alatlatihlora / toolkit /models /te_adapter.py
crystantine's picture
Upload 190 files
1ba389d verified
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
import weakref
from typing import Union, TYPE_CHECKING
from transformers import T5EncoderModel, CLIPTextModel, CLIPTokenizer, T5Tokenizer, CLIPTextModelWithProjection
from diffusers.models.embeddings import PixArtAlphaTextProjection
from toolkit import train_tools
from toolkit.paths import REPOS_ROOT
from toolkit.prompt_utils import PromptEmbeds
from diffusers import Transformer2DModel
sys.path.append(REPOS_ROOT)
from ipadapter.ip_adapter.attention_processor import AttnProcessor2_0
if TYPE_CHECKING:
from toolkit.stable_diffusion_model import StableDiffusion, PixArtSigmaPipeline
from toolkit.custom_adapter import CustomAdapter
class TEAdapterCaptionProjection(nn.Module):
def __init__(self, caption_channels, adapter: 'TEAdapter'):
super().__init__()
in_features = caption_channels
self.adapter_ref: weakref.ref = weakref.ref(adapter)
sd = adapter.sd_ref()
self.parent_module_ref = weakref.ref(sd.unet.caption_projection)
parent_module = self.parent_module_ref()
self.linear_1 = nn.Linear(
in_features=in_features,
out_features=parent_module.linear_1.out_features,
bias=True
)
self.linear_2 = nn.Linear(
in_features=parent_module.linear_2.in_features,
out_features=parent_module.linear_2.out_features,
bias=True
)
# save the orig forward
parent_module.linear_1.orig_forward = parent_module.linear_1.forward
parent_module.linear_2.orig_forward = parent_module.linear_2.forward
# replace original forward
parent_module.orig_forward = parent_module.forward
parent_module.forward = self.forward
@property
def is_active(self):
return self.adapter_ref().is_active
@property
def unconditional_embeds(self):
return self.adapter_ref().adapter_ref().unconditional_embeds
@property
def conditional_embeds(self):
return self.adapter_ref().adapter_ref().conditional_embeds
def forward(self, caption):
if self.is_active and self.conditional_embeds is not None:
adapter_hidden_states = self.conditional_embeds.text_embeds
# check if we are doing unconditional
if self.unconditional_embeds is not None and adapter_hidden_states.shape[0] != caption.shape[0]:
# concat unconditional to match the hidden state batch size
if self.unconditional_embeds.text_embeds.shape[0] == 1 and adapter_hidden_states.shape[0] != 1:
unconditional = torch.cat([self.unconditional_embeds.text_embeds] * adapter_hidden_states.shape[0], dim=0)
else:
unconditional = self.unconditional_embeds.text_embeds
adapter_hidden_states = torch.cat([unconditional, adapter_hidden_states], dim=0)
hidden_states = self.linear_1(adapter_hidden_states)
hidden_states = self.parent_module_ref().act_1(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
else:
return self.parent_module_ref().orig_forward(caption)
class TEAdapterAttnProcessor(nn.Module):
r"""
Attention processor for Custom TE for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
The context length of the image features.
