import torch import torch.nn as nn import numpy as np import itertools class LosslessLatentDecoder(nn.Module): def __init__(self, in_channels, latent_depth, dtype=torch.float32, trainable=False): super(LosslessLatentDecoder, self).__init__() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.latent_depth = latent_depth self.in_channels = in_channels self.out_channels = int(in_channels // (latent_depth * latent_depth)) numpy_kernel = self.build_kernel(in_channels, latent_depth) numpy_kernel = torch.from_numpy(numpy_kernel).to(device=device, dtype=dtype) if trainable: self.kernel = nn.Parameter(numpy_kernel) else: self.kernel = numpy_kernel def build_kernel(self, in_channels, latent_depth): # my old code from tensorflow. # tensorflow kernel is (height, width, out_channels, in_channels) # pytorch kernel is (in_channels, out_channels, height, width) out_channels = self.out_channels # kernel_shape = [kernel_filter_size, kernel_filter_size, out_channels, in_channels] # tensorflow kernel_shape = [in_channels, out_channels, latent_depth, latent_depth] # pytorch kernel = np.zeros(kernel_shape, np.float32) # Build the kernel so that a 4 pixel cluster has each pixel come from a separate channel. for c in range(0, out_channels): i = 0 for x, y in itertools.product(range(latent_depth), repeat=2): # kernel[y, x, c, c * latent_depth * latent_depth + i] = 1 # tensorflow kernel[c * latent_depth * latent_depth + i, c, y, x] = 1.0 # pytorch i += 1 return kernel def forward(self, x): dtype = x.dtype if self.kernel.dtype != dtype: self.kernel = self.kernel.to(dtype=dtype) # Deconvolve input tensor with the kernel return nn.functional.conv_transpose2d(x, self.kernel, stride=self.latent_depth, padding=0, groups=1) class LosslessLatentEncoder(nn.Module): def __init__(self, in_channels, latent_depth, dtype=torch.float32, trainable=False): super(LosslessLatentEncoder, self).__init__() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.latent_depth = latent_depth self.in_channels = in_channels self.out_channels = int(in_channels * (latent_depth * latent_depth)) numpy_kernel = self.build_kernel(in_channels, latent_depth) numpy_kernel = torch.from_numpy(numpy_kernel).to(device=device, dtype=dtype) if trainable: self.kernel = nn.Parameter(numpy_kernel) else: self.kernel = numpy_kernel def build_kernel(self, in_channels, latent_depth): # my old code from tensorflow. # tensorflow kernel is (height, width, in_channels, out_channels) # pytorch kernel is (out_channels, in_channels, height, width) out_channels = self.out_channels # kernel_shape = [latent_depth, latent_depth, in_channels, out_channels] # tensorflow kernel_shape = [out_channels, in_channels, latent_depth, latent_depth] # pytorch kernel = np.zeros(kernel_shape, np.float32) # Build the kernel so that a 4 pixel cluster has each pixel come from a separate channel. for c in range(0, in_channels): i = 0 for x, y in itertools.product(range(latent_depth), repeat=2): # kernel[y, x, c, c * latent_depth * latent_depth + i] = 1 # tensorflow kernel[c * latent_depth * latent_depth + i, c, y, x] = 1.0 # pytorch i += 1 return kernel def forward(self, x): dtype = x.dtype if self.kernel.dtype != dtype: self.kernel = self.kernel.to(dtype=dtype) # Convolve input tensor with the kernel return nn.functional.conv2d(x, self.kernel, stride=self.latent_depth, padding=0, groups=1) class LosslessLatentVAE(nn.Module): def __init__(self, in_channels, latent_depth, dtype=torch.float32, trainable=False): super(LosslessLatentVAE, self).__init__() self.latent_depth = latent_depth self.in_channels = in_channels self.encoder = LosslessLatentEncoder(in_channels, latent_depth, dtype=dtype, trainable=trainable) encoder_out_channels = self.encoder.out_channels self.decoder = LosslessLatentDecoder(encoder_out_channels, latent_depth, dtype=dtype, trainable=trainable) def forward(self, x): latent = self.latent_encoder(x) out = self.latent_decoder(latent) return out def encode(self, x): return self.encoder(x) def decode(self, x): return self.decoder(x) # test it if __name__ == '__main__': import os from PIL import Image import torchvision.transforms as transforms user_path = os.path.expanduser('~') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") dtype = torch.float32 input_path = os.path.join(user_path, "Pictures/sample_2_512.png") output_path = os.path.join(user_path, "Pictures/sample_2_512_llvae.png") img = Image.open(input_path) img_tensor = transforms.ToTensor()(img) img_tensor = img_tensor.unsqueeze(0).to(device=device, dtype=dtype) print("input_shape: ", list(img_tensor.shape)) vae = LosslessLatentVAE(in_channels=3, latent_depth=8, dtype=dtype).to(device=device, dtype=dtype) latent = vae.encode(img_tensor) print("latent_shape: ", list(latent.shape)) out_tensor = vae.decode(latent) print("out_shape: ", list(out_tensor.shape)) mse_loss = nn.MSELoss() mse = mse_loss(img_tensor, out_tensor) print("roundtrip_loss: ", mse.item()) out_img = transforms.ToPILImage()(out_tensor.squeeze(0)) out_img.save(output_path)