alatlatihlora / toolkit /models /clip_fusion.py
crystantine's picture
Upload 190 files
1ba389d verified
import torch
import torch.nn as nn
from toolkit.models.zipper_resampler import ContextualAlphaMask
# Conv1d MLP
# MLP that can alternately be used as a conv1d on dim 1
class MLPC(nn.Module):
def __init__(
self,
in_dim,
out_dim,
hidden_dim,
do_conv=False,
use_residual=True
):
super().__init__()
self.do_conv = do_conv
if use_residual:
assert in_dim == out_dim
# dont normalize if using conv
if not do_conv:
self.layernorm = nn.LayerNorm(in_dim)
if do_conv:
self.fc1 = nn.Conv1d(in_dim, hidden_dim, 1)
self.fc2 = nn.Conv1d(hidden_dim, out_dim, 1)
else:
self.fc1 = nn.Linear(in_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, out_dim)
self.use_residual = use_residual
self.act_fn = nn.GELU()
def forward(self, x):
residual = x
if not self.do_conv:
x = self.layernorm(x)
x = self.fc1(x)
x = self.act_fn(x)
x = self.fc2(x)
if self.use_residual:
x = x + residual
return x
class ZipperBlock(nn.Module):
def __init__(
self,
in_size,
in_tokens,
out_size,
out_tokens,
hidden_size,
hidden_tokens,
):
super().__init__()
self.in_size = in_size
self.in_tokens = in_tokens
self.out_size = out_size
self.out_tokens = out_tokens
self.hidden_size = hidden_size
self.hidden_tokens = hidden_tokens
# permute to (batch_size, out_size, in_tokens)
self.zip_token = MLPC(
in_dim=self.in_tokens,
out_dim=self.out_tokens,
hidden_dim=self.hidden_tokens,
do_conv=True, # no need to permute
use_residual=False
)
# permute to (batch_size, out_tokens, out_size)
# in shpae: (batch_size, in_tokens, in_size)
self.zip_size = MLPC(
in_dim=self.in_size,
out_dim=self.out_size,
hidden_dim=self.hidden_size,
use_residual=False
)
def forward(self, x):
x = self.zip_token(x)
x = self.zip_size(x)
return x
# CLIPFusionModule
# Fuses any size of vision and text embeddings into a single embedding.
# remaps tokens and vectors.
class CLIPFusionModule(nn.Module):
def __init__(
self,
text_hidden_size: int = 768,
text_tokens: int = 77,
vision_hidden_size: int = 1024,
vision_tokens: int = 257,
num_blocks: int = 1,
):
super(CLIPFusionModule, self).__init__()
self.text_hidden_size = text_hidden_size
self.text_tokens = text_tokens
self.vision_hidden_size = vision_hidden_size
self.vision_tokens = vision_tokens
self.resampler = ZipperBlock(
in_size=self.vision_hidden_size,
in_tokens=self.vision_tokens,
out_size=self.text_hidden_size,
out_tokens=self.text_tokens,
hidden_size=self.vision_hidden_size * 2,
hidden_tokens=self.vision_tokens * 2
)
self.zipper_blocks = torch.nn.ModuleList([
ZipperBlock(
in_size=self.text_hidden_size * 2,
in_tokens=self.text_tokens,
out_size=self.text_hidden_size,
out_tokens=self.text_tokens,
hidden_size=self.text_hidden_size * 2,
hidden_tokens=self.text_tokens * 2
) for i in range(num_blocks)
])
self.ctx_alpha = ContextualAlphaMask(
dim=self.text_hidden_size,
)
self.alpha = nn.Parameter(torch.zeros([text_tokens]) + 0.01)
def forward(self, text_embeds, vision_embeds):
# text_embeds = (batch_size, 77, 768)
# vision_embeds = (batch_size, 257, 1024)
# output = (batch_size, 77, 768)
vision_embeds = self.resampler(vision_embeds)
x = vision_embeds
for i, block in enumerate(self.zipper_blocks):
res = x
x = torch.cat([text_embeds, x], dim=-1)
x = block(x)
x = x + res
# alpha mask
ctx_alpha = self.ctx_alpha(text_embeds)
# reshape alpha to (1, 77, 1)
alpha = self.alpha.unsqueeze(0).unsqueeze(-1)
x = ctx_alpha * x * alpha
x = x + text_embeds
return x