adapter
"""
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, adapter=None,
adapter_hidden_size=None, layer_name=None):
super().__init__()
self.layer_name = layer_name
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.adapter_ref: weakref.ref = weakref.ref(adapter)
self.hidden_size = hidden_size
self.adapter_hidden_size = adapter_hidden_size
self.cross_attention_dim = cross_attention_dim
self.scale = scale
self.num_tokens = num_tokens
self.to_k_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=False)
self.to_v_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=False)
@property
def is_active(self):
return self.adapter_ref().is_active
@property
def unconditional_embeds(self):
return self.adapter_ref().adapter_ref().unconditional_embeds
@property
def conditional_embeds(self):
return self.adapter_ref().adapter_ref().conditional_embeds
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
is_active = self.adapter_ref().is_active
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
# will be none if disabled
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
# only use one TE or the other. If our adapter is active only use ours
if self.is_active and self.conditional_embeds is not None:
adapter_hidden_states = self.conditional_embeds.text_embeds
# check if we are doing unconditional
if self.unconditional_embeds is not None and adapter_hidden_states.shape[0] != encoder_hidden_states.shape[0]:
# concat unconditional to match the hidden state batch size
if self.unconditional_embeds.text_embeds.shape[0] == 1 and adapter_hidden_states.shape[0] != 1:
unconditional = torch.cat([self.unconditional_embeds.text_embeds] * adapter_hidden_states.shape[0], dim=0)
else:
unconditional = self.unconditional_embeds.text_embeds
adapter_hidden_states = torch.cat([unconditional, adapter_hidden_states], dim=0)
# for ip-adapter
key = self.to_k_adapter(adapter_hidden_states)
value = self.to_v_adapter(adapter_hidden_states)
else:
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
try:
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
except RuntimeError:
raise RuntimeError(f"key shape: {key.shape}, value shape: {value.shape}")
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
# remove attn mask if doing clip
if self.adapter_ref().adapter_ref().config.text_encoder_arch == "clip":
attention_mask = None
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class TEAdapter(torch.nn.Module):
def __init__(
self,
adapter: 'CustomAdapter',
sd: 'StableDiffusion',
te: Union[T5EncoderModel],
tokenizer: CLIPTokenizer
):
super(TEAdapter, self).__init__()
self.adapter_ref: weakref.ref = weakref.ref(adapter)
self.sd_ref: weakref.ref = weakref.ref(sd)
self.te_ref: weakref.ref = weakref.ref(te)
self.tokenizer_ref: weakref.ref = weakref.ref(tokenizer)
self.adapter_modules = []
self.caption_projection = None
self.embeds_store = []
is_pixart = sd.is_pixart
if self.adapter_ref().config.text_encoder_arch == "t5" or self.adapter_ref().config.text_encoder_arch == "pile-t5":
self.token_size = self.te_ref().config.d_model
else:
self.token_size = self.te_ref().config.hidden_size
# add text projection if is sdxl
self.text_projection = None
if sd.is_xl:
clip_with_projection: CLIPTextModelWithProjection = sd.text_encoder[0]
self.text_projection = nn.Linear(te.config.hidden_size, clip_with_projection.config.projection_dim, bias=False)
# init adapter modules
attn_procs = {}
unet_sd = sd.unet.state_dict()
attn_dict_map = {
}
module_idx = 0
# init adapter modules
attn_procs = {}
unet_sd = sd.unet.state_dict()
attn_processor_keys = []
if is_pixart:
transformer: Transformer2DModel = sd.unet
for i, module in transformer.transformer_blocks.named_children():
attn_processor_keys.append(f"transformer_blocks.{i}.attn1")
# cross attention
attn_processor_keys.append(f"transformer_blocks.{i}.attn2")
else:
attn_processor_keys = list(sd.unet.attn_processors.keys())
attn_processor_names = []
blocks = []
transformer_blocks = []
for name in attn_processor_keys:
cross_attention_dim = None if name.endswith("attn1.processor") or name.endswith("attn.1") or name.endswith("attn1") else \
sd.unet.config['cross_attention_dim']
if name.startswith("mid_block"):
hidden_size = sd.unet.config['block_out_channels'][-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(sd.unet.config['block_out_channels']))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = sd.unet.config['block_out_channels'][block_id]
