|
import sys |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import weakref |
|
from typing import Union, TYPE_CHECKING |
|
|
|
|
|
from transformers import T5EncoderModel, CLIPTextModel, CLIPTokenizer, T5Tokenizer, CLIPTextModelWithProjection |
|
from diffusers.models.embeddings import PixArtAlphaTextProjection |
|
|
|
from toolkit import train_tools |
|
from toolkit.paths import REPOS_ROOT |
|
from toolkit.prompt_utils import PromptEmbeds |
|
from diffusers import Transformer2DModel |
|
|
|
sys.path.append(REPOS_ROOT) |
|
|
|
from ipadapter.ip_adapter.attention_processor import AttnProcessor2_0 |
|
|
|
|
|
if TYPE_CHECKING: |
|
from toolkit.stable_diffusion_model import StableDiffusion, PixArtSigmaPipeline |
|
from toolkit.custom_adapter import CustomAdapter |
|
|
|
|
|
class TEAdapterCaptionProjection(nn.Module): |
|
def __init__(self, caption_channels, adapter: 'TEAdapter'): |
|
super().__init__() |
|
in_features = caption_channels |
|
self.adapter_ref: weakref.ref = weakref.ref(adapter) |
|
sd = adapter.sd_ref() |
|
self.parent_module_ref = weakref.ref(sd.unet.caption_projection) |
|
parent_module = self.parent_module_ref() |
|
self.linear_1 = nn.Linear( |
|
in_features=in_features, |
|
out_features=parent_module.linear_1.out_features, |
|
bias=True |
|
) |
|
self.linear_2 = nn.Linear( |
|
in_features=parent_module.linear_2.in_features, |
|
out_features=parent_module.linear_2.out_features, |
|
bias=True |
|
) |
|
|
|
|
|
parent_module.linear_1.orig_forward = parent_module.linear_1.forward |
|
parent_module.linear_2.orig_forward = parent_module.linear_2.forward |
|
|
|
|
|
parent_module.orig_forward = parent_module.forward |
|
parent_module.forward = self.forward |
|
|
|
|
|
@property |
|
def is_active(self): |
|
return self.adapter_ref().is_active |
|
|
|
@property |
|
def unconditional_embeds(self): |
|
return self.adapter_ref().adapter_ref().unconditional_embeds |
|
|
|
@property |
|
def conditional_embeds(self): |
|
return self.adapter_ref().adapter_ref().conditional_embeds |
|
|
|
def forward(self, caption): |
|
if self.is_active and self.conditional_embeds is not None: |
|
adapter_hidden_states = self.conditional_embeds.text_embeds |
|
|
|
if self.unconditional_embeds is not None and adapter_hidden_states.shape[0] != caption.shape[0]: |
|
|
|
if self.unconditional_embeds.text_embeds.shape[0] == 1 and adapter_hidden_states.shape[0] != 1: |
|
unconditional = torch.cat([self.unconditional_embeds.text_embeds] * adapter_hidden_states.shape[0], dim=0) |
|
else: |
|
unconditional = self.unconditional_embeds.text_embeds |
|
adapter_hidden_states = torch.cat([unconditional, adapter_hidden_states], dim=0) |
|
hidden_states = self.linear_1(adapter_hidden_states) |
|
hidden_states = self.parent_module_ref().act_1(hidden_states) |
|
hidden_states = self.linear_2(hidden_states) |
|
return hidden_states |
|
else: |
|
return self.parent_module_ref().orig_forward(caption) |
|
|
|
|
|
class TEAdapterAttnProcessor(nn.Module): |
|
r""" |
|
Attention processor for Custom TE for PyTorch 2.0. |
|
Args: |
|
hidden_size (`int`): |
|
The hidden size of the attention layer. |
|
cross_attention_dim (`int`): |
|
The number of channels in the `encoder_hidden_states`. |
|
scale (`float`, defaults to 1.0): |
|
the weight scale of image prompt. |
|
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): |
|
The context length of the image features. |
|
adapter |
|
""" |
|
|
|
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, adapter=None, |
|
adapter_hidden_size=None, layer_name=None): |
|
super().__init__() |
|
self.layer_name = layer_name |
|
|
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
self.adapter_ref: weakref.ref = weakref.ref(adapter) |
|
|
|
self.hidden_size = hidden_size |
|
self.adapter_hidden_size = adapter_hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
self.scale = scale |
|
self.num_tokens = num_tokens |
|
|
|
self.to_k_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=False) |
|
self.to_v_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=False) |
|
|
|
@property |
|
