example: |
|
|
|
ExponentialMovingAverage( |
|
parameters=[p for p in model.parameters() if p.requires_grad], |
|
decay=0.9 |
|
) |
|
|
|
will ignore parameters that do not require grad. |
|
|
|
decay: The exponential decay. |
|
|
|
use_num_updates: Whether to use number of updates when computing |
|
averages. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
parameters: Iterable[torch.nn.Parameter] = None, |
|
decay: float = 0.995, |
|
use_num_updates: bool = True, |
|
|
|
use_feedback: bool = False |
|
): |
|
if parameters is None: |
|
raise ValueError("parameters must be provided") |
|
if decay < 0.0 or decay > 1.0: |
|
raise ValueError('Decay must be between 0 and 1') |
|
self.decay = decay |
|
self.num_updates = 0 if use_num_updates else None |
|
self.use_feedback = use_feedback |
|
parameters = list(parameters) |
|
self.shadow_params = [ |
|
p.clone().detach() |
|
for p in parameters |
|
] |
|
self.collected_params = None |
|
self._is_train_mode = True |
|
|
|
|
|
|
|
|
|
|
|
self._params_refs = [weakref.ref(p) for p in parameters] |
|
|
|
def _get_parameters( |
|
self, |
|
parameters: Optional[Iterable[torch.nn.Parameter]] |
|
) -> Iterable[torch.nn.Parameter]: |
|
if parameters is None: |
|
parameters = [p() for p in self._params_refs] |
|
if any(p is None for p in parameters): |
|
raise ValueError( |
|
"(One of) the parameters with which this " |
|
"ExponentialMovingAverage " |
|
"was initialized no longer exists (was garbage collected);" |
|
" please either provide `parameters` explicitly or keep " |
|
"the model to which they belong from being garbage " |
|
"collected." |
|
) |
|
return parameters |
|
else: |
|
parameters = list(parameters) |
|
if len(parameters) != len(self.shadow_params): |
|
raise ValueError( |
|
"Number of parameters passed as argument is different " |
|
"from number of shadow parameters maintained by this " |
|
"ExponentialMovingAverage" |
|
) |
|
return parameters |
|
|
|
def update( |
|
self, |
|
parameters: Optional[Iterable[torch.nn.Parameter]] = None |
|
) -> None: |
|
""" |
|
Update currently maintained parameters. |
|
|
|
Call this every time the parameters are updated, such as the result of |
|
the `optimizer.step()` call. |
|
|
|
Args: |
|
parameters: Iterable of `torch.nn.Parameter`; usually the same set of |
|
parameters used to initialize this object. If `None`, the |
|
parameters with which this `ExponentialMovingAverage` was |
|
initialized will be used. |
|
""" |
|
parameters = self._get_parameters(parameters) |
|
decay = self.decay |
|
if self.num_updates is not None: |
|
self.num_updates += 1 |
|
decay = min( |
|
decay, |
|
(1 + self.num_updates) / (10 + self.num_updates) |
|
) |
|
one_minus_decay = 1.0 - decay |
|
with torch.no_grad(): |
|
for s_param, param in zip(self.shadow_params, parameters): |
|
tmp = (s_param - param) |
|
|
|
tmp.mul_(one_minus_decay) |
|
s_param.sub_(tmp) |
|
|
|
if self.use_feedback: |
|
param.add_(tmp) |
|
|
|
def copy_to( |
|
self, |
|
parameters: Optional[Iterable[torch.nn.Parameter]] = None |
|
) -> None: |
|
""" |
|
Copy current averaged parameters into given collection of parameters. |
|
|
|
Args: |
|
parameters: Iterable of `torch.nn.Parameter`; the parameters to be |
|
updated with the stored moving averages. If `None`, the |
|
parameters with which this `ExponentialMovingAverage` was |
|
initialized will be used. |
|
""" |
|
parameters = self._get_parameters(parameters) |
|
for s_param, param in zip(self.shadow_params, parameters): |
|
param.data.copy_(s_param.data) |
|
|
|
def store( |
|
self, |
|
parameters: Optional[Iterable[torch.nn.Parameter]] = None |
|
) -> None: |
|
""" |
|
Save the current parameters for restoring later. |
|
|
|
Args: |
|
parameters: Iterable of `torch.nn.Parameter`; the parameters to be |
|
temporarily stored. If `None`, the parameters of with which this |
|
`ExponentialMovingAverage` was initialized will be used. |
|
""" |
|
parameters = self._get_parameters(parameters) |
|
self.collected_params = [ |
|
param.clone() |
|
for param in parameters |
|
] |
|
|
|
def restore( |
|
self, |
|
parameters: Optional[Iterable[torch.nn.Parameter]] = None |
|
) -> None: |
|
""" |
|
Restore the parameters stored with the `store` method. |
|
Useful to validate the model with EMA parameters without affecting the |
|
original optimization process. Store the parameters before the |
|