elif name.startswith("transformer"):
hidden_size = sd.unet.config['cross_attention_dim']
else:
# they didnt have this, but would lead to undefined below
raise ValueError(f"unknown attn processor name: {name}")
if cross_attention_dim is None:
attn_procs[name] = AttnProcessor2_0()
else:
layer_name = name.split(".processor")[0]
to_k_adapter = unet_sd[layer_name + ".to_k.weight"]
to_v_adapter = unet_sd[layer_name + ".to_v.weight"]
# add zero padding to the adapter
if to_k_adapter.shape[1] < self.token_size:
to_k_adapter = torch.cat([
to_k_adapter,
torch.randn(to_k_adapter.shape[0], self.token_size - to_k_adapter.shape[1]).to(
to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01
],
dim=1
)
to_v_adapter = torch.cat([
to_v_adapter,
torch.randn(to_v_adapter.shape[0], self.token_size - to_v_adapter.shape[1]).to(
to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01
],
dim=1
)
elif to_k_adapter.shape[1] > self.token_size:
to_k_adapter = to_k_adapter[:, :self.token_size]
to_v_adapter = to_v_adapter[:, :self.token_size]
else:
to_k_adapter = to_k_adapter
to_v_adapter = to_v_adapter
# todo resize to the TE hidden size
weights = {
"to_k_adapter.weight": to_k_adapter,
"to_v_adapter.weight": to_v_adapter,
}
if self.sd_ref().is_pixart:
# pixart is much more sensitive
weights = {
"to_k_adapter.weight": weights["to_k_adapter.weight"] * 0.01,
"to_v_adapter.weight": weights["to_v_adapter.weight"] * 0.01,
}
attn_procs[name] = TEAdapterAttnProcessor(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=1.0,
num_tokens=self.adapter_ref().config.num_tokens,
adapter=self,
adapter_hidden_size=self.token_size,
layer_name=layer_name
)
attn_procs[name].load_state_dict(weights)
self.adapter_modules.append(attn_procs[name])
if self.sd_ref().is_pixart:
# we have to set them ourselves
transformer: Transformer2DModel = sd.unet
for i, module in transformer.transformer_blocks.named_children():
module.attn1.processor = attn_procs[f"transformer_blocks.{i}.attn1"]
module.attn2.processor = attn_procs[f"transformer_blocks.{i}.attn2"]
self.adapter_modules = torch.nn.ModuleList(
[
transformer.transformer_blocks[i].attn2.processor for i in
range(len(transformer.transformer_blocks))
])
self.caption_projection = TEAdapterCaptionProjection(
caption_channels=self.token_size,
adapter=self,
)
else:
sd.unet.set_attn_processor(attn_procs)
self.adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values())
# make a getter to see if is active
@property
def is_active(self):
return self.adapter_ref().is_active
def encode_text(self, text):
te: T5EncoderModel = self.te_ref()
tokenizer: T5Tokenizer = self.tokenizer_ref()
attn_mask_float = None
# input_ids = tokenizer(
# text,
# max_length=77,
# padding="max_length",
# truncation=True,
# return_tensors="pt",
# ).input_ids.to(te.device)
# outputs = te(input_ids=input_ids)
# outputs = outputs.last_hidden_state
if self.adapter_ref().config.text_encoder_arch == "clip":
embeds = train_tools.encode_prompts(
tokenizer,
te,
text,
truncate=True,
max_length=self.adapter_ref().config.num_tokens,
)
attention_mask = torch.ones(embeds.shape[:2], device=embeds.device)
elif self.adapter_ref().config.text_encoder_arch == "pile-t5":
# just use aura pile
embeds, attention_mask = train_tools.encode_prompts_auraflow(
tokenizer,
te,
text,
truncate=True,
max_length=self.adapter_ref().config.num_tokens,
)
else:
embeds, attention_mask = train_tools.encode_prompts_pixart(
tokenizer,
te,
text,
truncate=True,
max_length=self.adapter_ref().config.num_tokens,
)
if attention_mask is not None:
attn_mask_float = attention_mask.to(embeds.device, dtype=embeds.dtype)
if self.text_projection is not None:
# pool the output of embeds ignoring 0 in the attention mask
if attn_mask_float is not None:
pooled_output = embeds * attn_mask_float.unsqueeze(-1)
else:
pooled_output = embeds
# reduce along dim 1 while maintaining batch and dim 2
pooled_output_sum = pooled_output.sum(dim=1)
if attn_mask_float is not None:
attn_mask_sum = attn_mask_float.sum(dim=1).unsqueeze(-1)
pooled_output = pooled_output_sum / attn_mask_sum
pooled_embeds = self.text_projection(pooled_output)
prompt_embeds = PromptEmbeds(
(embeds, pooled_embeds),
attention_mask=attention_mask,
).detach()
else:
prompt_embeds = PromptEmbeds(
embeds,
attention_mask=attention_mask,
).detach()
return prompt_embeds
def forward(self, input):
return input