import os from collections import OrderedDict from safetensors.torch import save_file from jobs.process.BaseProcess import BaseProcess from toolkit.metadata import get_meta_for_safetensors from toolkit.train_tools import get_torch_dtype class BaseMergeProcess(BaseProcess): def __init__( self, process_id: int, job, config: OrderedDict ): super().__init__(process_id, job, config) self.process_id: int self.config: OrderedDict self.output_path = self.get_conf('output_path', required=True) self.dtype = self.get_conf('dtype', self.job.dtype) self.torch_dtype = get_torch_dtype(self.dtype) def run(self): # implement in child class # be sure to call super().run() first pass def save(self, state_dict): # prepare meta save_meta = get_meta_for_safetensors(self.meta, self.job.name) # save os.makedirs(os.path.dirname(self.output_path), exist_ok=True) for key in list(state_dict.keys()): v = state_dict[key] v = v.detach().clone().to("cpu").to(self.torch_dtype) state_dict[key] = v # having issues with meta save_file(state_dict, self.output_path, save_meta) print(f"Saved to {self.output_path}")