|
import torch |
|
import torch.nn as nn |
|
|
|
from toolkit.models.zipper_resampler import ContextualAlphaMask |
|
|
|
|
|
|
|
|
|
class MLPC(nn.Module): |
|
def __init__( |
|
self, |
|
in_dim, |
|
out_dim, |
|
hidden_dim, |
|
do_conv=False, |
|
use_residual=True |
|
): |
|
super().__init__() |
|
self.do_conv = do_conv |
|
if use_residual: |
|
assert in_dim == out_dim |
|
|
|
if not do_conv: |
|
self.layernorm = nn.LayerNorm(in_dim) |
|
|
|
if do_conv: |
|
self.fc1 = nn.Conv1d(in_dim, hidden_dim, 1) |
|
self.fc2 = nn.Conv1d(hidden_dim, out_dim, 1) |
|
else: |
|
self.fc1 = nn.Linear(in_dim, hidden_dim) |
|
self.fc2 = nn.Linear(hidden_dim, out_dim) |
|
|
|
self.use_residual = use_residual |
|
self.act_fn = nn.GELU() |
|
|
|
def forward(self, x): |
|
residual = x |
|
if not self.do_conv: |
|
x = self.layernorm(x) |
|
x = self.fc1(x) |
|
x = self.act_fn(x) |
|
x = self.fc2(x) |
|
if self.use_residual: |
|
x = x + residual |
|
return x |
|
|
|
|
|
class ZipperBlock(nn.Module): |
|
def __init__( |
|
self, |
|
in_size, |
|
in_tokens, |
|
out_size, |
|
out_tokens, |
|
hidden_size, |
|
hidden_tokens, |
|
): |
|
super().__init__() |
|
self.in_size = in_size |
|
self.in_tokens = in_tokens |
|
self.out_size = out_size |
|
self.out_tokens = out_tokens |
|
self.hidden_size = hidden_size |
|
self.hidden_tokens = hidden_tokens |
|
|
|
|
|
self.zip_token = MLPC( |
|
in_dim=self.in_tokens, |
|
out_dim=self.out_tokens, |
|
hidden_dim=self.hidden_tokens, |
|
do_conv=True, |
|
use_residual=False |
|
) |
|
|
|
|
|
|
|
|
|
self.zip_size = MLPC( |
|
in_dim=self.in_size, |
|
out_dim=self.out_size, |
|
hidden_dim=self.hidden_size, |
|
use_residual=False |
|
) |
|
|
|
def forward(self, x): |
|
x = self.zip_token(x) |
|
x = self.zip_size(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class CLIPFusionModule(nn.Module): |
|
def __init__( |
|
self, |
|
text_hidden_size: int = 768, |
|
text_tokens: int = 77, |
|
vision_hidden_size: int = 1024, |
|
vision_tokens: int = 257, |
|
num_blocks: int = 1, |
|
): |
|
super(CLIPFusionModule, self).__init__() |
|
|
|
self.text_hidden_size = text_hidden_size |
|
self.text_tokens = text_tokens |
|
self.vision_hidden_size = vision_hidden_size |
|
self.vision_tokens = vision_tokens |
|
|
|
self.resampler = ZipperBlock( |
|
in_size=self.vision_hidden_size, |
|
in_tokens=self.vision_tokens, |
|
out_size=self.text_hidden_size, |
|
out_tokens=self.text_tokens, |
|
hidden_size=self.vision_hidden_size * 2, |
|
hidden_tokens=self.vision_tokens * 2 |
|
) |
|
|
|
self.zipper_blocks = torch.nn.ModuleList([ |
|
ZipperBlock( |
|
in_size=self.text_hidden_size * 2, |
|
in_tokens=self.text_tokens, |
|
out_size=self.text_hidden_size, |
|
out_tokens=self.text_tokens, |
|
hidden_size=self.text_hidden_size * 2, |
|
hidden_tokens=self.text_tokens * 2 |
|
) for i in range(num_blocks) |
|
]) |
|
|
|
self.ctx_alpha = ContextualAlphaMask( |
|
dim=self.text_hidden_size, |
|
) |
|
|
|
self.alpha = nn.Parameter(torch.zeros([text_tokens]) + 0.01) |
|
|
|
def forward(self, text_embeds, vision_embeds): |
|
|
|
|
|
|
|
|
|
vision_embeds = self.resampler(vision_embeds) |
|
x = vision_embeds |
|
for i, block in enumerate(self.zipper_blocks): |
|
res = x |
|
x = torch.cat([text_embeds, x], dim=-1) |
|
x = block(x) |
|
x = x + res |
|
|
|
|
|
ctx_alpha = self.ctx_alpha(text_embeds) |
|
|
|
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) |
|
|
|
x = ctx_alpha * x * alpha |
|
|
|
x = x + text_embeds |
|
|
|
return x |
|
|