def is_active(self): |
|
return self.adapter_ref().is_active |
|
|
|
@property |
|
def unconditional_embeds(self): |
|
return self.adapter_ref().adapter_ref().unconditional_embeds |
|
|
|
@property |
|
def conditional_embeds(self): |
|
return self.adapter_ref().adapter_ref().conditional_embeds |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
): |
|
is_active = self.adapter_ref().is_active |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
|
|
if self.is_active and self.conditional_embeds is not None: |
|
adapter_hidden_states = self.conditional_embeds.text_embeds |
|
|
|
if self.unconditional_embeds is not None and adapter_hidden_states.shape[0] != encoder_hidden_states.shape[0]: |
|
|
|
if self.unconditional_embeds.text_embeds.shape[0] == 1 and adapter_hidden_states.shape[0] != 1: |
|
unconditional = torch.cat([self.unconditional_embeds.text_embeds] * adapter_hidden_states.shape[0], dim=0) |
|
else: |
|
unconditional = self.unconditional_embeds.text_embeds |
|
adapter_hidden_states = torch.cat([unconditional, adapter_hidden_states], dim=0) |
|
|
|
key = self.to_k_adapter(adapter_hidden_states) |
|
value = self.to_v_adapter(adapter_hidden_states) |
|
else: |
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
try: |
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
except RuntimeError: |
|
raise RuntimeError(f"key shape: {key.shape}, value shape: {value.shape}") |
|
|
|
|
|
|
|
|
|
if self.adapter_ref().adapter_ref().config.text_encoder_arch == "clip": |
|
attention_mask = None |
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class TEAdapter(torch.nn.Module): |
|
def __init__( |
|
self, |
|
adapter: 'CustomAdapter', |
|
sd: 'StableDiffusion', |
|
te: Union[T5EncoderModel], |
|
tokenizer: CLIPTokenizer |
|
): |
|
super(TEAdapter, self).__init__() |
|
self.adapter_ref: weakref.ref = weakref.ref(adapter) |
|
self.sd_ref: weakref.ref = weakref.ref(sd) |
|
self.te_ref: weakref.ref = weakref.ref(te) |
|
self.tokenizer_ref: weakref.ref = weakref.ref(tokenizer) |
|
self.adapter_modules = [] |
|
self.caption_projection = None |
|
self.embeds_store = [] |
|
is_pixart = sd.is_pixart |
|
|
|
if self.adapter_ref().config.text_encoder_arch == "t5" or self.adapter_ref().config.text_encoder_arch == "pile-t5": |
|
self.token_size = self.te_ref().config.d_model |
|
else: |
|
self.token_size = self.te_ref().config.hidden_size |
|
|
|
|
|
self.text_projection = None |
|
if sd.is_xl: |
|
clip_with_projection: CLIPTextModelWithProjection = sd.text_encoder[0] |
|
self.text_projection = nn.Linear(te.config.hidden_size, clip_with_projection.config.projection_dim, bias=False) |
|
|
|
|
|
attn_procs = {} |
|
unet_sd = sd.unet.state_dict() |
|
attn_dict_map = { |
|
|
|
} |
|
module_idx = 0 |
|
|
|
attn_procs = {} |
|
unet_sd = sd.unet.state_dict() |
|
attn_processor_keys = [] |
|
if is_pixart: |
|
transformer: Transformer2DModel = sd.unet |
|
for i, module in transformer.transformer_blocks.named_children(): |
|
attn_processor_keys.append(f"transformer_blocks.{i}.attn1") |
|
|
|
|
|
attn_processor_keys.append(f"transformer_blocks.{i}.attn2") |
|
|
|
else: |
|
attn_processor_keys = list(sd.unet.attn_processors.keys()) |
|
|
|
attn_processor_names = [] |
|
|
|
blocks = [] |
|
transformer_blocks = [] |
|
for name in attn_processor_keys: |
|
cross_attention_dim = None if name.endswith("attn1.processor") or name.endswith("attn.1") or name.endswith("attn1") else \ |
|
sd.unet.config['cross_attention_dim'] |
|
if name.startswith("mid_block"): |
|
hidden_size = sd.unet.config['block_out_channels'][-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(sd.unet.config['block_out_channels']))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = sd.unet.config['block_out_channels'][block_id] |
|
elif name.startswith("transformer"): |
|
hidden_size = sd.unet.config['cross_attention_dim'] |
|
else: |
|
|
|
raise ValueError(f"unknown attn processor name: {name}") |
|
if cross_attention_dim is None: |
|
attn_procs[name] = AttnProcessor2_0() |
|
else: |
|
layer_name = name.split(".processor")[0] |
|
