alatlatihlora / toolkit /sampler.py
crystantine's picture
Upload 190 files
1ba389d verified
import copy
import math
from diffusers import (
DDPMScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
DDIMScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
KDPM2DiscreteScheduler,
KDPM2AncestralDiscreteScheduler,
LCMScheduler,
FlowMatchEulerDiscreteScheduler,
)
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler
from k_diffusion.external import CompVisDenoiser
from toolkit.samplers.custom_lcm_scheduler import CustomLCMScheduler
# scheduler:
SCHEDULER_LINEAR_START = 0.00085
SCHEDULER_LINEAR_END = 0.0120
SCHEDULER_TIMESTEPS = 1000
SCHEDLER_SCHEDULE = "scaled_linear"
sd_config = {
"_class_name": "EulerAncestralDiscreteScheduler",
"_diffusers_version": "0.24.0.dev0",
"beta_end": 0.012,
"beta_schedule": "scaled_linear",
"beta_start": 0.00085,
"clip_sample": False,
"interpolation_type": "linear",
"num_train_timesteps": 1000,
"prediction_type": "epsilon",
"sample_max_value": 1.0,
"set_alpha_to_one": False,
# "skip_prk_steps": False, # for training
"skip_prk_steps": True,
# "steps_offset": 1,
"steps_offset": 0,
# "timestep_spacing": "trailing", # for training
"timestep_spacing": "leading",
"trained_betas": None
}
pixart_config = {
"_class_name": "DPMSolverMultistepScheduler",
"_diffusers_version": "0.22.0.dev0",
"algorithm_type": "dpmsolver++",
"beta_end": 0.02,
"beta_schedule": "linear",
"beta_start": 0.0001,
"dynamic_thresholding_ratio": 0.995,
"euler_at_final": False,
# "lambda_min_clipped": -Infinity,
"lambda_min_clipped": -math.inf,
"lower_order_final": True,
"num_train_timesteps": 1000,
"prediction_type": "epsilon",
"sample_max_value": 1.0,
"solver_order": 2,
"solver_type": "midpoint",
"steps_offset": 0,
"thresholding": False,
"timestep_spacing": "linspace",
"trained_betas": None,
"use_karras_sigmas": False,
"use_lu_lambdas": False,
"variance_type": None
}
def get_sampler(
sampler: str,
kwargs: dict = None,
arch: str = "sd"
):
sched_init_args = {}
if kwargs is not None:
sched_init_args.update(kwargs)
config_to_use = copy.deepcopy(sd_config) if arch == "sd" else copy.deepcopy(pixart_config)
if sampler.startswith("k_"):
sched_init_args["use_karras_sigmas"] = True
if sampler == "ddim":
scheduler_cls = DDIMScheduler
elif sampler == "ddpm": # ddpm is not supported ?
scheduler_cls = DDPMScheduler
elif sampler == "pndm":
scheduler_cls = PNDMScheduler
elif sampler == "lms" or sampler == "k_lms":
scheduler_cls = LMSDiscreteScheduler
elif sampler == "euler" or sampler == "k_euler":
scheduler_cls = EulerDiscreteScheduler
elif sampler == "euler_a":
scheduler_cls = EulerAncestralDiscreteScheduler
elif sampler == "dpmsolver" or sampler == "dpmsolver++" or sampler == "k_dpmsolver" or sampler == "k_dpmsolver++":
scheduler_cls = DPMSolverMultistepScheduler
sched_init_args["algorithm_type"] = sampler.replace("k_", "")
elif sampler == "dpmsingle":
scheduler_cls = DPMSolverSinglestepScheduler
elif sampler == "heun":
scheduler_cls = HeunDiscreteScheduler
elif sampler == "dpm_2":
scheduler_cls = KDPM2DiscreteScheduler
elif sampler == "dpm_2_a":
scheduler_cls = KDPM2AncestralDiscreteScheduler
elif sampler == "lcm":
scheduler_cls = LCMScheduler
elif sampler == "custom_lcm":
scheduler_cls = CustomLCMScheduler
elif sampler == "flowmatch":
scheduler_cls = CustomFlowMatchEulerDiscreteScheduler
config_to_use = {
"_class_name": "FlowMatchEulerDiscreteScheduler",
"_diffusers_version": "0.29.0.dev0",
"num_train_timesteps": 1000,
"shift": 3.0
}
else:
raise ValueError(f"Sampler {sampler} not supported")
config = copy.deepcopy(config_to_use)
config.update(sched_init_args)
scheduler = scheduler_cls.from_config(config)
return scheduler
# testing
if __name__ == "__main__":
from diffusers import DiffusionPipeline
from diffusers import StableDiffusionKDiffusionPipeline
import torch
import os
inference_steps = 25
pipe = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base")
pipe = pipe.to("cuda")
k_diffusion_model = CompVisDenoiser(model)
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="sd_text2img_k_diffusion")
pipe = pipe.to("cuda")
prompt = "an astronaut riding a horse on mars"
pipe.set_scheduler("sample_heun")
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe(prompt, generator=generator, num_inference_steps=20).images[0]
image.save("./astronaut_heun_k_diffusion.png")