import os from collections import OrderedDict from safetensors.torch import save_file from jobs.process.BaseProcess import BaseProcess from toolkit.metadata import get_meta_for_safetensors from typing import ForwardRef from toolkit.train_tools import get_torch_dtype class BaseExtractProcess(BaseProcess): def __init__( self, process_id: int, job, config: OrderedDict ): super().__init__(process_id, job, config) self.config: OrderedDict self.output_folder: str self.output_filename: str self.output_path: str self.process_id = process_id self.job = job self.config = config self.dtype = self.get_conf('dtype', self.job.dtype) self.torch_dtype = get_torch_dtype(self.dtype) self.extract_unet = self.get_conf('extract_unet', self.job.extract_unet) self.extract_text_encoder = self.get_conf('extract_text_encoder', self.job.extract_text_encoder) def run(self): # here instead of init because child init needs to go first self.output_path = self.get_output_path() # implement in child class # be sure to call super().run() first pass # you can override this in the child class if you want # call super().get_output_path(prefix="your_prefix_", suffix="_your_suffix") to extend this def get_output_path(self, prefix=None, suffix=None): config_output_path = self.get_conf('output_path', None) config_filename = self.get_conf('filename', None) # replace [name] with name if config_output_path is not None: config_output_path = config_output_path.replace('[name]', self.job.name) return config_output_path if config_output_path is None and config_filename is not None: # build the output path from the output folder and filename return os.path.join(self.job.output_folder, config_filename) # build our own if suffix is None: # we will just add process it to the end of the filename if there is more than one process # and no other suffix was given suffix = f"_{self.process_id}" if len(self.config['process']) > 1 else '' if prefix is None: prefix = '' output_filename = f"{prefix}{self.output_filename}{suffix}" return os.path.join(self.job.output_folder, output_filename) def save(self, state_dict): # prepare meta save_meta = get_meta_for_safetensors(self.meta, self.job.name) # save os.makedirs(os.path.dirname(self.output_path), exist_ok=True) for key in list(state_dict.keys()): v = state_dict[key] v = v.detach().clone().to("cpu").to(self.torch_dtype) state_dict[key] = v # having issues with meta save_file(state_dict, self.output_path, save_meta) print(f"Saved to {self.output_path}")