to_k_adapter = unet_sd[layer_name + ".to_k.weight"] |
|
to_v_adapter = unet_sd[layer_name + ".to_v.weight"] |
|
|
|
|
|
if to_k_adapter.shape[1] < self.token_size: |
|
to_k_adapter = torch.cat([ |
|
to_k_adapter, |
|
torch.randn(to_k_adapter.shape[0], self.token_size - to_k_adapter.shape[1]).to( |
|
to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01 |
|
], |
|
dim=1 |
|
) |
|
to_v_adapter = torch.cat([ |
|
to_v_adapter, |
|
torch.randn(to_v_adapter.shape[0], self.token_size - to_v_adapter.shape[1]).to( |
|
to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01 |
|
], |
|
dim=1 |
|
) |
|
elif to_k_adapter.shape[1] > self.token_size: |
|
to_k_adapter = to_k_adapter[:, :self.token_size] |
|
to_v_adapter = to_v_adapter[:, :self.token_size] |
|
else: |
|
to_k_adapter = to_k_adapter |
|
to_v_adapter = to_v_adapter |
|
|
|
|
|
weights = { |
|
"to_k_adapter.weight": to_k_adapter, |
|
"to_v_adapter.weight": to_v_adapter, |
|
} |
|
|
|
if self.sd_ref().is_pixart: |
|
|
|
weights = { |
|
"to_k_adapter.weight": weights["to_k_adapter.weight"] * 0.01, |
|
"to_v_adapter.weight": weights["to_v_adapter.weight"] * 0.01, |
|
} |
|
|
|
attn_procs[name] = TEAdapterAttnProcessor( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
scale=1.0, |
|
num_tokens=self.adapter_ref().config.num_tokens, |
|
adapter=self, |
|
adapter_hidden_size=self.token_size, |
|
layer_name=layer_name |
|
) |
|
attn_procs[name].load_state_dict(weights) |
|
self.adapter_modules.append(attn_procs[name]) |
|
if self.sd_ref().is_pixart: |
|
|
|
transformer: Transformer2DModel = sd.unet |
|
for i, module in transformer.transformer_blocks.named_children(): |
|
module.attn1.processor = attn_procs[f"transformer_blocks.{i}.attn1"] |
|
module.attn2.processor = attn_procs[f"transformer_blocks.{i}.attn2"] |
|
self.adapter_modules = torch.nn.ModuleList( |
|
[ |
|
transformer.transformer_blocks[i].attn2.processor for i in |
|
range(len(transformer.transformer_blocks)) |
|
]) |
|
self.caption_projection = TEAdapterCaptionProjection( |
|
caption_channels=self.token_size, |
|
adapter=self, |
|
) |
|
|
|
else: |
|
sd.unet.set_attn_processor(attn_procs) |
|
self.adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values()) |
|
|
|
|
|
@property |
|
def is_active(self): |
|
return self.adapter_ref().is_active |
|
|
|
def encode_text(self, text): |
|
te: T5EncoderModel = self.te_ref() |
|
tokenizer: T5Tokenizer = self.tokenizer_ref() |
|
attn_mask_float = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.adapter_ref().config.text_encoder_arch == "clip": |
|
embeds = train_tools.encode_prompts( |
|
tokenizer, |
|
te, |
|
text, |
|
truncate=True, |
|
max_length=self.adapter_ref().config.num_tokens, |
|
) |
|
attention_mask = torch.ones(embeds.shape[:2], device=embeds.device) |
|
|
|
elif self.adapter_ref().config.text_encoder_arch == "pile-t5": |
|
|
|
embeds, attention_mask = train_tools.encode_prompts_auraflow( |
|
tokenizer, |
|
te, |
|
text, |
|
truncate=True, |
|
max_length=self.adapter_ref().config.num_tokens, |
|
) |
|
|
|
else: |
|
embeds, attention_mask = train_tools.encode_prompts_pixart( |
|
tokenizer, |
|
te, |
|
text, |
|
truncate=True, |
|
max_length=self.adapter_ref().config.num_tokens, |
|
) |
|
if attention_mask is not None: |
|
attn_mask_float = attention_mask.to(embeds.device, dtype=embeds.dtype) |
|
if self.text_projection is not None: |
|
|
|
if attn_mask_float is not None: |
|
pooled_output = embeds * attn_mask_float.unsqueeze(-1) |
|
else: |
|
pooled_output = embeds |
|
|
|
|
|
pooled_output_sum = pooled_output.sum(dim=1) |
|
|
|
if attn_mask_float is not None: |
|
attn_mask_sum = attn_mask_float.sum(dim=1).unsqueeze(-1) |
|
|
|
pooled_output = pooled_output_sum / attn_mask_sum |
|
|
|
pooled_embeds = self.text_projection(pooled_output) |
|
|
|
prompt_embeds = PromptEmbeds( |
|
(embeds, pooled_embeds), |
|
attention_mask=attention_mask, |
|
).detach() |
|
|
|
else: |
|
|
|
prompt_embeds = PromptEmbeds( |
|
embeds, |
|
attention_mask=attention_mask, |
|
).detach() |
|
|
|
return prompt_embeds |
|
|
|
|
|
|
|
def forward(self, input): |
|
return input |
|
|