import sys import torch import torch.nn as nn import torch.nn.functional as F import weakref from typing import Union, TYPE_CHECKING from diffusers import Transformer2DModel from transformers import T5EncoderModel, CLIPTextModel, CLIPTokenizer, T5Tokenizer, CLIPVisionModelWithProjection from toolkit.paths import REPOS_ROOT sys.path.append(REPOS_ROOT) if TYPE_CHECKING: from toolkit.stable_diffusion_model import StableDiffusion from toolkit.custom_adapter import CustomAdapter class AttnProcessor2_0(torch.nn.Module): r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__( self, hidden_size=None, cross_attention_dim=None, ): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, ): residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class SingleValueAdapterAttnProcessor(nn.Module): r""" Attention processor for Custom TE for PyTorch 2.0. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. scale (`float`, defaults to 1.0): the weight scale of image prompt. adapter """ def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, adapter=None, adapter_hidden_size=None, has_bias=False, **kwargs): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") self.adapter_ref: weakref.ref = weakref.ref(adapter) self.hidden_size = hidden_size self.adapter_hidden_size = adapter_hidden_size self.cross_attention_dim = cross_attention_dim self.scale = scale self.to_k_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias) self.to_v_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias) @property def is_active(self): return self.adapter_ref().is_active # return False @property def unconditional_embeds(self): return self.adapter_ref().adapter_ref().unconditional_embeds @property def conditional_embeds(self): return self.adapter_ref().adapter_ref().conditional_embeds def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, ): is_active = self.adapter_ref().is_active residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) # will be none if disabled if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # only use one TE or the other. If our adapter is active only use ours if self.is_active and self.conditional_embeds is not None: adapter_hidden_states = self.conditional_embeds if adapter_hidden_states.shape[0] < batch_size: # doing cfg adapter_hidden_states = torch.cat([ self.unconditional_embeds, adapter_hidden_states ], dim=0) # needs to be shape (batch, 1, 1) if len(adapter_hidden_states.shape) == 2: adapter_hidden_states = adapter_hidden_states.unsqueeze(1) # conditional_batch_size = adapter_hidden_states.shape[0] # conditional_query = query # for ip-adapter vd_key = self.to_k_adapter(adapter_hidden_states) vd_value = self.to_v_adapter(adapter_hidden_states) vd_key = vd_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) vd_value = vd_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 vd_hidden_states = F.scaled_dot_product_attention( query, vd_key, vd_value, attn_mask=None, dropout_p=0.0, is_causal=False ) vd_hidden_states = vd_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) vd_hidden_states = vd_hidden_states.to(query.dtype) hidden_states = hidden_states + self.scale * vd_hidden_states # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class SingleValueAdapter(torch.nn.Module): def __init__( self, adapter: 'CustomAdapter', sd: 'StableDiffusion', num_values: int = 1, ): super(SingleValueAdapter, self).__init__() is_pixart = sd.is_pixart self.adapter_ref: weakref.ref = weakref.ref(adapter) self.sd_ref: weakref.ref = weakref.ref(sd) self.token_size = num_values # init adapter modules attn_procs = {} unet_sd = sd.unet.state_dict() attn_processor_keys = [] if is_pixart: transformer: Transformer2DModel = sd.unet for i, module in transformer.transformer_blocks.named_children(): attn_processor_keys.append(f"transformer_blocks.{i}.attn1") # cross attention attn_processor_keys.append(f"transformer_blocks.{i}.attn2") else: attn_processor_keys = list(sd.unet.attn_processors.keys()) for name in attn_processor_keys: cross_attention_dim = None if name.endswith("attn1.processor") or name.endswith("attn.1") else sd.unet.config['cross_attention_dim'] if name.startswith("mid_block"): hidden_size = sd.unet.config['block_out_channels'][-1] elif name.startswith("up_blocks"): block_id = int(name[len("up_blocks.")]) hidden_size = list(reversed(sd.unet.config['block_out_channels']))[block_id] elif name.startswith("down_blocks"): block_id = int(name[len("down_blocks.")]) hidden_size = sd.unet.config['block_out_channels'][block_id] elif name.startswith("transformer"): hidden_size = sd.unet.config['cross_attention_dim'] else: # they didnt have this, but would lead to undefined below raise ValueError(f"unknown attn processor name: {name}") if cross_attention_dim is None: attn_procs[name] = AttnProcessor2_0() else: layer_name = name.split(".processor")[0] to_k_adapter = unet_sd[layer_name + ".to_k.weight"] to_v_adapter = unet_sd[layer_name + ".to_v.weight"] # if is_pixart: # to_k_bias = unet_sd[layer_name + ".to_k.bias"] # to_v_bias = unet_sd[layer_name + ".to_v.bias"] # else: # to_k_bias = None # to_v_bias = None # add zero padding to the adapter if to_k_adapter.shape[1] < self.token_size: to_k_adapter = torch.cat([ to_k_adapter, torch.randn(to_k_adapter.shape[0], self.token_size - to_k_adapter.shape[1]).to( to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01 ], dim=1 ) to_v_adapter = torch.cat([ to_v_adapter, torch.randn(to_v_adapter.shape[0], self.token_size - to_v_adapter.shape[1]).to( to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01 ], dim=1 ) # if is_pixart: # to_k_bias = torch.cat([ # to_k_bias, # torch.zeros(self.token_size - to_k_adapter.shape[1]).to( # to_k_adapter.device, dtype=to_k_adapter.dtype) # ], # dim=0 # ) # to_v_bias = torch.cat([ # to_v_bias, # torch.zeros(self.token_size - to_v_adapter.shape[1]).to( # to_k_adapter.device, dtype=to_k_adapter.dtype) # ], # dim=0 # ) elif to_k_adapter.shape[1] > self.token_size: to_k_adapter = to_k_adapter[:, :self.token_size] to_v_adapter = to_v_adapter[:, :self.token_size] # if is_pixart: # to_k_bias = to_k_bias[:self.token_size] # to_v_bias = to_v_bias[:self.token_size] else: to_k_adapter = to_k_adapter to_v_adapter = to_v_adapter # if is_pixart: # to_k_bias = to_k_bias # to_v_bias = to_v_bias weights = { "to_k_adapter.weight": to_k_adapter * 0.01, "to_v_adapter.weight": to_v_adapter * 0.01, } # if is_pixart: # weights["to_k_adapter.bias"] = to_k_bias # weights["to_v_adapter.bias"] = to_v_bias attn_procs[name] = SingleValueAdapterAttnProcessor( hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, adapter=self, adapter_hidden_size=self.token_size, has_bias=False, ) attn_procs[name].load_state_dict(weights) if self.sd_ref().is_pixart: # we have to set them ourselves transformer: Transformer2DModel = sd.unet for i, module in transformer.transformer_blocks.named_children(): module.attn1.processor = attn_procs[f"transformer_blocks.{i}.attn1"] module.attn2.processor = attn_procs[f"transformer_blocks.{i}.attn2"] self.adapter_modules = torch.nn.ModuleList([ transformer.transformer_blocks[i].attn1.processor for i in range(len(transformer.transformer_blocks)) ] + [ transformer.transformer_blocks[i].attn2.processor for i in range(len(transformer.transformer_blocks)) ]) else: sd.unet.set_attn_processor(attn_procs) self.adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values()) # make a getter to see if is active @property def is_active(self): return self.adapter_ref().is_active def forward(self, input): return input