`copy_to` method. After validation (or model saving), use this to |
|
restore the former parameters. |
|
|
|
Args: |
|
parameters: Iterable of `torch.nn.Parameter`; the parameters to be |
|
updated with the stored parameters. If `None`, the |
|
parameters with which this `ExponentialMovingAverage` was |
|
initialized will be used. |
|
""" |
|
if self.collected_params is None: |
|
raise RuntimeError( |
|
"This ExponentialMovingAverage has no `store()`ed weights " |
|
"to `restore()`" |
|
) |
|
parameters = self._get_parameters(parameters) |
|
for c_param, param in zip(self.collected_params, parameters): |
|
param.data.copy_(c_param.data) |
|
|
|
@contextlib.contextmanager |
|
def average_parameters( |
|
self, |
|
parameters: Optional[Iterable[torch.nn.Parameter]] = None |
|
): |
|
r""" |
|
Context manager for validation/inference with averaged parameters. |
|
|
|
Equivalent to: |
|
|
|
ema.store() |
|
ema.copy_to() |
|
try: |
|
... |
|
finally: |
|
ema.restore() |
|
|
|
Args: |
|
parameters: Iterable of `torch.nn.Parameter`; the parameters to be |
|
updated with the stored parameters. If `None`, the |
|
parameters with which this `ExponentialMovingAverage` was |
|
initialized will be used. |
|
""" |
|
parameters = self._get_parameters(parameters) |
|
self.store(parameters) |
|
self.copy_to(parameters) |
|
try: |
|
yield |
|
finally: |
|
self.restore(parameters) |
|
|
|
def to(self, device=None, dtype=None) -> None: |
|
r"""Move internal buffers of the ExponentialMovingAverage to `device`. |
|
|
|
Args: |
|
device: like `device` argument to `torch.Tensor.to` |
|
""" |
|
|
|
self.shadow_params = [ |
|
p.to(device=device, dtype=dtype) |
|
if p.is_floating_point() |
|
else p.to(device=device) |
|
for p in self.shadow_params |
|
] |
|
if self.collected_params is not None: |
|
self.collected_params = [ |
|
p.to(device=device, dtype=dtype) |
|
if p.is_floating_point() |
|
else p.to(device=device) |
|
for p in self.collected_params |
|
] |
|
return |
|
|
|
def state_dict(self) -> dict: |
|
r"""Returns the state of the ExponentialMovingAverage as a dict.""" |
|
|
|
|
|
|
|
return { |
|
"decay": self.decay, |
|
"num_updates": self.num_updates, |
|
"shadow_params": self.shadow_params, |
|
"collected_params": self.collected_params |
|
} |
|
|
|
def load_state_dict(self, state_dict: dict) -> None: |
|
r"""Loads the ExponentialMovingAverage state. |
|
|
|
Args: |
|
state_dict (dict): EMA state. Should be an object returned |
|
from a call to :meth:`state_dict`. |
|
""" |
|
|
|
state_dict = copy.deepcopy(state_dict) |
|
self.decay = state_dict["decay"] |
|
if self.decay < 0.0 or self.decay > 1.0: |
|
raise ValueError('Decay must be between 0 and 1') |
|
self.num_updates = state_dict["num_updates"] |
|
assert self.num_updates is None or isinstance(self.num_updates, int), \ |
|
"Invalid num_updates" |
|
|
|
self.shadow_params = state_dict["shadow_params"] |
|
assert isinstance(self.shadow_params, list), \ |
|
"shadow_params must be a list" |
|
assert all( |
|
isinstance(p, torch.Tensor) for p in self.shadow_params |
|
), "shadow_params must all be Tensors" |
|
|
|
self.collected_params = state_dict["collected_params"] |
|
if self.collected_params is not None: |
|
assert isinstance(self.collected_params, list), \ |
|
"collected_params must be a list" |
|
assert all( |
|
isinstance(p, torch.Tensor) for p in self.collected_params |
|
), "collected_params must all be Tensors" |
|
assert len(self.collected_params) == len(self.shadow_params), \ |
|
"collected_params and shadow_params had different lengths" |
|
|
|
if len(self.shadow_params) == len(self._params_refs): |
|
|
|
|
|
params = [p() for p in self._params_refs] |
|
|
|
|
|
if not any(p is None for p in params): |
|
|
|
for i, p in enumerate(params): |
|
self.shadow_params[i] = self.shadow_params[i].to( |
|
device=p.device, dtype=p.dtype |
|
) |
|
if self.collected_params is not None: |
|
self.collected_params[i] = self.collected_params[i].to( |
|
device=p.device, dtype=p.dtype |
|
) |
|
else: |
|
raise ValueError( |
|
"Tried to `load_state_dict()` with the wrong number of " |
|
"parameters in the saved state." |
|
) |
|
|
|
def eval(self): |
|
if self._is_train_mode: |
|
with torch.no_grad(): |
|
self.store() |
|
self.copy_to() |
|
self._is_train_mode = False |
|
|
|
def train(self): |
|
if not self._is_train_mode: |
|
with torch.no_grad(): |
|
self.restore() |
|
self._is_train_mode = True |
|
|