# Merge image encoder and fuse module to create an ID Encoder # send multiple ID images, we can directly obtain the updated text encoder containing a stacked ID embedding import torch import torch.nn as nn from transformers.models.clip.modeling_clip import CLIPVisionModelWithProjection from transformers.models.clip.configuration_clip import CLIPVisionConfig from transformers import PretrainedConfig VISION_CONFIG_DICT = { "hidden_size": 1024, "intermediate_size": 4096, "num_attention_heads": 16, "num_hidden_layers": 24, "patch_size": 14, "projection_dim": 768 } class MLP(nn.Module): def __init__(self, in_dim, out_dim, hidden_dim, use_residual=True): super().__init__() if use_residual: assert in_dim == out_dim self.layernorm = nn.LayerNorm(in_dim) self.fc1 = nn.Linear(in_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, out_dim) self.use_residual = use_residual self.act_fn = nn.GELU() def forward(self, x): residual = x x = self.layernorm(x) x = self.fc1(x) x = self.act_fn(x) x = self.fc2(x) if self.use_residual: x = x + residual return x class FuseModule(nn.Module): def __init__(self, embed_dim): super().__init__() self.mlp1 = MLP(embed_dim * 2, embed_dim, embed_dim, use_residual=False) self.mlp2 = MLP(embed_dim, embed_dim, embed_dim, use_residual=True) self.layer_norm = nn.LayerNorm(embed_dim) def fuse_fn(self, prompt_embeds, id_embeds): stacked_id_embeds = torch.cat([prompt_embeds, id_embeds], dim=-1) stacked_id_embeds = self.mlp1(stacked_id_embeds) + prompt_embeds stacked_id_embeds = self.mlp2(stacked_id_embeds) stacked_id_embeds = self.layer_norm(stacked_id_embeds) return stacked_id_embeds def forward( self, prompt_embeds, id_embeds, class_tokens_mask, ) -> torch.Tensor: # id_embeds shape: [b, max_num_inputs, 1, 2048] id_embeds = id_embeds.to(prompt_embeds.dtype) num_inputs = class_tokens_mask.sum().unsqueeze(0) # TODO: check for training case batch_size, max_num_inputs = id_embeds.shape[:2] # seq_length: 77 seq_length = prompt_embeds.shape[1] # flat_id_embeds shape: [b*max_num_inputs, 1, 2048] flat_id_embeds = id_embeds.view( -1, id_embeds.shape[-2], id_embeds.shape[-1] ) # valid_id_mask [b*max_num_inputs] valid_id_mask = ( torch.arange(max_num_inputs, device=flat_id_embeds.device)[None, :] < num_inputs[:, None] ) valid_id_embeds = flat_id_embeds[valid_id_mask.flatten()] prompt_embeds = prompt_embeds.view(-1, prompt_embeds.shape[-1]) class_tokens_mask = class_tokens_mask.view(-1) valid_id_embeds = valid_id_embeds.view(-1, valid_id_embeds.shape[-1]) # slice out the image token embeddings image_token_embeds = prompt_embeds[class_tokens_mask] stacked_id_embeds = self.fuse_fn(image_token_embeds, valid_id_embeds) assert class_tokens_mask.sum() == stacked_id_embeds.shape[0], f"{class_tokens_mask.sum()} != {stacked_id_embeds.shape[0]}" prompt_embeds.masked_scatter_(class_tokens_mask[:, None], stacked_id_embeds.to(prompt_embeds.dtype)) updated_prompt_embeds = prompt_embeds.view(batch_size, seq_length, -1) return updated_prompt_embeds class PhotoMakerIDEncoder(CLIPVisionModelWithProjection): def __init__(self, config=None, *model_args, **model_kwargs): if config is None: config = CLIPVisionConfig(**VISION_CONFIG_DICT) super().__init__(config, *model_args, **model_kwargs) self.visual_projection_2 = nn.Linear(1024, 1280, bias=False) self.fuse_module = FuseModule(2048) def forward(self, id_pixel_values, prompt_embeds, class_tokens_mask): b, num_inputs, c, h, w = id_pixel_values.shape id_pixel_values = id_pixel_values.view(b * num_inputs, c, h, w) shared_id_embeds = self.vision_model(id_pixel_values)[1] id_embeds = self.visual_projection(shared_id_embeds) id_embeds_2 = self.visual_projection_2(shared_id_embeds) id_embeds = id_embeds.view(b, num_inputs, 1, -1) id_embeds_2 = id_embeds_2.view(b, num_inputs, 1, -1) id_embeds = torch.cat((id_embeds, id_embeds_2), dim=-1) updated_prompt_embeds = self.fuse_module( prompt_embeds, id_embeds, class_tokens_mask) return updated_prompt_embeds class PhotoMakerCLIPEncoder(CLIPVisionModelWithProjection): def __init__(self, config=None, *model_args, **model_kwargs): if config is None: config = CLIPVisionConfig(**VISION_CONFIG_DICT) super().__init__(config, *model_args, **model_kwargs) self.visual_projection_2 = nn.Linear(1024, 1280, bias=False) def forward(self, id_pixel_values, do_projection2=True, output_full=False): b, num_inputs, c, h, w = id_pixel_values.shape id_pixel_values = id_pixel_values.view(b * num_inputs, c, h, w) # last_hidden_state, 1, 257, 1024 vision_output = self.vision_model(id_pixel_values, output_hidden_states=True) shared_id_embeds = vision_output[1] id_embeds = self.visual_projection(shared_id_embeds) id_embeds = id_embeds.view(b, num_inputs, 1, -1) if do_projection2: id_embeds_2 = self.visual_projection_2(shared_id_embeds) id_embeds_2 = id_embeds_2.view(b, num_inputs, 1, -1) id_embeds = torch.cat((id_embeds, id_embeds_2), dim=-1) if output_full: return id_embeds, vision_output return id_embeds if __name__ == "__main__": PhotoMakerIDEncoder()