|
import copy |
|
import math |
|
|
|
from diffusers import ( |
|
DDPMScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
DPMSolverMultistepScheduler, |
|
DPMSolverSinglestepScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
DDIMScheduler, |
|
EulerDiscreteScheduler, |
|
HeunDiscreteScheduler, |
|
KDPM2DiscreteScheduler, |
|
KDPM2AncestralDiscreteScheduler, |
|
LCMScheduler, |
|
FlowMatchEulerDiscreteScheduler, |
|
) |
|
|
|
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler |
|
|
|
from k_diffusion.external import CompVisDenoiser |
|
|
|
from toolkit.samplers.custom_lcm_scheduler import CustomLCMScheduler |
|
|
|
|
|
SCHEDULER_LINEAR_START = 0.00085 |
|
SCHEDULER_LINEAR_END = 0.0120 |
|
SCHEDULER_TIMESTEPS = 1000 |
|
SCHEDLER_SCHEDULE = "scaled_linear" |
|
|
|
sd_config = { |
|
"_class_name": "EulerAncestralDiscreteScheduler", |
|
"_diffusers_version": "0.24.0.dev0", |
|
"beta_end": 0.012, |
|
"beta_schedule": "scaled_linear", |
|
"beta_start": 0.00085, |
|
"clip_sample": False, |
|
"interpolation_type": "linear", |
|
"num_train_timesteps": 1000, |
|
"prediction_type": "epsilon", |
|
"sample_max_value": 1.0, |
|
"set_alpha_to_one": False, |
|
|
|
"skip_prk_steps": True, |
|
|
|
"steps_offset": 0, |
|
|
|
"timestep_spacing": "leading", |
|
"trained_betas": None |
|
} |
|
|
|
pixart_config = { |
|
"_class_name": "DPMSolverMultistepScheduler", |
|
"_diffusers_version": "0.22.0.dev0", |
|
"algorithm_type": "dpmsolver++", |
|
"beta_end": 0.02, |
|
"beta_schedule": "linear", |
|
"beta_start": 0.0001, |
|
"dynamic_thresholding_ratio": 0.995, |
|
"euler_at_final": False, |
|
|
|
"lambda_min_clipped": -math.inf, |
|
"lower_order_final": True, |
|
"num_train_timesteps": 1000, |
|
"prediction_type": "epsilon", |
|
"sample_max_value": 1.0, |
|
"solver_order": 2, |
|
"solver_type": "midpoint", |
|
"steps_offset": 0, |
|
"thresholding": False, |
|
"timestep_spacing": "linspace", |
|
"trained_betas": None, |
|
"use_karras_sigmas": False, |
|
"use_lu_lambdas": False, |
|
"variance_type": None |
|
} |
|
|
|
|
|
def get_sampler( |
|
sampler: str, |
|
kwargs: dict = None, |
|
arch: str = "sd" |
|
): |
|
sched_init_args = {} |
|
if kwargs is not None: |
|
sched_init_args.update(kwargs) |
|
|
|
config_to_use = copy.deepcopy(sd_config) if arch == "sd" else copy.deepcopy(pixart_config) |
|
|
|
if sampler.startswith("k_"): |
|
sched_init_args["use_karras_sigmas"] = True |
|
|
|
if sampler == "ddim": |
|
scheduler_cls = DDIMScheduler |
|
elif sampler == "ddpm": |
|
scheduler_cls = DDPMScheduler |
|
elif sampler == "pndm": |
|
scheduler_cls = PNDMScheduler |
|
elif sampler == "lms" or sampler == "k_lms": |
|
scheduler_cls = LMSDiscreteScheduler |
|
elif sampler == "euler" or sampler == "k_euler": |
|
scheduler_cls = EulerDiscreteScheduler |
|
elif sampler == "euler_a": |
|
scheduler_cls = EulerAncestralDiscreteScheduler |
|
elif sampler == "dpmsolver" or sampler == "dpmsolver++" or sampler == "k_dpmsolver" or sampler == "k_dpmsolver++": |
|
scheduler_cls = DPMSolverMultistepScheduler |
|
sched_init_args["algorithm_type"] = sampler.replace("k_", "") |
|
elif sampler == "dpmsingle": |
|
scheduler_cls = DPMSolverSinglestepScheduler |
|
elif sampler == "heun": |
|
scheduler_cls = HeunDiscreteScheduler |
|
elif sampler == "dpm_2": |
|
scheduler_cls = KDPM2DiscreteScheduler |
|
elif sampler == "dpm_2_a": |
|
scheduler_cls = KDPM2AncestralDiscreteScheduler |
|
elif sampler == "lcm": |
|
scheduler_cls = LCMScheduler |
|
elif sampler == "custom_lcm": |
|
scheduler_cls = CustomLCMScheduler |
|
elif sampler == "flowmatch": |
|
scheduler_cls = CustomFlowMatchEulerDiscreteScheduler |
|
config_to_use = { |
|
"_class_name": "FlowMatchEulerDiscreteScheduler", |
|
"_diffusers_version": "0.29.0.dev0", |
|
"num_train_timesteps": 1000, |
|
"shift": 3.0 |
|
} |
|
else: |
|
raise ValueError(f"Sampler {sampler} not supported") |
|
|
|
|
|
config = copy.deepcopy(config_to_use) |
|
config.update(sched_init_args) |
|
|
|
scheduler = scheduler_cls.from_config(config) |
|
|
|
return scheduler |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
from diffusers import DiffusionPipeline |
|
|
|
from diffusers import StableDiffusionKDiffusionPipeline |
|
import torch |
|
import os |
|
|
|
inference_steps = 25 |
|
|
|
pipe = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base") |
|
pipe = pipe.to("cuda") |
|
|
|
k_diffusion_model = CompVisDenoiser(model) |
|
|
|
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="sd_text2img_k_diffusion") |
|
pipe = pipe.to("cuda") |
|
|
|
prompt = "an astronaut riding a horse on mars" |
|
pipe.set_scheduler("sample_heun") |
|
generator = torch.Generator(device="cuda").manual_seed(seed) |
|
image = pipe(prompt, generator=generator, num_inference_steps=20).images[0] |
|
|
|
image.save("./astronaut_heun_k_diffusion.png") |
|
|